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Preface

Model categories, first introduced by Quillen in [Qui67], form the foundation of
homotopy theory. The basic problem that model categories solve is the following.
Given a category, one often has certain maps (weak equivalences) that are not
isomorphisms, but one would like to consider them to be isomorphisms. One can
always formally invert the weak equivalences, but in this case one loses control of
the morphisms in the quotient category. If the weak equivalences are part of a
model structure, however, then the morphisms in the quotient category from X to
Y are simply homotopy classes of maps from a cofibrant replacement of X to a
fibrant replacement of Y .

Because this idea of inverting weak equivalences is so central in mathematics,
model categories are extremely important. However, so far their utility has been
mostly confined to areas historically associated with algebraic topology, such as
homological algebra, algebraic K-theory, and algebraic topology itself. The author
is certain that this list will be expanded to cover other areas of mathematics in
the near future. For example, Voevodksy’s work [Voe97] is certain to make model
categories part of every algebraic geometer’s toolkit.

These examples should make it clear that model categories are really funda-
mental. However, there is no systematic study of model categories in the literature.
Nowhere can the author find a definition of the category of model categories, for
example. Yet one of the main lessons of twentieth century mathematics is that to
study a structure, one must also study the maps that preserve that structure.

In addition, there is no excellent source for information about model categories.
The standard reference [Qui67] is difficult to read, because there is no index and
because the definitions are not ideal (they were changed later in [Qui69]). There
is also [BK72, Part II], which is very good at what it does, but whose emphasis is
only on simplicial sets. More recently, there is the expository paper [DS95], which
is highly recommended as an introduction. But there is no mention of simplicial
sets in that paper, and it does not go very far into the theory.

The time seems to be right for a more careful study of model categories from
the ground up. Both of the books [DHK] and [Hir97], unfinished as the author
writes this, will do this from different perspectives. The book [DHK] overlaps
considerably with this one, but concentrates more on homotopy colimits and less
on the relationship between a model category and its homotopy category. The
book [Hir97] is concerned with localization of model categories, but also contains
a significant amount of general theory. There is also the book [GJ97], which con-
centrates on simplicial examples. All three of these books are highly recommended
to the reader.

This book is also an exposition of model categories from the ground up. In
particular, this book should be accessible to graduate students. There are very few

vii
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prerequisites to reading it, beyond a basic familiarity with categories and functors,
and some familiarity with at least one of the central examples of chain complexes,
simplicial sets, or topological spaces. Later in the book we do require more of
the reader; in Chapter 7 we use the theory of homotopy limits of diagrams of
simplicial sets, developed in [BK72]. However, the reader who gets that far will
be well equipped to understand [BK72] in any case. The book is not intended as
a textbook, though it might be possible for a hard-working instructor to use it as
one.

This book is instead the author’s attempt to understand the theory of model
categories well enough to answer one question. That question is: when is the
homotopy category of a model category a stable homotopy category in the sense
of [HPS97]? I do not in the end answer this question in as much generality as I
would like, though I come fairly close to doing so in Chapter 7. As I tried to answer
this question, it became clear that the theory necessary to do so was not in place.
After a long period of resistance, I decided it was my duty to develop the necessary
theory, and that the logical and most useful place to do so was in a book which
would assume almost nothing of the reader. A book is the logical place because
the theory I develop requires a foundation which is simply not in the literature. I
think this foundation is beautiful and important, and therefore deserves to be made
accessible to the general mathematician.

We now provide an overview of the book. See also the introductions to the in-
dividual chapters. The first chapter of this book is devoted to the basic definitions
and results about model categories. In highfalutin language, the main goal of this
chapter is to define the 2-category of model categories and show that the homotopy
category is part of a pseudo-2-functor from model categories to categories. This
is a fancy way, fully explained in Section 1.4, to say that not only can one take
the homotopy category of a model category, one can also take the total derived
adjunction of a Quillen adjunction, and the total derived natural transformation of
a natural transformation between Quillen adjunctions. Doing so preserves compo-
sitions for the most part, but not exactly. This is the reason for the word “pseudo”.
In order to reach this goal, we have to adopt a different definition of model category
from that of [DHK], but the difference is minor. The definition of [DHK], on the
other hand, is considerably different from the original definition of [Qui67], and
even from its refinement in [Qui69].

After the theoretical material of the first chapter, the reader is entitled to some
examples. We consider the important examples of chain complexes over a ring,
topological spaces, and chain complexes of comodules over a commutative Hopf
algebra in the second chapter, while the third is devoted to the central example of
simplicial sets. Proving that a particular category has a model structure is always
difficult. There is, however, a standard method, introduced by Quillen [Qui67]
but formalized in [DHK]. This method is an elaboration of the small object argu-
ment and is known as the theory of cofibrantly generated model categories. After
examining this theory in Section 2.1, we consider the category of modules over a
Frobenius ring, where projective and injective modules coincide. This is perhaps
the simplest nontrivial example of a model category, as every object is both cofi-
brant and fibrant. Nevertheless, the material in this section has not appeared in
print before. Then we consider chain complexes of modules over an arbitrary ring.
Our treatment differs somewhat from the standard one in that we do not assume
our chain complexes are bounded below. We then move on to topological spaces.
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Here our treatment is the standard one, except that we offer more details than are
commonly provided. The model category of chain complexes of comodules over a
commutative Hopf algebra, on the other hand, has not been considered before. It
is relevant to the recent work in modular representation theory of Benson, Carlson,
Rickard and others (see, for example [BCR96]), as well as to the study of stable
homotopy over the Steenrod algebra [Pal97]. The approach to simplicial sets given
in the third chapter is substantially the same as that of [GJ97].

In the fourth chapter we consider model categories that have an internal tensor
product making them into closed monoidal categories. Almost all the standard
model categories are like this: chain complexes of abelian groups have the tensor
product, for example. Of course, one must require the tensor product and the model
structure to be compatible in an appropriate sense. The resulting monoidal model
categories play the same role in the theory of model categories that ordinary rings
do in algebra, so that one can consider modules and algebras over them. A module
over the monoidal model category of simplicial sets, for example, is the same thing
as a simplicial model category. Of course, the homotopy category of a monoidal
model category is a closed monoidal category in a natural way, and similarly for
modules and algebras. The material in this chapter is all fairly straightforward,
but has not appeared in print before. It may also be in [DHK], when that book
appears.

The fifth and sixth chapters form the technical heart of the book. In the fifth
chapter, we show that the homotopy category of any model category has the same
good properties as the homotopy category of a simplicial model category. In our
highfalutin language, the homotopy pseudo-2-functor lifts to a pseudo-2-functor
from model categories to closed HoSSet-modules, where HoSSet is the homo-
topy category of simplicial sets. This follows from the idea of framings developed
in [DK80]. This chapter thus has a lot of overlap with [DHK], where framings are
also considered. However, the emphasis in [DHK] seems to be on using framings to
develop the theory of homotopy colimits and homotopy limits, whereas we are more
interested in making HoSSet act naturally on the homotopy category. There is a
nagging question left unsolved in this chapter, however. We find that the homotopy
category of a monoidal model category is naturally a closed algebra over HoSSet,
but we are unable to prove that it is a central closed algebra.

In the sixth chapter we consider the homotopy category of a pointed model
category. As was originally pointed out by Quillen [Qui67], the apparently minor
condition that the initial and terminal objects coincide in a model category has
profound implications in the homotopy category. One gets a suspension and loop
functor and cofiber and fiber sequences. In the light of the fifth chapter, however,
we realize we get an entire closed HoSSet∗-action, of which the suspension and
loop functors are merely specializations. Here HoSSet∗ is the homotopy category
of pointed simplicial sets. We prove that the cofiber and fiber sequences are com-
patible with this action in an appropriate sense, as well as reproving the standard
facts about cofiber and fiber sequences. We then get a notion of pre-triangulated
categories, which are closed HoSSet∗-modules with cofiber and fiber sequences
satisfying many axioms.

