Elementary Explanation of Finite Field Mysteries

By "elementary," I mean using only basic group facts, like the order of an element divides the order of a group, and basic polynomial ring facts, like division algorithm, gcd's, and unique factorization for polynomials with coefficients in any field.

Fact 1 If \(f(X) \in \mathbb{Z}/p\mathbb{Z}[X] \) is irreducible of degree \(n \), then \(f(X) \) has \(n \) roots in the field \(F = \mathbb{Z}/p\mathbb{Z}[X]/(f(X)) \).

Proof \(|F| = q = p^n \), so the multiplicative group \(F^\ast \) has order \(|F^\ast| = q - 1 \). Let \(x = X \mod f(X) \). Then \(x^{q-1} = 1 \in F^\ast \). Since \(f(X) \) is the minimal polynomial for \(x \), we have \(f(X) \) divides \(X^{q-1} - 1 \) in \(\mathbb{Z}/p\mathbb{Z}[X] \) and in \(F[X] \). But every element of \(F^\ast \) is a root of \(X^{q-1} - 1 \), so \(X^{q-1} - 1 = \prod (X - a) \in F[X] \), where \(a \) ranges over all elements of \(F^\ast \). Since \(f(X) \) divides this product, \(f(X) \) has \(n \) linear factors in \(F[X] \).

Fact 2 If \(g(X) \in \mathbb{Z}/p\mathbb{Z}[X] \) is another irreducible polynomial of degree \(n \), then \(g(X) \) has \(n \) roots in \(F = \mathbb{Z}/p\mathbb{Z}[X]/(f(X)) \).

Proof The proof of Fact 1 shows that \(g(X) \) divides \(X^{q-1} - 1 \) in \(\mathbb{Z}/p\mathbb{Z}[X] \) and hence in \(F[X] \). But we already factored \(X^{q-1} - 1 \) in \(F[X] \), namely \(X^{q-1} - 1 = \prod (X - a) \in F[X] \). So, \(g(X) \) is also a product of \(n \) linear factors in \(F[X] \).

Fact 3 The fields \(F = \mathbb{Z}/p\mathbb{Z}[X]/(f(X)) \) and \(K = \mathbb{Z}/p\mathbb{Z}[X]/(g(X)) \) are isomorphic.

Proof By Fact 2, \(g(X) \) has a root \(y \in F \). Thus, there is a copy of \(K \) in \(F \). But both have vector space dimension \(n \) over \(\mathbb{Z}/p\mathbb{Z} \), so \(K = F \).

Regarding Statement 1, it is easy enough to make explicit the \(n \) roots of \(f(X) \) in \(F = \mathbb{Z}/p\mathbb{Z}[X]/(f(X)) \). Namely, the Frobenius \(\sigma(a) = a^p \) is a field automorphism of \(F \) which fixes the coefficients of \(f(X) \), which are in \(\mathbb{Z}/p\mathbb{Z} \). Thus \(x, x^p, (x^p)^p, \ldots \) are all roots of \(f(X) \). A little Galois theory tells you there is no repetition here until \(n \) roots are obtained. That is, the first repetition is \(x^q = x \), with \(q = p^n \). In somewhat more elementary terms, since \(x \) generates \(F \) over \(\mathbb{Z}/p\mathbb{Z} \), if you had \(x^r = x \), with \(r = p^d, d < n \), then you would have \(a^r = a \), for all \(a \in F \). This is too many roots for the polynomial \(X^r - X \).