
Remarks on Semidirect Products

If H and K are groups and u ∶ H → Aut(K) is a homomorphism, then there is the associated semidirect
product group G(u). As a set, G(u) = K ×H. �e product is (k′, h′)(k, h) = (k′(ku(h

′)
), h′h), where ku(h

′)

means the result of applying automorphism u(h′) to k. All semidirect products of K by H arise this way.
�e trivial homomorphism u(h) = id, for all h ∈ H, yields the direct product group K × H. If there are no
non-trivial homomorphisms u ∶ H → Aut(K), then the direct product is the only semidirect product of K by
H.

�ere is an action of the groupAut(H)×Aut(K) on the set Hom(H, Aut(K)). If a is an automorphism of
H and b is an automorphism of K then (a, b)u is the composition C(b)ua− ∶ H → H → Aut(K)→ Aut(K),
where C(b) is the inner automorphism of Aut(K) given by conjugation by b.

If (a, b)u = v then groups G(u) and G(v) are isomorphic. �erefore if any two non-trivial homomor-
phisms u and v are in the same orbit, then up to isomorphism there is only one non-trivial semidirect product
of K by H. �is observation leads to the classification of groups of order p, p an odd prime. A non-abelian
groupG of order p, p an odd prime, will be a semidirect product of either K = Z/(p)×Z/(p) byH = Z/(p)
or K = Z/(p) by H = Z/(p), depending on whether G does not or does contain an element of order p. In
each case, there is only one nontrivial Aut(H) ×Aut(K) orbit in Hom(H, Aut(K)). [See below.]

If there is more than one Aut(H) × Aut(K) orbit in the set Hom(H, Aut(K)), then one needs addi-
tional hypotheses before one can understand the isomorphism classes of semidirect products of K by H. �e
difficulty is that in general u, v in the same orbit is a sufficient but not necessary condition for G(u) to be
isomorphic to G(v). However, if K is abelian and if gcd(∣H∣, ∣K∣) =  then G(u) is isomorphic to G(v) if and
only if v = (a, b)u for some (a, b) ∈ Aut(H) ×Aut(K).

In practice, the usefulness of this result towards classifying semidirect products up to isomorphism is
limited by the difficulties of determining Aut(H), Aut(K), Hom(H, Aut(K)), and the corresponding orbits
if either H or K is very complicated.

Anytime Aut(K) is abelian then conjugation in Aut(K) is trivial. �erefore, the Aut(H)×Aut(K) action
on Hom(H, Aut(K)) reduces to simply the Aut(H) action. �e orbit of u ∶ H → Aut(K) consists of all
compositions ua ∶ H → H → Aut(K), where a is an automorphism ofH. Note that u and ua have exactly the
same image in Aut(K). �erefore homomorphisms u, v with different images must lie in different Aut(H)
orbits.

If H is cyclic or a Z/(p)-vector space for some prime p, and if Aut(K) is abelian then it is a nice exercise
to show that two homomorphisms u, v ∶ H → Aut(K) are in the same orbit if and only if u and v have the
same image, that is u(H) = v(H) ⊂ Aut(K).

[In the caseH = Z/(m), this should be the same exercise that for any divisor d ofm, the natural projection
π ∶ (Z/(m))∗ → (Z/(d))∗ is onto. �is is trickier than it might look, since it is not a trivial consequence of
the tautology that Z/(m)→ Z/(d) is onto. But it is easy enough if you use the Chinese Remainder�eorem.
In the case H a Z/(p)-vector space, any image is also a Z/(p)-vector space. �e claim is then just simple
linear algebra. Two linear surjections V →W of vector spaces over any field are in the same GL(V) orbit.]

Suppose K = Z/(n) is cyclic. �en Aut(K) = (Z/(n))∗, which is abelian and ‘easily’ computed as a finite
abelian group, using the Chinese Remainder �eorem and the answers for n a prime power. If K is finite
abelian but not cyclic then Aut(K) is never abelian.