The seventh chapter is devoted to the stable situation. We define a pre-
triangulated category to be triangulated if the suspension functor is an equivalence
of categories. This is definitely not the same as the usual definition of triangulated
categories, but it is closer than one might think at first glance. We also argue
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that it is a better definition. Every triangulated category that arises in nature is
the homotopy category of a model category, so will be triangulated in our stronger
sense. We also consider generators in the homotopy category of a pointed model
category. These generators are extremely important in the theory of stable homo-
topy categories developed in [HPS97]. Our results are not completely satisfying,
but they do go a long way towards answering our original question: when is the
homotopy category of a model category a stable homotopy category?

Finally, we close the book with a brief chapter containing some unsolved or
partially solved problems the author would like to know more about.

I would like to acknowledge the help of several people in the course of writing
this book. I went from knowing very little about model categories to writing this
book in the course of about two years. This would not have been possible without
the patient help of Phil Hirschhorn, Dan Kan, Charles Rezk, Brooke Shipley, and
Jeff Smith, experts in model categories all. I wish to thank John Palmieri for count-
less conversations about the material in this book. Thanks are also due Gaunce
Lewis for help with compactly generated topological spaces, and Mark Johnson for
comments on early drafts of this book. And I wish to thank my family, Karen,
Grace, and Patrick, for the emotional support so necessary in the frustrating en-
terprise of writing a book.



CHAPTER 1

Model categories

In this first chapter, we discuss the basic theory of model categories. It very
often happens that one would like to consider certain maps in a category to be
isomorphisms when they are not. For example, these maps could be homology
isomorphisms of some kind, or homotopy equivalences, or birational equivalences
of algebraic varieties. One can always invert these “weak equivalences” formally,
but there is a foundational problem with doing so, since the class of maps between
two objects in the localized category may not be a set. Also, it is very difficult to
understand the maps in the resulting localized category. In a model category, there
are weak equivalences, but there are also other classes of maps called cofibrations
and fibrations. This extra structure allows one to get precise control of the maps
in the category obtained by formally inverting the weak equivalences.

Model categories were introduced by Quillen in [Qui67], as an abstraction
of the usual situation in topological spaces. This is where the terminology came
from as well. Quillen’s definitions have been modified over the years, by Quillen
himself in [Qui69] and, more recently, by Dwyer, Hirschhorn, and Kan [DHK].
We modify their definition slightly to require that the functorial factorizations be
part of the structure. The reader may object that there is now more than one
different definition of a model category. That is true, but the differences are slight:
in practice, a structure that satisfies one definition satisfies them all. We present
our definition and some of the basic facts about model categories in Section 1.1.

At this point, the reader would certainly like some interesting examples of
model categories. However, that will have to wait until the next chapter. The
axioms for a model category are very powerful. This means there one can prove
many theorems about model categories, but it also means that it is hard to check
that any particular category is a model category. We need to develop some theory
first, before we can construct the many examples that appear in Chapter 2.

In Section 1.2 we present Quillen’s results about the homotopy category of a
model category. This is the category obtained from a model category by inverting
the weak equivalences. The material in this section is standard, as the approach of
Quillen has not been improved upon.

In Section 1.3 we study Quillen functors and their derived functors. The most
obvious requirement to make on a functor between model categories is that it
preserve cofibrations, fibrations, and weak equivalences. This requirement is much
too stringent however. Instead, we only require that a Quillen functor preserve half
of the model structure: either cofibrations and trivial cofibrations, or fibrations
and trivial fibrations, where a trivial cofibration is both a cofibration and a weak
equivalence, and similarly for trivial fibrations. This gives us left and right Quillen
functors, and could give us two different categories of model categories. However,
in practice functors of model categories come in adjoint pairs. We therefore define
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2 1. MODEL CATEGORIES

a morphism of model categories to be an adjoint pair, where the left adjoint is a
left Quillen functor and the right adjoint is a right Quillen functor. Of course, we
still have to pick a direction, but it is now immaterial which direction we pick. We
choose the direction of the left adjoint.

A Quillen functor will induce a functor on the homotopy categories, called its
total (left or right) derived functor. This operation of taking the derived functor
does not preserve identities or compositions, but it does do so up to coherent natural
isomorphism. We describe this precisely in Section 1.3, as is also done in [DHK]
but has never been done explicitly in print before that.

This observation leads naturally to 2-categories and pseudo-2-functors, which
we discuss in Section 1.4. The category of model categories is not really a category
at all, but a 2-category. The operation of taking the homotopy category and the
total derived functor is not a functor, but instead is a pseudo-2-functor. The 2-
morphisms of model categories are just natural transformations, so this section
really just points out that there is a convenient language to talk about these kind
of phenomena, rather than introducing any deep mathematics. This language is
convenient for the author, who will use it throughout the book. However, the reader
who prefers not to use it should skip this section and refer back to it as needed.

1.1. The definition of a model category

In this section we present our definition of a model category, and derive some
basic results. As mentioned above, our definition is different from the original
definition of Quillen and is even slightly different from the modern refinements
of [DHK]. The reader is thus advised to look at the definition we give here and
read the comments following it, even if she is familiar with model categories.

Other sources for model categories and basic results about them include the
original source [Qui67], the very readable [DS95], and the more modern [DHK]
and [Hir97].

We make some preliminary definitions.
Given a category C, we can form the category MapC whose objects are mor-

phisms of C and whose morphisms are commutative squares.

Definition 1.1.1. Suppose C is a category.

1. A map f in C is a retract of a map g ∈ C if f is a retract of g as objects
of MapC. That is, f is a retract of g if and only if there is a commutative
diagram of the form

A −−−−→ C −−−−→ A

f

y g

y
yf

B −−−−→ D −−−−→ B

where the horizontal composites are identities.
2. A functorial factorization is an ordered pair (α, β) of functors Map C −→

Map C such that f = β(f) ◦ α(f) for all f ∈ Map C. In particular, the
domain of α(f) is the domain of f , the codomain of α(f) is the domain of
β(f), and the codomain of β(f) is the codomain of f .

Definition 1.1.2. Suppose i : A −→ B and p : X −→ Y are maps in a category
C. Then i has the left lifting property with respect to p and p has the right lifting
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property with respect to i if, for every commutative diagram

A
f

−−−−→ X

i

y
yp

B −−−−→
g

Y

there is a lift h : B −→ Y such that hi = f and ph = g.

Definition 1.1.3. A model structure on a category C is three subcategories of
C called weak equivalences, cofibrations, and fibrations, and two functorial factor-
izations (α, β) and (γ, δ) satisfying the following properties:

1. (2-out-of-3) If f and g are morphisms of C such that gf is defined and two
of f, g and gf are weak equivalences, then so is the third.

2. (Retracts) If f and g are morphisms of C such that f is a retract of g and g
is a weak equivalence, cofibration, or fibration, then so is f .

3. (Lifting) Define a map to be a trivial cofibration if it is both a cofibration
and a weak equivalence. Similarly, define a map to be a trivial fibration if
it is both a fibration and a weak equivalence. Then trivial cofibrations have
the left lifting property with respect to fibrations, and cofibrations have the
left lifting property with respect to trivial fibrations.

4. (Factorization) For any morphism f , α(f) is a cofibration, β(f) is a trivial
fibration, γ(f) is a trivial cofibration, and δ(f) is a fibration.

Definition 1.1.4. A model category is a category C with all small limits and
colimits together with a model structure on C.

This definition of a model category differs from the definition in [Qui67] in
the following ways. Recall that Quillen distinguished between model categories
and closed model categories. That distinction has not proved to be important, so
recent authors have only considered closed model categories. We therefore drop
the adjective closed. In addition, Quillen only required finite limits and colimits to
exist. All of the examples he considered where only such colimits and limits exist
are full subcategories of model categories where all small colimits and limits exist.
Since it is technically much more convenient to assume all small colimits and limits
exist, we do so. Quillen also assumed the factorizations merely exist, not that they
are functorial. However, in all the examples they can be made functorial.

The changes we have discussed so far are due to Kan and appear in [DHK].
We make one further change in that we make the functorial factorizations part
of the model structure, rather than merely assuming they exist. This is a subtle
difference, necessary for various constructions to be natural with respect to maps
of model categories.

