
Localization

Let A be a commutative ring. By a multiplicative set S ⊂ A, we mean a subset such that  ∈ S,  /∈ S, and
if s, t ∈ S then st ∈ S. We will construct a ring S−A and a homomorphism iS ∶ A → S−A which has the
following universal property:

For all s ∈ S, iS(s) is invertible in S−A, and for every ring homomorphism ϕ ∶ A → B such that ϕ(s) is
invertible in B for all s ∈ S, there exists a unique homomorphism ϕS ∶ S−A→ B such that ϕ = ϕS ○ iS ∶ A→
S−A→ B.

If A is an integral domain, then S−A is a rather obvious subring of the field of fractions of A, namely, the
subring of fractions whose denominators are elements of S. But even in this case the main point is not just
the construction of S−A, but rather the connections between ideals in A and S−A and the many applications
in commutative algebra, number theory, and algebraic geometry.

�e usual argument with universal properties shows that if S−A exists, it is unique up to isomorphism.
In the definition of multiplicative set,  ∈ S could be allowed. However, it would be very obvious in that case
that S−A = (), the zero ring. �is is not very interesting so we exclude it. If  ≠  in A, that is, if A ≠ (),
and if  /∈ S is assumed, then S−A ≠ () will follow as well.

�e ring S−A is called a localization of A. �is terminology arises from consideration of rings of contin-
uous functions, with values, say, in a field. If A is a ring of functions on a space X and if Y ⊂ X is a subspace,
which could be a single point, let S = S(Y) ⊂ A denote the subset of functions which have no zeros on Y . It
is clear that S is a multiplicative set. �e quotients a/s, with a ∈ A and s ∈ S, represent well-defined germs
of functions near Y . �at is, each such quotient defines a function in some neighborhood of Y , specifically,
the neighborhood where s is non-zero. �ese germs can be added and multiplied and form a ring, whose
algebraic properties reflect the properties of X locally, that is, near Y . �e ring Amight have zero divisors,
some elements of S might even be zero divisors, but the ring of germs of functions near Y which can be ex-
pressed as quotients a/s, still makes sense. It is perhaps useful to keep this picture in mind as motivation for
the general construction below.

Before constructing S−A, we list some examples of multiplicative sets.
(i) S is the set of all non-zero divisors in A. If A is an integral domain, this is just the set of all non-zero

elements of A, and S−Awill turn out to be the field of fractions of A.
(ii) S = A − P, where P ⊂ A is a prime ideal. In this situation, the localization S−A is o�en denoted A(P),

and referred to as the localization of A at the prime P. �e ring A(P) is a local ring, that is, a ring with a
unique maximal ideal. If A = A(V) is the affine coordinate ring of a variety over an algebraically closed
field K, and if P = I(p) ⊂ A is the maximal ideal corresponding to a point p ∈ V , then the localization
A(P) is a ring of germs of K-valued functions defined on open neighborhoods of p ∈ V in the Zariski
topology. (It is a little harder to interpret the localization A(P) as a ring of functions if P = I(W) ⊂ A is
a prime ideal corresponding to an irreducible subvarietyW ⊂ V .)

(iii) It is obvious that arbitrary intersections of multiplicative sets are multiplicative sets. For example, if
{Pj} is a family of prime ideals in A, then ∩ j(A− Pj) = A− ∪ jPj is a multiplicative set.

(iv) If s ∈ A is an element which is not nilpotent, then S = {sn ∣ n ≥ } is a multiplicative set.
Suppose ϕ ∶ A→ B is a ring homomorphism so that some element s ∈ S is a zero divisor in A and ϕ(s) ∈ B

is invertible. If as =  ∈ A then obviously ϕ(a) =  ∈ B, since ϕ(a)ϕ(s) = . �is observation makes it clear
that iS ∶ A → S−A will not be injective if any elements of S are zero-divisors in A. A consequence is that
the construction of S−A is somewhat more subtle than, say, the construction of the field of fractions of an
integral domain. On the other hand, this observation about consequences of the existence of zero divisors in
S motivates the precise definition of S−A in general, which we now give.

S−A = {[a/s] ∣ a ∈ A, s ∈ S}/∼, where [a′/s′] ∼ [a′′/s′′] if and only if there exists s ∈ S with a′s′′s =
a′′s′s ∈ A.

�e homomorphism iS ∶ A → S−A will be defined by iS(a) = [a/]. �e symbol [a/s] will name the





element iS(a)iS(s)− ∈ S−A. So we certainly want [a′/s′] = [a′s′′/s′s′′] = [a′s′′s/s′s′′s], and [a′′/s′′] =

[a′′s′/s′′s′] = [a′′s′s/s′′s′s]. �e usual definition of equality of fractions, a′/s′ = a′′/s′′ if a′s′′ = a′′s′, would
be adequate if no element of S were a zero divisor. �e additional factor of s in the definition above allows for
the possibility that a′s′′ − a′′s′ ≠ , but a′s′′s − a′′s′s =  for some s ∈ S.

Exercise  Define addition and multiplication in S−A, and verify that these operations are well-defined. Ac-
knowledge that you ought to also check all ring axioms, associative laws, distributive laws, identity elements, etc,
but don’t bother with all that.

Exercise  Verify the universal property, stated at the outset, for iS ∶ A→ S−A.

Exercise  Characterize the set of all elements t ∈ A such that iS(t) is invertible in S−A. (�is subset of A is also
a multiplicative set, called the saturation of S in A. Localizing A with respect to the saturation of S yields the
same ring as localizing with respect to S.�is can be seen instantly, since the universal property of S−A implies
that this ring also has the required universal property to be the localization with respect to the saturation of S.)