If q is an odd prime, (Z/(qn))∗ is cyclic. �erefore, if H is a Z/(q)-vector space, there is exactly one
non-abelian semidirect product of Z/(qn) by H, because there is only one non-trivial Aut(H) orbit. �e
same statements are true if H = Z/(qs), s >  and K = Z/(q).

Suppose H = Z/(qs), s >  and K = Z/(qn), n > . Now the Aut(Z/(qs)) orbits of u ∶ Z/(qs) →
(Z/(qn))∗ correspond bijectively to the possible image groups of u, which are just characterized by their
order. �ere is more than one orbit, so the present methods don’t automatically classify isomorphism classes
of semidirect products of Z/(qn) by Z/(qs), since the orders of H and K are not relatively prime. However,





you can show that if the images of two us have different orders then the centers of the two G(u)s are not
isomorphic. So, the orbit classification gives a good start on the classification in this case, and the classification
can be finished up by other methods. As a specific example, there are two distinct non-abelian semidirect
products of Z/() by Z/().

If K = (Z/(q))n for some prime q, then Aut(K) = GL(n,Z/(q)), the full linear group. One can calculate
the order of this group pretty easily. ∣GL(n,Z/(q))∣ = (qn − )(qn − q)⋯(qn − qn−). [�is just counts
invertible matrices by looking at the choices for the columns. �e first column can be any non-zero vector.
Each new column cannot be in the subspace spanned by the preceding columns.] For certain orders ∣H∣
relatively prime to q, it may be that the image of any u ∶ H → K is forced to lie in some p-Sylow subgroup of
GL(n,Z/(q)). Finding this, you still need to understand orbits.

All p-Sylow subgroups are conjugate, so, in the situation of the above paragraph, using the Aut(K) part
of Aut(H) × Aut(K), you may as well assume u, v ∶ H → GL(n,Z/(q)) both have images contained in one
fixed p-Sylow subgroup of GL(n,Z/(q)). If this Sylow subgroup is just Z/(p) and if H is cyclic or a Z/(p)-
vector space, there is only one non-trivial Aut(H) orbit of maps H → Z/(p). If the p-Sylow subgroup of
GL(n,Z/(q)) is not cyclic, you probably can’t go further with this approach. For one thing, you may not
even see the structure of the p-Sylow subgroup. For another, you probably haven’t really exploited all of the
Aut(K) conjugation, you’ve only brought one Sylow subgroup to another, andmaybe you canmove that Sylow
subgroup around inside itself with more conjugation. So, the Aut(H) ×Aut(K) orbits get pretty obscure.

Note that the q-Sylow subgroup ofGL(,Z/(q)) is justZ/(q).�erefore ifH isZ/(qs) or aZ/(q)-vector
space, there is exactly one non-abelian semidirect product of (Z/(q)) byH, since there is only one nontrivial
Aut(H) ×Aut(K) orbit in Hom(H, Aut(K)).

You can also sometimes use linear algebra to study semidirect products when K = (Z/(q))n and H =

Z/(m) is cyclic. A homomorphism u ∶ Z/(m)→ GL(n,Z/(q)) ‘is’ a matrix T with Tm
−  = . By factoring

Tm
− , you can identify the possible minimal polynomials of T and its possible invariant factors, hence the

possible conjugate classes of such T . Here are a couple examples.
Classify semidirect products of (Z/()) by Z/(). Now T

−  = (T − )(T + )(T
+ ). �e minimal

polynomial of a non-trivial T ∈ GL(,Z/())must be (T+), (T−)(T+), (T−)(T
+), or (T+)(T

+).
�is results in  +  +  +  =  conjugate classes of such  ×  matrices over Z/(). �is doesn’t quite mean
yet that there are  isomorphism classes of non-abelian semidirect products. It could happen that a matrix T
and its inverse are not themselves conjugate, but using the Aut(H) = Aut(Z/()) action we clearly see that
T and T− define isomorphic groups. But in this case, it is easy to see any such T is conjugate to its inverse,
hence the Aut(K) orbits are the same as the Aut(H) ×Aut(K) orbits.