We always abuse notation and refer to a model category C, leaving the model
structure implicit. We will discuss several examples of model categories in the next
two chapters. We can give some trivial examples now.

Example 1.1.5. Suppose C is a category with all small colimits and limits. We
can put three different model structures on C by choosing one of the distinguished
subcategories to be the isomorphisms and the other two to be all maps of C. There
are then obvious choices for the functorial factorizations, and this gives a model
structure on C. For example, we could define a map to be a weak equivalence if
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and only if it is an isomorphism, and define every map to be both a cofibration and
a fibration. In this case, we define the functors α and δ to be the identity functor,
and define β(f) to be the identity of the codomain of f and γ(f) to be the identity
of the domain of f .

Example 1.1.6. Suppose C and D are model categories. Then C×D becomes
a model category in the obvious way: a map (f, g) is a cofibration (fibration, weak
equivalence) if and only if both f and g are cofibrations (fibrations, weak equiva-
lences). We leave it to the reader to define the functorial factorizations and verify
that the axioms hold. We could do this with any set of model categories. We refer
to the model structure just defined as the product model structure.

Remark 1.1.7. A very useful property of the axioms for a model category is
that they are self-dual. That is, suppose C is a model category. Then the opposite
category Cop is also a model category, where the cofibrations of Cop are the fibrations
of C, the fibrations of Cop are the cofibrations of C, and the weak equivalences of
Cop are the weak equivalences of C. The functorial factorizations also get inverted:
the functor α of Cop is the opposite of the functor δ of C, the functor β of Cop is the
opposite of the functor γ of C, the functor γ of Cop is the opposite of the functor
β of C, and the functor δ of Cop is the opposite of the functor α of C. We leave
it to the reader to check that these structures make Cop into a model category.
We denote it by DC, and refer to DC as the dual model category of C. Note that
D2C = C as model categories. In practice, this duality means that every theorem
about model categories has a dual theorem.

If C is a model category, then it has an initial object, the colimit of the empty
diagram, and a terminal object, the limit of the empty diagram. We call an object
of C cofibrant if the map from the initial object 0 to it is a cofibration, and we call
an object fibrant if the map from it to the terminal object 1 (or ∗) is a fibration. We
call a model category (or any category with an initial and terminal object) pointed
if the map from the initial object to the terminal object is an isomorphism.

Given a model category C, define C∗ to be the category under the terminal

object ∗. That is, an object of C∗ is a map ∗
v
−→ X of C, often written (X, v). We

think of (X, v) as an object X together with a basepoint v. A morphism from (X, v)
to (Y,w) is a morphism X −→ Y of C that takes v to w.

Note that C∗ has arbitrary limits and colimits. Indeed, if F : I −→ C∗ is a
functor from a small category I to C∗, the limit of F as a functor to C is naturally
an element of C∗ and is the limit there. The colimit is a little trickier. For that, we
let J denote I with an extra initial object ∗. Then F defines a functor G : J −→ C,
where G(∗) = ∗, and G of the map ∗ −→ i is the basepoint of F (i). The colimit of
G in C then has a canonical basepoint, and this defines the colimit in C∗ of F . For
example, the initial object, the colimit of the empty diagram, in C∗ is ∗, and the
coproduct of X and Y is X ∨ Y , the quotient of X q Y obtained by identifying the
basepoints. In particular, C∗ is a pointed category.

There is an obvious functor C −→ C∗ that takes X to X+ = X q ∗, with
basepoint ∗. This operation of adding a disjoint basepoint is left adjoint to the
forgetful functor U : C∗ −→ C, and defines a faithful (but not full) embedding of
C into the pointed category C∗. If C is already pointed, these functors define an
equivalence of categories between C and C∗.
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Proposition 1.1.8. Suppose C is a model category. Define a map f in C∗

to be a cofibration (fibration, weak equivalence) if and only if Uf is a cofibration
(fibration, weak equivalence) in C. Then C∗ is a model category.

Proof. It is clear that weak equivalences in C∗ satisfy the two out of three
property, and that cofibrations, fibrations, and weak equivalences are closed under
retracts. Suppose i is a cofibration in C∗ and p is a trivial fibration. Then Ui
has the left lifting property with respect to Up; it follows that i has the left lifting
property with respect to p, since any lift must automatically preserve the basepoint.
Similarly, trivial cofibrations have the left lifting property with respect to fibrations.
If f = β(f) ◦ α(f) is a functorial factorization in C, then it is also a functorial
factorization in C∗; we give the codomain of α(f) the basepoint inherited from α,
and then β(f) is forced to preserve the basepoint. Thus the factorization axiom
also holds and so C∗ is a model category.

Note that we could replace the terminal object ∗ by any object A of C, to obtain
the model category of objects under A. In fact, we could also consider the category
of objects over A, whose objects consist of pairs (X, f), where f : X −→ A is a map
in C. A similar proof as in Proposition 1.1.8 shows that this also forms a model
category. Finally, we could iterate these constructions to form the model category
of objects under A and over B. We leave the exact statements and proofs to the
reader.

Note that by applying the functors β and α to the map from the initial object
to X , we get a functor X 7→ QX such that QX is cofibrant, and a natural trans-

formation QX
qX
−−→ X which is a trivial fibration. We refer to Q as the cofibrant

replacement functor of C. Similarly, there is a fibrant replacement functor RX
together with a natural trivial cofibration X −→ RX .

The following lemma is often useful when dealing with model categories.

Lemma 1.1.9 (The Retract Argument). Suppose we have a factorization f =
pi in a category C, and suppose that f has the left lifting property with respect to p.
Then f is a retract of i. Dually, if f has the right lifting property with respect to i,
then f is a retract of p.

Proof. First suppose f has the left lifting property with respect to p. Write
f : A −→ C and i : A −→ B. Then we have a lift r : C −→ B in the diagram

A
i

−−−−→ B

f

y
yp

C C

Then the diagram

A A A

f

y i

y
yf

C −−−−→
r

B −−−−→
p

C

displays f as a retract of i. The proof when f has the right lifting property with
respect to i is similar.
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The retract argument implies that the axioms for a model category are overde-
termined.

Lemma 1.1.10. Suppose C is a model category. Then a map is a cofibration
(a trivial cofibration) if and only if it has the left lifting property with respect to
all trivial fibrations (fibrations). Dually, a map is a fibration (a trivial fibration)
if and only if it has the right lifting property with respect to all trivial cofibrations
(cofibrations).

Proof. Certainly every cofibration does have the left lifting property with
respect to trivial fibrations. Conversely, suppose f has the left lifting property
with respect to trivial fibrations. Factor f = pi, where i is a cofibration and p
is a trivial fibration. Then f has the left lifting property with respect to p, so
the retract argument implies that f is a retract of i. Therefore f is a cofibration.
The trivial cofibration part of the lemma is proved similarly, and the fibration and
trivial fibration parts follow from duality.

In particular, every isomorphism in a model category is a trivial cofibration
and a trivial fibration, as is also clear from the retract axiom.

Corollary 1.1.11. Suppose C is a model category. Then cofibrations (trivial
cofibrations) are closed under pushouts. That is, if we have a pushout square

A −−−−→ C

f

y g

y

B −−−−→ D

where f is a cofibration (trivial cofibration), then g is a cofibration (trivial cofibra-
tion). Dually, fibrations (trivial fibrations) are closed under pullbacks.

Proof. Because g is a pushout of f , if f has the left lifting property with
respect to a map h, so does g.

An extremely useful result about model categories is Ken Brown’s Lemma.

Lemma 1.1.12 (Ken Brown’s lemma). Suppose C is a model category and D

is a category with a subcategory of weak equivalences which satisfies the two out of
three axiom. Suppose F : C −→ D is a functor which takes trivial cofibrations betwen
cofibrant objects to weak equivalences. Then F takes all weak equivalences between
cofibrant objects to weak equivalences. Dually, if F takes trivial fibrations between
fibrant objects to weak equivalences, then F takes all weak equivalences between
fibrant objects to weak equivalences.

