Finitely Generated Modules over a PID, I

A will throughout be a fixed PID. We will develop the structure theory for finitely generated A-modules.

Lemma 1 Any submodule of a free A-module is itself free. O

Lemma 2 A torsion-free, finitely generated A-module is isomorphic to a submodule of a free module, hence is
free. -

Lemma 3 If M is a finitely generated A-module and T c M is its torsion submodule, then M /T = F is a finitely
generated torsion-free, hence free, A-module and one has a direct sum decomposition M = T & F. Moreover, T
is a finitely generated A-module. O

We now need to analyze a finitely generated, torsion A-module, T. If x € T, letord(x) = {a € A | ax =
0}. By definition of torsion module, ord(x) is a non-zero ideal of A, and in our case a principal ideal. Let
ann(T) ={ae€A|ax =0, forall x € T}, also an ideal of A.

Lemma 4 If torsion A-module T is generated by {x1,x,, ..., xs} and if ord(x;) = (a;), then ann(T) = (d) =
lem(a;).

PrOOF Since a; | d, clearly dx; = 0, for all i, hence d € ann(T). Conversely, if e € ann(T') then ex; = 0,
hence a; | e and consequently d | e. -

Lemma s Suppose T is a torsion A-module, x,y € T. Let ord(x) = (p), ord(y) = (q), gcd(p,q) = 1. Then
ord(x + y) = pq.

Proor Certainly pg(x + y) =0.If d(x + y) = 0, then dgx = 0, since dqy = 0. So p | gd which implies p | d.
Similarly, g | d. a

Lemma 6 Suppose T is a torsion A-module, x,y € T. Let ord(x) = (a), ord(y) = (b), lem(a, b) = (d). If
(x, y) denotes the submodule of T generated by x and y, then (x, y) = (x’, y"), where ord(x") = (d).

ProOOF One can write d = pq, where a = pr, b = gs, and gcd(p, q) = ged(r,s) = L. Just take p and g to
be suitable products of powers of primes chosen according to the factorizations of a and b in A. Then, by
Lemmas, x’ = rx + sy has ord(x") = (d), since ord(rx) = (p) and ord(sy) = (g). Now write1 = Rr—Ss € A
and let ' = Sx + Ry. The matrix with rows (7, s) and (S, R) has determinant 1, so it is easy to solve for x and
y as linear combinations of x” and y'. Thus (x, y) = (x', y'). a

Lemma 7 If torsion A-module T is generated by {x1,x2,..., %} and if ann(T) = (d) as in Lemma 4, then
T ={y1, Y2 --->Ym), whereord(y,) = (d).

PROOF An easy iteration of Lemma 6. First replace (x1, x,) by (x{, x5) as in Lemma 6. Then replace (x{, x3)
by (x;’, x4), so that now ord(x{") = lem(xj, x2, x3). Continue. a

Lemma 8 Suppose T is a finitely generated torsion A module, y € T, and ord(y) = ann(T) = (d). Let
T* = T/(y), x* € T*, ord(x*) = (e). Then there exist elements x € T projecting to x* € T*, with ord(x) =
ord(x*) = (e).



Proor First, e | d,sincedT = (0) impliesd T* = (0). Choose some element z € T which projects to x* € T*.
Then ez € (y), say ez = fy. Now, 0 = dz = (d/e)(ez) = (df/e)y. Since ord(y) = (d), conclude e | f. Let
x =z - (f/e)y. Then x projects to x* and ex = ez — fy = 0, as desired. -

Lemma 9 If T is a finitely generated nonzero torsion A-module then T = A/(dy) ® A/(d2) & --- & A/(dm),
where the d; are neither 0 nor unitsin Aand dy | dy | -+ | dm-1 | d. Note that necessarily (d,,) = ann(T) here.

Proor Induction based on Lemma 8. Say T = (y1, ..., ¥m ), with m as small as possible and with ord(y,,) =
(d) = ann(T). If m = 1, there is nothing to prove, T is cyclic. Otherwise, let T* = T/(y,,). Now, T* can
be generated by m — 1 elements (but no fewer than m — 1). By induction, we can assume Lemma 9 holds for
T*. Applying Lemma 8 to each cyclic generator in a direct sum decomposition for T* gives a splitting of the
exact sequence (0) - (y,) > T — T* — (0), which establishes Lemma 9 for T. -

Theorem 1 If M is a finitely generated A module then
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where the d; are neither 0 nor unitsin Aand dy | dy | -+ | dp—1 | dy. Moreover, the rank n and the ideals (d;)
with the indicated divisibility properties are uniquely determined by M. The least number of generators of T is
m and the least number of generators of M is m + n.

(The interpretation of n = 0 is that M = T is a torsion module, and the interpretation of m = 0, that is no
dis, is that M = F is a free module.)

Proor The existence statement just collects the conclusions of Lemmas 3 and 9. The rank, #, of F is invariant
since F 2 M/T, which is independent of decomposition. Suppose p is a prime which divides d;. Then
M/pM is a vector space over the field A/(p) of dimension n + m. This proves n + m is independent of the
decomposition and also proves M cannot be generated by fewer than n + m elements. Similarly, T/pT has
dimension m as vector space over A/(p), so T cannot be generated by fewer than m elements.

