
Roots of Unity

In the discussion of solution of equations by radicals there is what seems to be an asymmetry in the two steps
“adjoin roots of ” and “adjoin roots of a”. For example, when we adjoin n

√

a we assume the nth roots of
unity have already been adjoined. But we seem to allow adjoining nth roots of  whenever we want, and we
never use the symbol n

√

 for a primitive root of unity. Instead we call it some Greek letter, which looks quite
different than a symbol like 

√

.
It turns out roots of unity are themselves expressed in terms of more standard iterated radicals. For

example, i =
√

− and the primitive cube roots of unity are given by the formula (− +
√

−)/, where
√

−
can be interpreted as either of the two square roots. �e primitive fi�h roots of unity are given by the iterated
radical formula [−+

√

+
√

− − 
√

]/. �ere are four interpretations:
√

 has two interpretations, which
must be the same both times it appears, and the outer root has two interpretations for each interpretation of
√

.
Here is the explanation for the fi�h root of unity, say ω. Since ω

+ ω
+ ω

+ ω +  = , it follows that
α = ω + ω satisfies the quadratic equation α

+ α −  = . So α = (− +
√

)/. �en ωα = ω
+ , and this

quadratic relation over Q[α] leads to the above formula for ω.
A theoretical point of view, which we will generalize below, is that since  is a primitive root mod , the

Galois group ofQ[ω] overQ, which is cyclic of order , is generated by g(ω) = ω. �erefore α = ω+g(ω) =

ω+ω is fixed by the subgroup of the Galois group of order , namely ⟨g⟩. �is guarantees that α is quadratic
over Q.

�e complete story here goes back toGauss. Let’s assume for simplicity that the characteristic is . �en all
roots of unity can be expressed as iterated radicals in a rather controlledmanner. In the formulas, only integers
appear, along with sums, products, and nested radicals. In the language of towers of field extensions, there
is only one type of extension that occurs in the towers. Namely, the adjunction of one root of an irreducible
polynomial Xq

− a, where q is prime and a belongs to the preceding field. (�e same is then true for any
solvable equation, not just for the roots of unity. �at is, the iterated radical towers that eventually contain
roots are constructed as a sequence of extensions of this single basic type.) Here is at least a partial explanation,
using the concepts of Galois theory and inductive constructions.

First of all, if m and n are relatively prime, then the primitive mnth roots of unity are products of the
primitivemth roots of unity and the primitive nth roots of unity. �us, we only need to construct the primitive
pdth roots for primes p.

�e case p =  is the simplest. �e primitive square root of  is −. �en the primitive th root of  is
√

−,
with two interpretations, obtained by multiplying by the square roots of , that is, by + or −. �e primitive
th roots are given by

√√

−, with four interpretations, two inside the outer radical, and then for each of
these, two interpretations of the outer radical. Iterate, taking a new outer square root at each stage.

What is happening here? We start with Q. We know if E is obtained from Q by adjoining all dth roots
of unity, then ∣E ∶ Q∣ = d−. We have described a tower of radical extensions Q = E ⊂ E ⊂ ⋯ ⊂ Ed , where
the extension Ei ⊂ Ei+ splits an irreducible quadratic polynomial X

− ai , with ai ∈ Ei , and with a primitive
square root of  in Ei . Of course, each ai is a primitive ith root of unity. Inductively, the radical formulas for
these roots have exactly the right number of interpretations as distinct elements.

Now consider an odd prime p. It is quite easy to explain the pdth roots, once we have the pth roots.
Namely, suppose Q ⊂ F = F(p) is some field extension containing a primitive pth root of , say ω, and such
that ∣F ∶ Q∣ is divisible only by primes less than p. We also assume that in F there is an iterated radical formula
for ω with exactly p −  interpretations, as the various separate occurring radicals in the formula for ω are
interpreted in various allowed ways. Of course, these p −  interpretations will necessarily correspond to the
powers of ω in some order, but that isn’t the point here.

Given such an F, we construct the primitive pdth roots of  successively as p
√

ω, p
√

p
√

ω, etc. �at is, we





build a root tower F = F ⊂ F ⊂ ⋯ ⊂ Fd , where the extension Fi ⊂ Fi+ is of degree p and splits the polynomial
X p
− ai , where ai ∈ Fi is a primitive pith root of . �ese polynomials must be irreducible at each stage, since

we know the degree over Q of a primitive pdth root of unity is pd−(p− ) and ∣F ∶ Q∣ is relatively prime to p.
At each stage, our new pth root has p interpretations for each interpretation of ai , obtained by multiplying
any one interpretation by the pth roots of . So, the point here is, if we come up with iterated radical formulas
for the primitive pth roots of  inside a field F = F(p) such that ∣F ∶ Q∣ is divisible only by primes less than
p, then we also have iterated radical formulas of a controlled type for all pdth roots of , and consequently
formulas for nth roots of  for any n.