Proof. Suppose f : A −→ B is a weak equivalence of cofibrant objects. Factor

the map (f, 1B) : A q B −→ B into a cofibration A q B
q
−→ C followed by a trivial

fibration C
p
−→ B. The pushout diagram

0 −−−−→ A
y

y

B −−−−→ A q B

shows that the inclusion maps A
i1−→ AqB and similarly B

i2−→ AqB are cofibra-
tions. By the two out of three axiom, both q ◦ i1 and q ◦ i2 are weak equivalences,
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hence trivial cofibrations (of cofibrant objects). By hypothesis, we then have that
both F (q ◦ i1) and F (q ◦ i2) are weak equivalences. Since F (p ◦ q ◦ i2) = F (1B) is
also a weak equivalence, we conclude from the two out of three axiom that F (p) is
a weak equivalence, and hence that F (f) = F (p ◦ q ◦ i1) is a weak equivalence, as
required. We leave the dual argument to the reader.

1.2. The homotopy category

In this section, we follow the standard approach to define and study the ho-
motopy category of a model category C. There is nothing new in this section: all
authors follow the original approach of Quillen [Qui67] with only slight modifica-
tions. The particular modifications we use all come from [DS95] or [DHK]. The
basic result is that the localization Ho C of a model category C obtained by inverting
the weak equivalences is equivalent to the quotient category Ccf/∼ of the cofibrant
and fibrant objects by the homotopy relation. To those readers less familiar with
model categories, I wish to emphasize that Ho C is not the same category as Ccf/∼,
merely equivalent to it. This point confused the author for quite some time when
he was learning about model categories.

Definition 1.2.1. Suppose C is a category with a subcategory of weak equiva-
lences W. Define the homotopy “category” Ho C as follows. Form the free category
F (C,W−1) on the arrows of C and the reversals of the arrows of W . An object
of F (C,W−1) is an object of C, and a morphism is a finite string of composable
arrows (f1, f2, . . . , fn) where fi is either an arrow of C or the reversal w−1

i of an
arrow wi of W . The empty string at a particular object is the identity at that
object, and composition is defined by concatenation of strings. Now, define HoC

to be the quotient category of F (C,W−1) by the relations 1A = (1A) for all objects
A, (f, g) = (g ◦ f) for all composable arrows f, g of C, and 1dom w = (w,w−1) and
1codom w = (w−1, w) for all w ∈W. Here dom w is the domain of w and codom w
is the codomain of w.

The notation HoC is certainly not ideal for this “category”. The right notation
is C[W−1]. Our excuse for not adopting the right notation is that we will always take
C to be a subcategory of a model category and take W to be the weak equivalences
in C.

Note that this definition makes it clear that HoDC = (HoC)op if C is a model
category. One can also check that if C and D are model categories and we give
C×D the product model structure, then Ho(C×D) is isomorphic to Ho C×HoD.
This is also true if we have more than two factors.

The reason for the quotes around “category” is that HoC(A,B) may not be a
set in general. So Ho C may not exist until we pass to a higher universe. We will
make this passage to a higher universe implicitly until we prove that it is in fact
not necessary if C is a model category.

Note that there is a functor C
γ
−→ Ho C which is the identity on objects and

takes morphisms of W to isomorphisms. The category Ho C is characterized by a
universal property.

Lemma 1.2.2. Suppose C is a category with a subcategory W.

(i) If F : C −→ D is a functor that sends maps of W to isomorphisms, then there
is a unique functor HoF : Ho C −→ D such that (HoF ) ◦ γ = F .
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(ii) Suppose δ : C −→ E is a functor that takes maps of W to isomorphisms and
enjoys the universal property of part (i). Then there is a unique isomorphism

Ho C
F
−→ E such that Fγ = δ.

(iii) The correspondence of part (i) induces an isomorphism of categories between
the category of functors HoC −→ D and natural transformations and the
category of functors C −→ D which take maps of W to isomorphisms and
natural transformations.

Proof. For part (i), we must define HoF to be F on objects and morphisms of
C, and define (HoF )(w−1) = (Fw)−1. This is indeed a functor by the presentation
of Ho C as a quotient of a free category. Part (ii) follows in the standard way. That
is, if δ : C −→ E also enjoys the universal property of Ho C, then there is a unique
functor F : HoC −→ E such that Fγ = δ and a unique functor G : E −→ HoC such
that Gδ = γ. Then both GF and the identity functor of Ho C preserve γ, so must
be equal. Similarly, both FG and the identity functor of E preserve δ, so must be
equal. Thus F is an isomorphism.

For part (iii), given a functor F : C −→ D which takes weak equivalences to
isomorphisms, we associate to it HoF . Given a natural transformation τ : F −→ G,
we associate to it Ho τ : HoF −→ HoG, where Ho τX = τX . The transformation
Ho τ is natural on HoC because it is natural with respect to weak equivalences,
so is forced to be natural with respect to their inverses as well. Composition of
natural transformations is obviously preserved. The inverse of this functor takes a
functor G : HoC −→ D to G ◦ γ, and a natural transformation τ to τ ◦ γ, where
(τ ◦ γ)X = τX .

Proposition 1.2.3. Suppose C is a model category. Let Cc (resp. Cf ,Ccf ) de-
note the full subcategory of cofibrant (resp. fibrant, cofibrant and fibrant) objects of
C. Then the inclusion functors induce equivalences of categories Ho Ccf −→ HoCc −→
HoC and Ho Ccf −→ Ho Cf −→ Ho C.

Proof. We prove that HoCc −→ Ho C is an equivalence, leaving the other cases

to the reader. Certainly Cc
i
−→ C preserves weak equivalences, so does induce a

functor Ho i : HoCc −→ Ho C. The inverse is induced by the cofibrant replacement
functor Q. Recall that QX is cofibrant and there is a natural trivial fibration

QX
qX
−−→ X . In particular, Q preserves weak equivalences and so induces a functor

HoQ : Ho C −→ Ho Cc. The natural transformation q can be thought of as a natural
weak equivalence Q ◦ i −→ 1Cc

or i ◦ Q −→ 1C. On the homotopy category, Ho q is
therefore a natural isomorphism Ho i ◦ HoQ −→ 1Ho Cc

and a natural isomorphism
HoQ ◦Ho i −→ 1Ho C, so HoQ and Ho i are inverse equivalences of categories.

We now summarize the standard alternative construction of Ho Ccf which
makes it clear that HoCcf , and hence HoC, is really a category without having
to pass to a higher universe.

Definition 1.2.4. Suppose C is a model category, and f, g : B −→ X are two
maps in C.

1. A cylinder object for B is a factorization of the fold map ∇ : B q B −→ B

into a cofibration B qB
i0+i1−−−→ B′ followed by a weak equivalence B′ s

−→ B.
2. A path object for X is a factorization of the diagonal map X −→ X ×X into

a weak equivalence X
r
−→ X ′ followed by a fibration X ′ (p0,p1)

−−−−→ X ×X .
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3. A left homotopy from f to g is a map H : B′ −→ X for some cylinder object
B′ for B such that Hi0 = f and Hi1 = g. We say that f and g are left

homotopic, written f
`
∼ g, if there is a left homotopy from f to g.

4. A right homotopy from f to g is a map K : B −→ X ′ for some path object
X ′ for X such that p0K = f and p1K = g. We say that f and g are right

homotopic, written f
r
∼ g, if there is a right homotopy from f to g.

5. We say that f and g are homotopic, written f ∼ g, if they are both left and
right homotopic.

6. f is a homotopy equivalence if there is a map h : X −→ B such that hf ∼ 1B
and fh ∼ 1X .

Note that a path object for B in C is the same thing as a cylinder object for B
in DC, the dual model category. Similarly, a right homotopy between f and g in C

is the same thing as a left homotopy between f and g in DC. Thus we need only
prove results about left homotopies and cylinder objects, and the dual statements
will automatically hold for right homotopies and path objects.