Next, we investigate relations between localization and ideals. Suppose I ⊂ A is an ideal with I ∩ S = ∅.
Let A∗ = A/I and let S∗ be the image of S in A∗. �en S∗ is a multiplicative set in A∗. �e following exercise
expresses the commutativity of localization and residue ring formation. One can either divide by an ideal first
and then localize, or localize first and then divide by an appropriate ideal.

Exercise  (S∗)−A∗ ≅ S−A/IS−A. (Although it is easy enough to establish one-to-one ring homomorphisms
in both directions, it is more elegant to verify that the ring on the right has the universal property of the ring on
the le�, hence it is isomorphic to the ring on the le�.)

If ϕ ∶ A→ B is any ring homomorphism there are operations known as contraction and extension which
relate ideals in B and A. If J ⊂ B is an ideal, the contraction is Jc = ϕ−(J) ⊂ A, the inverse image of J in A. If
I ⊂ A is an ideal, the extension is Ie = ϕ(I)B, the ideal generated by the image of I in B. Both the contraction
and extension operations preserve inclusions, that is, J ⊂ J implies Jc ⊂ Jc, and similarly for extension.�ere
are also obvious inclusions Jce ⊂ J and I ⊂ Iec , from which follow trivially the relations Jcec = Jc and Iece = Ie .
�e contraction operation has a number of reasonable properties, but very little can be said in general about
extension. For example, the following properties of contraction are all easy to check, while the analogues for
extension are all false.
(i) If J is prime, primary, or radical, then Jc is, respectively, prime, primary, or radical.
(ii) rad Jc = (rad J)c and ∩(Jci ) = (∩Ji)c .

In case the homomorphism is a localization iS ∶ A → S−A, one can say more about the contraction
operation, and, in addition, the extension operation has many good properties.

Exercise  If JS ⊂ S−A is an ideal, then JceS = JS . If I ⊂ A is an ideal, then Ie = {[a/s] ∣ a ∈ I, s ∈ S} ⊂ S−A
and Iec = {b ∈ A ∣ sb ∈ I, for some s ∈ S}.

Exercise  Ie ⊂ S−A is proper if and only if I ∩ S = ∅. If I ⊂ A is prime or primary and I ∩ S = ∅, then
Ie ⊂ S−A is, respectively, prime or primary. Moreover, in each of these cases, Iec = I ⊂ A.

Exercise  If I ⊂ A is any ideal, then rad Ie = (rad I)e ⊂ S−A. If I and I are ideals in A, then Ie ∩ Ie =

(I ∩ I)e ⊂ S−A.

It follows from Exercises  and  that contraction and extension define inclusion preserving bijections
between the sets of all prime or primary ideals, respectively, in S−A and the sets of prime or primary ideals
in A which are disjoint from S. It also follows, from Exercises  and , that a primary decomposition of an





ideal I ⊂ A determines, by extension, a primary decomposition of Ie ⊂ S−A. In this extension, any of the
primary components of I that are not disjoint from S will generate the unit ideal in S−A, hence disappear
from the primary decomposition of Ie .

Another simple consequence of the correspondence between prime ideals of S−A and prime ideals of A
disjoint from S is that in the case S = A − P, where P is a prime ideal of A, the localization S−A = A(P) is a
local ring. Namely, the unique maximal ideal is Pe = {[x/s] ∣ x ∈ P, s ∈ S} ⊂ S−A, since, obviously, P ⊂ A
contains all prime ideals of A disjoint from A− P. It is also easy enough to verify directly that A(P) is a local
ring, since any element not in Pe is clearly a unit in A(P), as it can be written [t/s], with both t and s not in P.

�e localization construction is also very important for modules. If S ⊂ A is a multiplicative set and if M
is an A-module, we construct an S−A-module, S−M, and an A-module homomorphism fS ∶ M → S−M,
with the following universal property:

For every S−A-module NS and every A-module homomorphism ϕ ∶ M → NS , there exists a unique
S−A-module homomorphism ϕS ∶ S−M → NS such that ϕ = ϕS ○ fS ∶ M → S−M → NS .

(We point out that S−Amodules are also A-modules, via the ring homomorphism iS ∶ A→ S−A.)
�e definition of S−M, as well as the sumoperation and scalarmultiplication by elements of S−A, and the

proofs that these operations are well-defined, proceeds identically, symbol by symbol, with the construction
of S−A and the ring operations in S−A.

S−M = {[m/s] ∣ m ∈ M , s ∈ S}/∼, where [m′/s′] = [m′′/s′′] if and only if there exists s ∈ S with
m′s′′s = m′′s′s.

�e map fS ∶ M → S−M is given by fS(m) = [m/]. �e symbol [m/s] is interpreted as [/s] fS(m), in
the S−A-module structure on S−M. If you want to strengthen those brain wiring connections, go through
the definition of the sum and scalar operations in S−M, the proof that they are well-defined, and the proof
that S−M has the universal property stated above. Of course, the universal property characterizes S−M
uniquely, up to isomorphism as an S−A-module.

Exercise  Prove that localization is an exact functor of modules. �at is, an A-module homomorphism M →
M′ induces an S−A-module homomorphism S−M → S−M′, with the usual functorial properties, and, if M →
M′ → M′′ is an exact sequence of A-modules, then S−M → S−M′ → S−M′′ is an exact sequence of S−A-
modules.