We will construct such fields F = F(p), and iterated radical formulas for the primitive pth roots of ,
ω ∈ F, using Galois theory and induction on p. We know Q[ω] is a cyclic Galois extension of degree p − .
�erefore, there is a tower of field extensions Q = K ⊂ K ⊂ ⋯ ⊂ Km = Q[ω], with each successive extension
cyclic of order some prime q dividing p − . Now, we would like these extensions to be qth root extensions,
but we need to make sure we have qth roots of unity first. So, let Q ⊂ L be the extension obtained as the
composite of the cyclotomic extensions of Q corresponding to the qth roots of unity for the primes q that
divide p − . It turns out that ∣LQ[ω] ∶ L∣ = ∣Q[ω] ∶ Q∣ = p − . �is follows easily from the following lemma.

Lemma  If ζn and ζm are primitive nth and mth roots of unity with gcd(n,m) = , then Q[ζn]Q[ζm] is the
cyclotomic extension generated by the primitive mnth root of unity ζnζm, of degree ϕ(mn) = ϕ(m)ϕ(n) over
Q. ◻

Now look at the tower L = L ⊂ L ⊂ ⋯ ⊂ Lm, where Li = LKi .

Proposition  Each Li ⊂ Li+ is a cyclic extension of degree qi = ∣Ki+ ∶ Ki ∣ obtained by adjoining one (hence all)
qith roots of some element of Li . In particular, there is an iterated radical formula for ω in the field Lm = LQ[ω],
and ∣Lm ∶ Q∣ is divisible only by primes less than p.

P �e appropriate auxiliary roots of unity have been placed in L, hence in all the Li . �e successive
extensions in the L-tower are cyclic Galois extensions of degree qi , because in the K-tower the extensions
are cyclic of degree qi , and the total degree from bottom to top of both towers is the same, namely p − .
But with appropriate roots of unity in the base field, any cyclic extension is a simple root extension. In every
field extension which occurs in the construction of Lm over Q, only primes less than p divide the degree, so
∣Lm ∶ Q∣ is divisible only by primes less than p. ∎

�e iterated radical formula for ω which is found in the construction of Lm here will contain symbols,
not necessarily radical formulas, for various qth roots of unity, q < p. But now an induction applied to these
roots of unity produces finally a field F(p) containing a radical formula for ω which contains only integers
and iterated radical expressions. For example, F = F(p) can be obtained from the field Lm = LQ[ω] above
by simply adjoining enough radicals to yield radical formulas for the qth roots of unity for each prime q less
than p. Note by induction we will have ∣F ∶ Q∣ divisible only by primes less than p.

Suppose we want to make the above inductive construction quite explicit. �e key step, really, is the step
where a cyclic extension with roots of unity in the ground field is shown to be a simple root adjunction.
�e rest is arithmetic, although of course it gets complicated. Now, in the abstract, this result about cyclic
extensions is not proved so constructively. Some Lagrange resolvant enters, but what Lagrange resolvant?
O�enHilbert’s�eorem  is used, or linear independence of characters, as in my Paragraph . But perhaps
this is a disservice to students. It is not all that hard to exhibit explicit non-zero Lagrange resolvants in the
presence of primitive elements.

Here is the story for Q[ω]. In the K-tower above between Q and Q[ω], each field Ki in the tower can
rather easily be seen to be generated overQ by an element γ that is a sumof some number of distinct powers of
ω. In fact, exactly (p−)/d such powers, if ∣Ki ∶ Q∣ = d. �is is easy Galois theory, exploiting the cyclic Galois
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group of Q[ω] over Q, generated by g(ω) = ωr , where r is some primitive root mod p, that is, a generator
of the multiplicative group (Z/pZ)

∗. One takes γ = ω + gdω + gdω + ⋯ + gp−−dω. �en gdγ = γ. Gauss
called these elements γ periods of the cyclotomic equation. So γ will certainly be a primitive element for Ki
over the immediately preceding field in the K-tower, and also γ will be a primitive element for Li = LKi over
the preceding field in the L-tower. Let ζ be an appropriate qth root of unity for this cyclic extension step in
the L-tower. �e prime q will be a divisor of d. �en γ + ζ g(γ) +⋯+ ζq−gq−(γ) is an appropriate Lagrange
resolvant here, a non-zero element of Li whose qth power falls in the preceding field. �e key word is non-
zero. One reason this Lagrange resolvant is non-zero is precisely because all the powers {ω, ω, . . . , ωp−

} are
linearly independent overQ[ζ], by the lemma above. �e Lagrange resolvant in question is seen to be a linear
combination over Q[ζ] of exactly q(p − )/d powers of ω, hence it is non-zero. Brute force will compute the
qth power of this Lagrange resolvant as a specific element of the preceding field in the tower.