We get a functorial cylinder object B × I for B by applying the functorial
factorization to the fold map B q B −→ B. This cylinder object has the additional

property that the map B× I
s
−→ B is a trivial fibration. Dually, we get a functorial

path object XI for X by applying the functorial factorization to the diagonal map,

and in this case the map X
r
−→ XI is a trivial cofibration. Note that, if B′ is an

arbitrary cylinder object for B, there is a weak equivalence B ′ −→ B× I compatible
with the structure maps (i0, i1) and s. Indeed, such a map is given by a lift in the
diagram

B q B
(i0,i1)
−−−−→ B × I

(i0,i1)

y s

y

B′ s
−−−−→ B

Similarly, given a path object X ′ for X , there is a map XI −→ X ′ compatible with
the structure maps r and (p0, p1).

The following proposition sums up the properties of the left homotopy relation,
and dually, the right homotopy relation. This proposition is standard and comes
originally from [Qui67].

Proposition 1.2.5. Suppose C is a model category, and f, g : B −→ X are two
maps of C.

(i) If f
`
∼ g and h : X −→ Y , then hf

`
∼ hg. Dually, if f

r
∼ g and h : A −→ B,

then fh
r
∼ gh.

(ii) If X is fibrant, f
`
∼ g, and h : A −→ B, then fh

`
∼ gh. Dually, if B is

cofibrant, f
r
∼ g, and h : X −→ Y , then hf

r
∼ hg.

(iii) If B is cofibrant, then left homotopy is an equivalence relation on C(B,X).
Dually, if X is fibrant, then right homotopy is an equivalence relation in
C(B,X).

(iv) If B is cofibrant and h : X −→ Y is a trivial fibration or a weak equivalence
of fibrant objects, then h induces an isomorphism

C(B,X)/
`
∼

∼=
−→ C(B, Y )/

`
∼ .



10 1. MODEL CATEGORIES

Dually, if X is fibrant and h : A −→ B is a trivial cofibration or a weak
equivalence of cofibrant objects, then h induces an isomorphism

C(B,X)/
r
∼

∼=
−→ C(A,X)/

r
∼ .

(v) If B is cofibrant, then f
`
∼ g implies f

r
∼ g. Furthermore, if X ′ is any path

object for X, there is a right homotopy K : B −→ X ′ from f to g. Dually, if

X is fibrant, then f
r
∼ g implies f

`
∼ g, and there is a left homotopy from f

to g using any cylinder object for B.

Proof. We only need prove the claims about left homotopies, by duality.
Part (i) is straightforward, and we leave it to the reader. For part (ii), suppose

X is fibrant, f
`
∼ g, and h : A −→ B. Suppose H : B′ −→ X is a left homotopy from

f to g, where BqB
i
−→ B′ s

−→ B is a cylinder object for B. Because X is fibrant, we

can assume that the map B′ s
−→ B is a trivial fibration. Indeed, we can factor the

weak equivalence s into a trivial cofibration B ′ −→ B′′ followed by a trivial fibration

B′′ s′

−→ B. Then B′′ is also a cylinder object for B, and because X is fibrant, there
is an extension of the homotopy H : B′ −→ X to a homotopy H ′ : B′′ −→ X . We
will therefore assume that s : B′ −→ B is a trivial fibration.

Now, suppose A q A
j
−→ A′ t

−→ A is a cylinder object for A. Consider the
commutative diagram

Aq A
i◦(fqf)
−−−−−→ B′

j

y s

y

A′ ft
−−−−→ B

We can find a lift k : A′ −→ B′ in this diagram, and Hk is the desired left homotopy
from fh to gh.

We now prove part (iii). The left homotopy relation is always reflexive and

symmetric, no matter what B is. Indeed, if B qB −→ B′ s
−→ B is a cylinder object

for B, then fs is a left homotopy from f to f . Suppose H : B′ −→ X is a left
homotopy from f to g. Then we can make a new cylinder object B ′′ for B by
simply switching i0 and i1. Then H : B′′ −→ X is a left homotopy from g to f . We
are left with proving the left homotopy relation is transitive, and for this we need
to assume B is cofibrant. Suppose H : B′ −→ X is a left homotopy from f to g, and
H ′ : B′′ −→ X is a left homotopy from g to h. Let C be the pushout in the diagram

B
i1−−−−→ B′

i′0

y
y

B′′ −−−−→ C

We have a factorization B q B
j0+j1
−−−→ C

t
−→ B of the fold map. Indeed, define j0

as the composite B
i0−→ B′ −→ C, define j1 as the composite B

i′1−→ B′′ −→ C, and
define s as the map C −→ B induced by s and s′. The map j0 + j1 may not be a
cofibration, but, because B is cofibrant, the map t is a weak equivalence. Indeed,
i1 : B −→ B′ is a trivial cofibration, so the map B′′ −→ C is also a trivial cofibration.
Since s′ is also a weak equivalence, so is t.
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Now, we have a map C
K
−→ X induced by H and H ′, such that Kj0 = f and

Kj1 = g. This is not a left homotopy, but it can be made into one by factoring
j0 + j1 into a cofibration followed by a trivial cofibration C ′ −→ C. Then C ′ is a

cylinder object for A, and the composite C ′ −→ C
K
−→ X is a left homotopy between

f and h.
We now prove part (iv). The case when h : X −→ Y is a weak equivalence of

fibrant objects follows from the trivial fibration case and Ken Brown’s lemma. So
suppose h is a trivial fibration, and consider the map

F : C(B,X)/
`
∼−→ C(B, Y )/

`
∼

which makes sense by parts (i) and (iii). We first show that F is surjective. So
suppose f ′ : B −→ Y is a map. Then, since B is cofibrant, we can find a map
f : B −→ X such that hf = f ′. So the map F is surjective even without taking

homotopy classes. Now suppose hf
`
∼ hg, and choose a left homotopy H : B′ −→ Y

from hf to hg. Then we can find a lift K : B′ −→ X in the diagram

B q B
f+g
−−−−→ X

i0+i1

y h

y

B′ H
−−−−→ Y

and the map K is a left homotopy from f to g. Hence F is injective as well.

Finally, we prove part (v). Suppose B is cofibrant and f
`
∼ g : B −→ X by a

left homotopy H : B′ −→ X . Then the map i0 : B −→ B′ is a trivial cofibration.

Suppose X
r
−→ X ′ (p0,p1)

−−−−→ X × X is a path object for X . Then we can find a lift
J : B′ −→ X ′ in the diagram

B
rf

−−−−→ X ′

i0

y (p0,p1)

y

B′ (fs,H)
−−−−→ X ×X

Then K = Ji1 is a right homotopy from f to g, as required.

We have two immediate corollaries.

Corollary 1.2.6. Suppose C is a model category, B is a cofibrant object of C,
and X is a fibrant object of C. Then the left homotopy and right homotopy relations
coincide and are equivalence relations on C(B,X). Furthermore, if f ∼ g : B −→ X,
then there is a left homotopy H : B′ −→ X from f to g using any cylinder object B′

for B. Dually, there is a right homotopy K : B −→ X ′ from f to g using any path
object X ′ for B.

Corollary 1.2.7. The homotopy relation on the morphisms of Ccf is an equiv-
alence relation and is compatible with composition. Hence the category Ccf/ ∼
exists.

The functor Ccf −→ Ccf/∼ inverts the homotopy equivalences in Ccf . We would
like it to invert the weak equivalences.

Proposition 1.2.8. Suppose C is a model category. Then a map of Ccf is a
weak equivalence if and only if it is a homotopy equivalence.



12 1. MODEL CATEGORIES

Proof. Suppose first that f : A −→ B is a weak equivalence of cofibrant and fi-
brant objects. Then, by Ken Brown’s lemma and Proposition 1.2.5, if X is also cofi-
brant and fibrant we have an isomorphism f∗ : (Ccf/∼)(X,A) −→ (Ccf/∼)(X,B).
Taking X = B, we find a map g : B −→ A, unique up to homotopy, such that
fg ∼ 1B . In particular fgf ∼ f , so taking X = A, we find that gf ∼ 1A. Thus f
is a homotopy equivalence.