The uniqueness of the ideals (d;) can be proved in different ways. Here is a nice characterization of (d;).
For e € A, the module eT can be generated by m — i elements if and only if d; divides e. Thus, d; is the gcd
of all such elements e. The idea is, multiply all the summands of one decomposition by e. You get something
isomorphic to another sum of cyclic modules
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with e; | ej41. Precisely, e; = d;/ ged(e, d;). The number of non-zero summands here is therefore the least
number of generators of eT. But a term disappears if and only if d; divides e. Another proof of uniqueness
of the (d;) can be based on Theorem 2 below, which presents an alternate version of the structure theorem.g
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An alternate approach to the structure of a torsion module over a PID A uses first a decomposition into p-
primary summands, for primes p € A, and then an analysis of a p-primary module. In general, ifa € Aisa
nonzero element and T is a torsion A-module, set T, = {x € T | a”"x = 0, for some n > 0}. T is p-primary
for a prime p if T = T,. Note T, = T, if g = p°.

Lemma 1o Ifged(a,b) =1, then T, n T}, = (0).

Proor Ifx € T, n Ty and a"x = b™x = 0, write 1l = ua” + vb" € A. Then x = 1x = (ua" + vb™)x = 0. -

Lemma 1 Ifged(a,b) =1, then Ty, = T, & Ty. If a,b,c, ..., k are finitely many pairwise relatively prime
elements of A, for example, powers of distinct primes, then Typ.. = T, & -+ & Tj.

Proor After Lemma 10, we only need to show Ty, = T, + Tp. If (ab)"x = 0, then a”x € T, and b"x € T,.
Write 1 = vb" + ua" € A. Then x = 1x = (vb")x + (ua")x € T, + Ty. The second statement is a simple
induction, starting with two elements, a and (bc---k). -

Remark 1 Lemma 11 can be viewed as a generalization of the Chinese Remainder Theorem in the case of
PIDs. Namely, if T = A/(ab), with gcd(a, b) = 1, then it is easy to see T, =~ A/(a) and T;, = A/(D). For
example, the map “multiply by b” A/(a) - A/(ab) = T, is injective and has image equal to T,,. o

Lemma 12 For all torsion modules, T = & prime Tp.

ProOF Any x € T belongs to T,; for some d, since T is a torsion module. Factor d into a product of distinct
prime powers. Lemma 11 shows T} is the direct sum of the T}, over the primes p which divide d. This shows
every element of T is a finite sum of elements of the p-primary modules T},. Uniqueness of such an expression
is an easy consequence of Lemma 10. n

Theorem 2 If T, is a finitely generated nonzero p-primary torsion module, then

T, = A/(p™) ® A/(p) ® - © A/(p™),

where 0 < e; < e; < -+ < ey, The exponents ej are uniquely determined by T,. The integer m is the least number
of generators of T,.

Proor Follow the proof of Lemma g for the existence of such a decomposition. Given such a decomposition,
obviously m is the dimension of T/pT as vector space over A/(p), where we have abbreviated T, by T.
Furthermore, the dimension of pT/p*T over A/(p) is the number of e; which are greater than 1. In general,
the dimension of p'T/p"*'T is the number of e; which are greater than i. These dimensions are invariant,
and determine the e, hence the e; are uniquely determined by T),. -

Remark 2 The reason for claiming that this is somehow an alternate proof of the structure theorem is that
Lemmas 4, 5, 6, and 7 are irrelevant or trivial for a p-primary module, since orders of elements of T, are
always powers of p. Those Lemmas are replaced by Lemmas 10, 11, and 12 here. Then one repeats Lemma 8,
and its inductive consequence Lemma 9 for T). Also, the uniqueness part is more elementary here. O



Theorem 1 presents one normal form for a finitely generated torsion A-module T. The ideals (d;) c A of
Theorem 1 that successively divide each other are called the invariant factors of 7. Lemma 12 and Theorem
IT present a second normal form for T. The powers (p®/) which occur in the formula for T), in Theorem 2,
including the number of times each occurs, as p varies over prime divisors of ann(T) = (d), are called
elementary divisors of T

It is quite easy to go back and forth between the invariant factor form and the elementary divisor form.
Thus, one really wouldn’t need to give both proofs. However, the various Lemmas in the separate proofs have
some independent interest. Here is how the translation goes. Use the Chinese Remainder Theorem to convert
an invariant factor formula for T, as in Theorem 1, to elementary divisor form. That is, if d; = [ p{f]fi is the
factorization of d; into distinct prime powers, then A/(d;) = ®;A/( p{}f) Conversely, given the elementary
divisor form of Theorem 2 for each T,, p prime, reconstruct the invariant factors d; as follows. The last
(dm) = ord(T) must be the product of all the highest prime powers seen in the elementary divisor formulas
for all the T,. Then remove one cyclic summand of T corresponding to each of these highest prime powers,
and look at the remaining summands. Apply the same recipe to these summands to construct d,,_;. Namely,
dm-1 must be the product of the highest remaining prime powers. Continue this algorithm to find all the
d;. Examining these two translations, recovering each normal form from the other, reveals that a uniqueness
result for either normal form implies uniqueness for the other normal form. Thus, uniqueness of the invariant
factors follows from the rather clean proof of uniqueness of the elementary divisors.