Classify semidirect products of (Z/()) by Z/(). Now T
−  = (T − )(T − )(T − )(T − )(T − )

over Z/(). �e minimal polynomial of a non-trivial T will either be one of the  linear factors other than
(T − ), or it will be a product of two distinct linear factors, of which there are  possibilities. So there are
 conjugate classes, all represented by diagonal matrices and classified by an unordered pair of eigenvalues.
However, T , T, T, and T all define isomorphic semidirect product groups, by using the Aut(Z/()) =
Aut(H) action. All  conjugate classes fall into  distinct diagonal subgroups, which are easy to write out by
simply taking powers of various diagonal matrices. �us there are  distinct Aut(H) × Aut(K) orbits and 
distinct non-abelian semidirect products.

Lookingmore closely at the above example,Z/()×Z/() actually has  distinct subgroups of order . But,
for example, the subgroup generated by diagonal matrices (, ) and (, ) are conjugate inGL(,Z/()). In
three of the four non-conjugate diagonal subgroups the four powers of T represent distinct conjugate classes.
In the fourth, generated by diagonal matrix T = (, ), one has T

= (, ), T
= (, ), and T

= (, ),
so there are only two distinct conjugate classes in this subgroup. �is example illustrates a comment made
above about non-cyclic Sylow subgroups inGL(n,Z/(q)) = Aut(K). In this case we have the Sylow subgroup
Z/()×Z/() ⊂ GL(,Z/()). Just conjugating in Aut(K) to get u ∶ Z/()→ Z/()×Z/() doesn’t reduce
the classification of orbits to (non-trivial) Aut(Z/()) orbits in Hom(Z/(),Z/()×Z/()), of which there





would be . �ere is still Aut(K) conjugation going on inside the Z/() × Z/(). Linear algebra does come
to the rescue and leads to the complete classification of semidirect products of (Z/()) by Z/().

Suppose now, to up the ante, that H is a little more complicated than a cyclic group or a Z/(p)-vector
space. �e next simplest groups are probably the groups H = Z/(p) × Z/(p). It is not so hard to show
∣Aut(H)∣ = p(p−). You choose generators x and y ofH of order p and p, respectively. An automorphism
a must take x to an element of order p, of which there are p − p choices. �en y must go to an element of
order p not in a(⟨x⟩), of which there are p − p choices. For H = Z/() × Z/(), the automorphism group
turns out to be the dihedral group of order .

Sometimes you can determine Aut(H)×Aut(K) orbits in Hom(H, Aut(K))without requiring the actual
structure of Aut(H). For example, suppose H = Z/(p) × Z/(p), and you get to a situation of just needing
to understand Aut(H) orbits of maps u ∶ H → A, where A is abelian. Distinct image groups in A definitely
implies different orbits. Non-isomorphic kernel groups in H definitely implies different orbits. If the image
u(H) is Z/(p) × Z/(p) or Z/(p), thinking about how you can move generators x and y around by an
automorphism, as described in the above paragraph, pretty quickly shows there is exactly one orbit with this
fixed image group. If u(H) = Z/(p), there are two possible isomorphism types of kernels,Z/(p)×Z/(p) and
Z/(p). Again, pushing generators x and y ofH around, you can see there is one orbit for each kernel type, or
two non-trivial orbits with this fixed image group. But if u(H) = Z/(p) × Z/(p), so keru is unambiguously
the subgroup pH, then rather remarkably there are still two distinct non-trivial Aut(H) orbits with this fixed
image group and fixed kernel.�is is pretty tricky, andmarks kind of a boundary of what you have any chance
of explicitly carrying out.

If you want to try out your skills, using the above ideas, classify all groups of order  that have an
abelian -Sylow subgroup.

If H is non-abelian, determining Aut(H), or even its order, can be formidable. If you want to have more
fun, determine the automorphism groups of all the groups of order . �en classify all groups of order .
�is can be done. Another fun problem is to determine the automorphism group of the non-abelian group
of order pq, where p and q are primes and q =  mod p. �is would seem relevant for finding all groups of
order pqr, where p < q < r are primes, since in any such group the r-Sylow subgroup is normal.