Conversely, suppose f is a homotopy equivalence between cofibrant and fibrant

objects. Factor f into a trivial cofibration A
g
−→ C followed by a fibration p : C −→

B. Then C is also cofibrant and fibrant, so g is a homotopy equivalence, as we have
just proved. We will show that p is a weak equivalence. To do so, let f ′ : B −→ A
be a homotopy inverse for f , and let H : B′ −→ B be a left homotopy from ff ′ to
1B. Let H ′ : B′ −→ C be a lift in the commutative square

B
gf ′

−−−−→ C

i0

y p

y

B′ H
−−−−→ B

and let q = H ′i1 : B −→ C. Then pq = 1B , and H ′ is a left homotopy from gf ′ to
q. Now, let g′ : C −→ A be a homotopy inverse for g. Then p ∼ pgg′ ∼ fg′. Hence
qp ∼ (gf ′)(fg′) ∼ 1C .

It follows that qp is a weak equivalence. Indeed, if K : C ′ −→ C is a left
homotopy from 1C to qp, then Ki0 = 1C is a weak equivalence, as is i0, so K is a
weak equivalence. ThusKi1 = qp is also a weak equivalence. Now, the commutative
diagram

C
1C−−−−→ C

1C−−−−→ C

p

y qp

y p

y

B
q

−−−−→ C
p

−−−−→ B

shows that p is a retract of qp. Hence p is a weak equivalence, as required, and so
f is too.

Corollary 1.2.9. Suppose C is a model category. Let γ : Ccf −→ Ho Ccf and
δ : Ccf −→ Ccf/∼ be the canonical functors. Then there is a unique isomorphism

of categories Ccf/∼
j
−→ Ho Ccf such that jδ = γ. Furthermore j is the identity on

objects.

Proof. We show that Ccf/ ∼ has the same universal property that Ho Ccf
enjoys (see Lemma 1.2.2). The functor δ takes homotopy equivalences to isomor-
phisms, and hence takes weak equivalences to isomorphisms by Proposition 1.2.8.
Now suppose F : Ccf −→ D is a functor that takes weak equivalences to isomor-

phisms. Let AqA
i0+i1−−−→ A′ s

−→ A be a cylinder object for A. Then si0 = si1 = 1A,
and so, since s is a weak equivalence, we have Fi0 = Fi1. Thus if H : A′ −→ B is
a left homotopy between f and g, we have Ff = (FH)(Fi0) = (FH)(Fi1) = Fg,
and so F identifies left (or, dually, right) homotopic maps. Thus there is a unique
functor G : Ccf/∼−→ D such that Gδ = F . Indeed, G is the identity on objects
and takes the equivalence class of a map f to Ff . Lemma 1.2.2 then completes the
proof.
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Finally, we get what must be considered the fundamental theorem about model
categories.

Theorem 1.2.10. Suppose C is a model category. Let γ : C −→ HoC denote the
canonical functor, and let Q denote the cofibrant replacement functor of C and R
denote the fibrant replacement functor.

(i) The inclusion Ccf −→ C induces an equivalence of categories Ccf/ ∼
∼=
−→

Ho Ccf −→ HoC.
(ii) There are natural isomorphisms

C(QRX,QRY )/∼∼= HoC(γX, γY ) ∼= C(RQX,RQY )/∼

In addition, there is a natural isomorphism Ho C(γX, γY ) ∼= C(QX,RY )/∼,
and, if X is cofibrant and Y is fibrant, there is a natural isomorphism
Ho C(γX, γY ) ∼= C(X,Y )/∼. In particular, Ho C is a category without mov-
ing to a higher universe.

(iii) The functor γ : C −→ Ho C identifies left or right homotopic maps.
(iv) If f : A −→ B is a map in C such that γf is an isomorphism in Ho C, then

f is a weak equivalence.

Proof. The first part is a combination of Proposition 1.2.3 and Corollary 1.2.9.
The inverse of the equivalence HoCcf −→ Ho C is given by HoQ ◦ HoR (or HoR ◦
HoQ). This gives us the natural isomorphisms C(QRX,QRY )/∼∼= HoC(γX, γY ) ∼=
C(RQX,RQY ) of part (ii). The rest of part (ii) follows from Proposition 1.2.5 and
the natural weak equivalences QX −→ X −→ RX .

Part (iii) was proved already in the proof of Corollary 1.2.9. Finally, for part
(iv), suppose f : A −→ B is a map in C such that γf is an isomorphism in HoC.
Then QRf is an isomorphism in Ccf/ ∼, from which it follows easily that QRf
is a homotopy equivalence. By Proposition 1.2.8, we see that QRf is a weak
equivalence. Then, using the fact that both the natural transformations QX −→ X
andX −→ RX are weak equivalences, we find that f must be a weak equivalence.

We will frequently abbreviate Ho C(X,Y ) and Ho C(γX, γY ) by [X,Y ] in the
sequel.

1.3. Quillen functors and derived functors

In this section, we study morphisms of model categories. We call such mor-
phisms Quillen adjunctions or Quillen functors, and we show that a Quillen functor
induces a functor of the homotopy categories. This process of associating a derived
functor to a Quillen functor is not itself functorial, but it is functorial up to natural
isomorphism, as we indicate in this section. Occasionally this derived functor is
an equivalence of categories when the original Quillen functor is not. We call such
functors Quillen equivalences, and characterize them.

In thinking about the results of this section, the author was heavily influenced
by [DHK], and there is a great deal of overlap between this section and some
of [DHK].

1.3.1. Quillen functors. We begin with the definition of a Quillen functor.

Definition 1.3.1. Suppose C and D are model categories.

1. We call a functor F : C −→ D a left Quillen functor if F is a left adjoint and
preserves cofibrations and trivial cofibrations.
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2. We call a functor U : D −→ C a right Quillen functor if U is a right adjoint
and preserves fibrations and trivial fibrations.

3. Suppose (F,U, ϕ) is an adjunction from C to D. That is, F is a functor
C −→ D, U is a functor D −→ C, and ϕ is a natural isomorphism D(FA,B) −→
C(A,UB) expressing U as a right adjoint of F . We call (F,U, ϕ) a Quillen
adjunction if F is a left Quillen functor.

Note that Ken Brown’s lemma 1.1.12 implies that every left Quillen functor
preserves weak equivalences between cofibrant objects, and that every right Quillen
functor preserves weak equivalences between fibrant objects. For most of the results
of this section, we could assume only that our left adjoints preserve cofibrant objects
and weak equivalences between them, and dually that our right adjoints preserve
fibrant objects and weak equivalences between them. But experience has taught us
that little is gained by such generality, and that simplicity is lost.

In practice, Quillen adjunctions are almost always referred to by their left (or
right) adjoint alone, but the actual adjunction is always what is meant. Given a
Quillen adjunction (F,U, ϕ), we always denote the unit map X −→ UFX by η and
the counit map FUX −→ X by ε.

At this point the reader will have to take for granted that Quillen adjunctions
abound. We will see many examples of Quillen adjunctions in the next chapter.
The most famous example is probably the Quillen adjunction from simplicial sets
to topological spaces whose left adjoint is the geometric realization and whose right
adjoint is the singular complex. We can give the following simple examples now.

Example 1.3.2. Suppose C is a model category and I is a set. A product
functor CI −→ C is a right adjoint to the diagonal functor c : C −→ CI . By definition
of the product model structure (see Example 1.1.6), the product preserves fibrations
and trivial fibrations, and the diagonal functor preserves cofibrations and trivial
cofibrations. Hence the diagonal functor and the product functor define a Quillen
adjunction C −→ CI . Similarly, a coproduct functor is a left adjoint to the diagonal
functor, and defines a Quillen adjunction CI −→ C.

Example 1.3.3. If C is a model category, the disjoint basepoint functor C −→ C∗

(see Proposition 1.1.8) is part of a Quillen adjunction, where the right adjoint is
the forgetful functor. Indeed, it is clear that the forgetful functor is a right Quillen
functor. Lemma 1.3.4 implies that the disjoint basepoint functor is a left Quillen
functor.

We have the following simple lemma, which explains why we did not need to
require that U be a right Quillen functor in the definition of a Quillen adjunction.