�is concludes the discussion about radical formulas for roots of unity. But here is a general result about
non-zero Lagrange resolvants, which makes the general discussion of solving equations by radicals more
constructive than it appears from proofs which use linear independence of characters or Hilbert’s �eorem
 at the crucial point.

Proposition  Suppose F is a field containing primitive qth roots of unity, q prime, and suppose F ⊂ F[γ] is a
cyclic Galois extension of degree q, with Galois group generated by an automorphism g. �en for at least one of
the q −  primitive qth roots of  in F, say ζ, the Lagrange resolvant ρ = ρ(ζ , γ) = γ + ζ g(γ) + ⋯ + ζq−gq−(γ)
is non-zero. �us g(ρ) = ζ−ρ, ρq = r ∈ F, and F[γ] = F[ρ]. ◻

I won’t give the proof here, but it is relatively simple linear algebra. A non-zeroVandermonde determinant
enters the argument at some point, but that is as hard as it gets. �e significance of the Proposition is that
one has only q −  elements ρ to compute. Brute force arithmetic will find the powers ρq = r ∈ F in terms of
powers of ζ and elements of F obtained from the coefficients of the minimal polynomial of γ. Note that the
elements g j(γ) are the conjugates of γ, the other roots of its minimal polynomial over F. More linear algebra
then finds formulas for γ and its conjugates in terms of elements of F obtained from the coefficients of its
minimal polynomial, powers of ζ , and powers of ρ =

q
√

r.
As an illustration of this entire discussion, let’s look at the final result for the roots, γ, of a cubic X

+pX−q
with cyclic Galois group of order . Here is a radical formula for γ, hence γ, essentially Cardan’s formula:

γ = α + β =



¿

Á
ÁÀq


−


√

−
√

−p − q


+



¿

Á
ÁÀq


+


√

−
√

−p − q



where the two cube roots α and β are related by αβ = −p.
Here are some features of this amazing formula, which illustrate very general points. First, the coefficients

p and q of the minimal polynomial of γ occur in the formula. Second, other, more subtle, elements of the
ground field occur, specifically the square root of the discriminant, which must be in the ground field since
the Galois group is cyclic. �ird, the primitive cube roots of unity ζ and ζ occur, specifically

√

− = ζ − ζ.
Fourth, each of the two distinct square roots in the formula are allowed to be interpreted in two ways, that
is, the signs can be changed, but such sign changes do not change the final expression, except for possibly
switching α and β. Finally, the two big cube roots α and β would independently have three interpretations
each. But the constraint αβ = −p, reduces the total number of allowed interpretations of the formula to
three, not nine. �e occurrence of both cube roots α and β is only an aesthetic convenience. In an iterated
root tower producing the radical formula for γ, one would stop when α is created, since then β = −p/α is
there for the taking.

Without going through the entire derivation of the Cardan formula for the roots of a cubic, it is relevant
to point out that the cube roots α and β are exactly the Lagrange resolvants α = γ + ζ g(γ) + ζg(γ) and
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β = γ + ζg(γ) + ζ g(γ), where g generates the cyclic Galois group. Brute force leads to formulas for α
+ β

and α
− β, specifically, α

+ β
= q and α

− β
= (ζ − ζ)

√

D, where D is the discriminant. �is
immediately gives the desired formulas for α and β in the ground field.

Finally, here is the strongest possible statement of the general phenomenon, at least in characteristic . A
polynomial with solvable Galois group has an iterated radical formula for its roots obtainable in an iterated
root tower each step of which adjoins one, hence all, roots of an irreducible polynomial Xq

− r, q prime, where
the element r and the qth roots of unity are in the preceding field. Every root ρ =

q
√

r which is adjoined in
the tower can be chosen to be a Lagrange resolvant associated to an arbitrary primitive element of that par-
ticular extension in the tower. An occurrence of ρ =

q
√

r in the iterated radical formula is allowed all possible
interpretations, q of them, although multiple occurrences of this same ρ must be interpreted identically. �e
set of distinct field elements obtained by all the different interpretations of the basic roots ρ which occur is
exactly the set of distinct roots of the polynomial.

As an example, a universal tower for an irreducible reduced cubic X
+ pX − q would be F ⊂ F[

√

D] ⊂

F[
√

D,
√

−] ⊂ F[
√

D,
√

−, α], where D is the discriminant and α is as above. (One or both of the first two
extensions might be trivial, hence would not occur as separate steps in a minimal root tower.)
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