Today: 1st correct formula for
- Lax calculus

Recall $F(x^2, h) \cong K(A B, k, 1) \cong B D^{h}(h^2, d)$

Case study for $D^{h}(0, 0, 0, p^3)$ composites, $x \approx k$

Exercise result: have $w_{ij} F(x^2, h) \rightarrow R^2 / 0 \approx \delta^i_{2j}$

Inducing com moves $g_{ij}^{l}(F(x^2, h))$

Then $h^k(F(x^2, h)) \rightarrow \delta^i_{2j}$ by w_{ij} of β^l_{-1}

Relative we: $w_{ij} = w_{ij}$

$w_{ij} - w_{ij} + w_{ij} = 0$

- Really not so bad: easy to calculate column (δ^i_{2j}?)

Prop (F, column): consider bijection $R^2 \rightarrow \delta^i_{2j} F(x^2, h) \rightarrow \delta^i_{2j}$

(wants to be one-to-one)

- Bijection was w_{ij}: map w_{ij} of β^l_{-1}

- Identity $R^2 \rightarrow R^2$ (upper 4-plane), making bijection

So homotopy is surjective

Some special segment for h^k Ethe collapse: (of)

(0) $F(x^2, h)$ structure $- \delta^i_{2j}$ with 1

- Leave 0 till later

\[\delta^i_{2j} \]

\[\delta^i_{2j} \]
not obvious there are N isosys, can from N_2 are not obvious. T_i, $K_i = \mathbb{P}^3_{k_i}$; isosys on C, $\mathfrak{c} = N_2$ acts on N_1 in $\mathcal{A}(F)$.

\[\overline{\mathfrak{c}} \]

Also, $N_2(F)$ acts on N_1 (see F, colin page).

\[\mathcal{A}(F) \]

Proof: We have a commutative diagram of

\[\begin{array}{ccc} 0 & \to & C(T) \to C(T_C) \to C(T) \to 0 \\ \downarrow & & \downarrow & & \downarrow \\ 0 & \to & C(T) \to C(T_C) \to C(T) \to 0 \end{array} \]

Consider $C(T_C)$ as a module over $C(T)$. We can now use the previous results to obtain $\frac{N_1}{K_1} \to \frac{N_2}{K_2}$.

Apply $\mathcal{F}_k(-1) = \mathcal{F}_k(U_0 \cap I, J) = C_k(\mathcal{F}_k(I, J))$.

Recall a TCFT: let $M = \mathfrak{c}$ be a

\mathfrak{c}-module M is finite dimensional and can to construct \mathfrak{c}_1.

Now $M(\mathfrak{c}_1)$ are modules of \mathfrak{c}-modules, let one

coordinate from $\frac{N_1}{K_1}$ to $\frac{N_2}{K_2}$.

\[(\text{what?}) \]

Recall a TCFT is a \mathfrak{c}-module functor $C_k(M) \to \mathcal{F}_k(U_0 \cap I, J) = \mathcal{F}_k$. Next, let $\mathfrak{c}_1, I, J \to \mathcal{F}(I) \otimes \mathcal{F}(J)$.

We will now construct a stable \mathfrak{c}-module $\mathcal{F}(I) \otimes \mathcal{F}(J)$.

\[\mathfrak{c}_1 \]

\[\to \text{shift to witness 1000 chain map.} \]

\[\text{weld 75 TI} \]

75 TFT
In physics, a map from \(C(M_1) \) to \(C(M_2) \).

Example: A field theory is a \(\sigma \)-functor from \(C(M_1) \) to \(C(M_2) \),

where objects of \(M_1 \) are 1-maps \(\psi \) in \(M_1 \).

For spaces \(\psi \) by definition,

- known \(\psi \)-assignment; \(\sigma \)-assignment?

String loop: \(E(S^1) = \text{Hom}(LM) \); so \(E(S^1) = \text{Hom}(\text{Map}(S^1, M_1), \text{Map}(S^1, M_2)) \).

& \(E(T) = \text{Hom}(\text{Map}(T, M_1), \text{Map}(T, M_2)) \).

Unless specified, define: "D-brane".

\(\sigma \)-maps \(\psi \) on \(M_1 \) be specified; \(\psi \) \(\text{Map}(T, M) \).

Then \(E\left(\frac{2}{3} \right) = \text{Hom}(\text{Map}(\left(\frac{2}{3} \right), M) \).

FEB 14 2008
The image contains a page with handwritten mathematical content. The text is in English and appears to be a proof or explanation of a mathematical concept. Due to the handwriting style, some parts may be difficult to read. The content seems to involve functions, set theory, and possibly some algebraic properties. The page references a theorem or proposition and includes steps or conditions that are typical in a mathematical proof. The specific details are as follows:

- The page contains symbols, equations, and text that are typical in a mathematical exposition, indicating a step-by-step explanation of a proof or a theorem.
- The handwriting is slightly tilted and the lines are slightly slanted, which can make it challenging to transcribe accurately.
- There are references to set notation, functions, and possibly some algebraic manipulations.

Without a clearer image or more legible handwriting, it's difficult to provide an exact transcription. However, it is evident that the page is part of a larger mathematical work, likely from a textbook or a research paper, discussing a specific mathematical result.