Lemma 1.3.4. Suppose (F,U, ϕ) : C −→ D is an adjunction, and C and D are
model categories. Then (F,U, ϕ) is a Quillen adjunction if and only if U is a right
Quillen functor.

Proof. Use adjointness to show that Ff has the left lifting property with
respect to p if and only if f has the left lifting property with respect to Up. Then
use the characterization of cofibrations, trivial cofibrations, fibrations, and trivial
fibrations by lifting properties.

We can of course compose left (resp. right) Quillen functors to get a new left
(resp. right) Quillen functor. We can also compose adjunctions. If (F,U, ϕ) : C −→
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D and (F ′, U ′, ϕ′) : D −→ E are adjunctions, we can define their composition to be
the adjunction (F ′ ◦ F,U ◦ U ′, ϕ ◦ ϕ′) : C −→ E. Here ϕ ◦ ϕ′ is the composite

E(F ′FA,B)
ϕ′

−→
∼=

D(FA,U ′B)
ϕ
−→
∼=

C(A,UU ′B)

Composition of adjunctions is associative and has identities. The identity adjunc-
tion of a category C is the identity functor together with the identity adjointness
isomorphism. The composition of Quillen adjunctions is a Quillen adjunction.

We can therefore define several different notions of a category of model cat-
egories, using as our morphisms left Quillen functors, right Quillen functors, or
Quillen adjunctions. The author’s choice, based on experience, is to define a mor-
phism of model categories to be a Quillen adjunction. Note that, whatever choice
one makes for a morphism of model categories, such a morphism never has to pre-
serve the functorial factorizations. Hence if we take a model category C and use the
same category, cofibrations, fibrations, and weak equivalences, but choose different
functorial factorizations to form a new model category C′, the identity functor will
be an isomorphism of model categories between them. Thus the choice of functorial
factorizations has no effect on the isomorphism class of the model category.

Notice however that none of these categories are categories in the strict sense of
the word. Indeed, a category is supposed to have a class of objects, and between any
two objects, a set of morphisms. But every class defines a model category, where
the only morphisms are identities and they are weak equivalences, cofibrations, and
fibrations. So the collection of all model categories contains the collection of all
classes, which is certainly not a class. Similarly, the collection of all functors from
one model category to another need not be a set.

There are several possible solutions to this problem. One idea is to restrict
to small model categories, where the objects are required to form a set. However,
there are no nontrivial small model categories, since model categories are required
to have all small limits and colimits. So that idea fails. Another idea is to ascend
to a higher universe, as we have already implicitly done in forming the category
of model categories. However, a better idea is to consider the collection of model
categories, Quillen adjunctions, and natural transformations as a 2-category. We
will explain this further in the next section.

Also note that, if (F,U, ϕ) is a Quillen adjunction, then

D(F,U, ϕ) = (U, F, ϕ−1) : DD −→ DC

is a Quillen adjunction between the dual model categories. Note also that D pre-
serves identities and composition (in the opposite order), so that D is a contravari-
ant functor (in a higher universe) such that D2 is the identity functor.

Another example of a functor from model categories to themselves is provided
by the correspondence C 7→ C∗.

Proposition 1.3.5. A Quillen adjunction (F,U, ϕ) : C −→ D induces a Quil-
len adjunction (F∗, U∗, ϕ∗) : C∗ −→ D∗ between the model categories of Proposi-
tion 1.1.8. Furthermore, F∗(X+) is naturally isomorphic to (FX)+. This corre-
spondence is functorial.

Proof. Define U∗ by U∗(X, v) = (Ux,Uv), which makes sense since U pre-
serves the terminal object. Then U∗ obviously preserves fibrations and trivial fibra-
tions, so will be a right Quillen functor if it has a left adjoint. We define F∗(X, v)
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by the pushout diagram

F (∗)
Fv
−−−−→ FX

y
y

∗ −−−−→ F∗(X, v)

We leave it to the reader to verify that this is the left adjoint of U∗. Let V denote the
functor that forgets the basepoint. Then V U∗ = UV , so, by adjointness, F∗(X+)
is naturally isomorphic to (FX)+. The functoriality is clear, at least up to the
choice of pushouts. This really means that the correspondence that takes F to F∗

is functorial up to natural isomorphism, a concept that we discuss more fully in the
next section.

1.3.2. Derived functors and naturality. For the rest of this section we
study the functors on the homotopy category induced by Quillen functors.

Definition 1.3.6. Suppose C and D are model categories.

1. If F : C −→ D is a left Quillen functor, define the total left derived functor
LF : Ho C −→ Ho D to be the composite

Ho C
HoQ
−−−→ Ho Cc

HoF
−−−→ Ho D

Given a natural transformation τ : F −→ F ′ of left Quillen functors, de-
fine the total derived natural transformation Lτ to be Ho τ ◦ HoQ, so that
(Lτ)X = τQX .

2. If U : D −→ C is a right Quillen functor, define the total right derived functor
RU : Ho D −→ Ho C of U to be the composite

Ho D
HoR
−−−→ Ho Df

HoU
−−−→ Ho C

Given a natural transformation τ : U −→ U ′ of right Quillen functors, define
the total derived natural transformation Rτ to be Ho τ ◦HoR, so that RτX =
τRX .

In practice, a functor is almost never both a left Quillen functor and a right
Quillen functor, so can just refer to its total derived functor, leaving out the direc-
tion.

This definition is the reason we have assumed that the functorial factorizations
are part of the structure of a model category. Otherwise, in order to define LF , we
would have to choose a functorial cofibrant replacement, so we would not be able to
define LF in a way that depends only on the model category C. Also note that we
can define LF even if F is not a left Quillen functor, but just a functor that takes
weak equivalences between cofibrant objects to weak equivalences. Dually, we can
define RU if U is any functor that takes weak equivalences between fibrant objects
to weak equivalences.

As one would expect, given a set I and a model category C, the total right de-
rived functor of a product functor CI −→ C is a product functor (Ho C)I ∼= Ho CI −→
HoC. We will see this later, after we have discussed derived adjunctions.

Note that the total derived natural transformation is functorial. That is, if
τ : F −→ F ′ and τ ′ : F ′ −→ F ′′ are natural transformations between weak left
Quillen functors, then L(τ ′ ◦ τ) = (Lτ ′) ◦ (Lτ), and of course L(1F ) = 1LF . We
have a dual statement for natural transformations between right Quillen functors.
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Note, on the other hand, that the operation of taking the total derived functor
is clearly not functorial, since for example L(1C) = HoQ, the functor that takes X
to QX . Nonetheless, the total derived functor is almost functorial, in the following
precise sense.

Theorem 1.3.7. For every model category C, there is a natural isomorphism
α : L(1C) −→ 1Ho C. Also, for every pair of left Quillen functors F : C −→ D and
F ′ : D −→ E, there is a natural isomorphism m = mF ′F : LF ′ ◦ LF −→ L(F ′ ◦ F ).
These natural isomorphisms satisfy the following properties.

1. An associativity coherence diagram commutes. That is, if F : C −→ C′,
F ′ : C′ −→ C′′, and F ′′ : C′′ −→ C′′′ are left Quillen functors, then the fol-
lowing diagram commutes.

(LF ′′ ◦ LF ′) ◦ LF
mF ′′F ′◦LF
−−−−−−−→ L(F ′′ ◦ F ′) ◦ LF

m(F ′′◦F ′)F
−−−−−−−→ L((F ′′ ◦ F ′) ◦ F )

∥∥∥
∥∥∥

LF ′′ ◦ (LF ′ ◦ LF )
LF ′′◦mF ′F−−−−−−−→ LF ′′ ◦ L(F ′ ◦ F )

mF ′′(F ′◦F )
−−−−−−−→ L(F ′′ ◦ (F ′ ◦ F ))

2. A left unit coherence diagram commutes. That is, if F : C −→ D is a left
Quillen functor, then the following diagram commutes.

L1D ◦ LF
m

−−−−→ L(1D ◦ F )

α◦LF

y
∥∥∥

1Ho D ◦ LF LF

3. A right unit coherence diagram commutes. That is, if F : C −→ D is a left
Quillen functor, then the following diagram commutes.

LF ◦ L1C

m
−−−−→ L(F ◦ 1C)

LF◦α

y
∥∥∥

LF ◦ 1Ho C LF

Proof. We define α : L(1C) −→ 1Ho C to be Ho q, where q : QX −→ X is the
natural trivial fibration from the cofibrant replacement QX to X . We define mF ′F

to be the map

mF ′F : (LF ′)(LF )X = F ′QFQX
F ′qF QX
−−−−−→ F ′FQX = L(F ′F )X.

Then mF ′F is obviously natural on C, but since both the source and target of mF ′F

preserve weak equivalences, mF ′F is also natural on Ho C. Since F preserves cofi-
brant objects, qFQX : QFQX −→ FQX is a weak equivalence between cofibrant
objects. Thus mF ′F = F ′qFQX is still a weak equivalence, and hence an isomor-
phism in Ho C.

To show that the associativity coherence diagram commutes, we need only show
that

(F ′′F ′qFQX) ◦ (F ′′qF ′QFQX ) = (F ′′qF ′FQX) ◦ (F ′′QF ′qFQX )

as maps F ′′QF ′QFQX −→ F ′′F ′FQX . This follows from the naturality of q. The
left unit coherence diagram commutes by definition, as both maps are

qFQX : QFQX −→ FQX.
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To show that the right unit coherence diagram commutes, we must show that

FqQX = FQqX : FQQX −→ FQX.

This is not true in C itself, but it is true in HoC. Indeed, it suffices to show these two
maps are equal for cofibrant X , since every X is isomorphic in HoC to a cofibrant
object. The naturality of q implies that qX ◦ qQX = qX ◦ QqX : QQX −→ X . Of
course qX is a weak equivalence between cofibrant objects if X is cofibrant, so FqX
is also a weak equivalence. It follows that, in Ho C, we have FqQX = (FqX)−1 =
FQqX . Thus the right unit coherence diagram commutes for cofibrant X , and
hence for all X .

We would also like to claim that m, and not just each mF ′F , is natural. In
order to do this, we need to recall the obvious fact that one can compose natural
transformations horizontally as well as vertically.

Definition 1.3.8. Suppose σ : F −→ G is a natural transformation of functors
C −→ D, and τ : F ′ −→ G′ is a natural transformation of functors D −→ E. The
horizontal composition τ ∗ σ is the natural transformation F ′ ◦ F −→ G′ ◦G given
by (τ ∗ σ)X = τGX ◦ F ′σX = G′σX ◦ τFX .

Lemma 1.3.9. Suppose σ : F −→ G is a natural transformation of weak left
Quillen functors C −→ D, and τ : F ′ −→ G′ is a natural transformation of weak left
Quillen functors D −→ E. Let m be the composition isomorphism of Theorem 1.3.7.
Then the following diagram commutes.

LF ′ ◦ LF
m

−−−−→ L(F ′ ◦ F )

Lτ∗Lσ

y L(τ∗σ)

y

LG′ ◦ LG
m

−−−−→ L(G′ ◦G)

Proof. This is just a matter of unravelling the definitions. The map L(τ ∗σ)◦
m : F ′QFQX −→ G′GQX is the composite τGQX ◦ F ′σQX ◦ F ′qFQX . We can use
the naturality of q to rewrite this composite as τGQX ◦F ′qGQX ◦F ′QσQX . We can
then use the naturality of τ to rewrite this as G′qGQX ◦ τQGQX ◦ F

′QσQX , which
is the definition of m ◦ (Lτ ∗ Lσ).

Of course, there are versions of Theorem 1.3.7 and Lemma 1.3.9 for right Quillen
functors as well. We can summarize these results, in the language of the next
section, by saying that the homotopy category, total derived functor, and total
derived natural transformation define a pseudo-2-functor from the 2-category of
model categories, left (resp. right) Quillen functors, and natural transformations
to the 2-category of categories.

We would like to make the same claim for adjunctions, so we need to show that
the total derived functor preserves adjunctions.

Lemma 1.3.10. Suppose C and D are model categories and (F,U, ϕ) : C −→ D

is a Quillen adjunction. Then LF and RU are part of an adjunction L(F,U, ϕ) =
(LF,RU,Rϕ), which we call the derived adjunction.

Proof. The desired adjointness isomorphism Rϕ must be a natural isomor-
phism Rϕ : Ho D(FQX, Y ) −→ HoC(X,URY ). Note that HoD(FQX, Y ) is nat-
urally isomorphic to D(FQX,RY )/ ∼, and similarly HoC(X,URY ) is naturally
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isomorphic to C(QX,URY )/∼. Thus we only need verify that ϕ respects the ho-
motopy relation. So suppose A is cofibrant in C and B is fibrant in D. Suppose
f, g : FA −→ B are homotopic. Then there is a path object B ′ for B and a right
homotopy H : FA −→ B′ from f to g. Because U preserves products, fibrations,
and weak equivalences between fibrant objects, UB ′ is a path object for UB. Hence
ϕH : A −→ UB′ is a right homotopy from ϕf to ϕg. Conversely, suppose ϕf and
ϕg are homotopic. Then there is a cylinder object A′ for A and a left homo-
topy H : A′ −→ UB from ϕf to ϕg. Since F preserves coproducts, cofibrations,
and weak equivalences between cofibrant objects, FA′ is a cylinder object for FA.
Hence ϕ−1H : FA′ −→ B is a left homotopy from ϕ−1ϕf = f to g.

Example 1.3.11. Suppose I is a set and C is a model category. We have
seen in Example 1.3.2 that we have a Quillen adjunction C −→ CI , where CI is
given the product model structure. The left adjoint is the diagonal functor c and
the right adjoint is a product functor. We have (Lc)(X) = c(QX). Hence Lc
is naturally isomorphic to the diagonal functor c′ on Ho C, under the isomorphism
HoCI ∼= (Ho C)I . It follows that the total right derived functor of a product functor
on C is a product functor on Ho C. Similarly, the total left derived functor of a
coproduct functor on C is a coproduct functor on HoC.

Example 1.3.11 shows that the homotopy category of a model category has
all small coproducts and products, and thus has more structure than a random
category. We will see that this is only the tip of the iceberg in the rest of this book.

1.3.3. Quillen equivalences. Sometimes L(F,U, ϕ) is an adjoint equivalence
of categories even when (F,U, ϕ) is not. We now investigate this question.

Definition 1.3.12. A Quillen adjunction (F,U, ϕ) : C −→ D is called a Quillen
equivalence if and only if, for all cofibrant X in C and fibrant Y in D, a map
f : FX −→ Y is a weak equivalence in D if and only if ϕ(f) : X −→ UY is a weak
equivalence in C.

Proposition 1.3.13. Suppose (F,U, ϕ) : C −→ D is a Quillen adjunction. Then
the following are equivalent :

(a) (F,U, ϕ) is a Quillen equivalence.

(b) The composite X
η
−→ UFX

UrF X−−−−→ URFX is a weak equivalence for all cofi-

brant X, and the composite FQUX
FqUX
−−−−→ FQX

ε
−→ X is a weak equivalence

for all fibrant X.
(c) L(F,U, ϕ) is an adjoint equivalence of categories.

Proof. We first show that (a)⇒(b). If (F,U, ϕ) is a Quillen equivalence and
X is cofibrant, then ϕrFX : X −→ URFX is a weak equivalence, adjoint to the
weak equivalence rFX : FX −→ RFX . In terms of the unit η of ϕ, we have ϕrFX =
UrFX ◦ η. Similarly, if X is fibrant, ε ◦ FqUX = ϕ−1qUX is a weak equivalence
adjoint to qUX : QUX −→ UX .

Conversely, suppose (F,U, ϕ) satisfies (b). Given a weak equivalence f : FX −→

Y , where X is cofibrant and Y is fibrant, ϕf is the composite X
η
−→ URX

Uf
−−→ UY .
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We have a commutative diagram

X
η

−−−−→ UFX
Uf
−−−−→ UY

∥∥∥ UrF X

y UrY

y

X −−−−→ URFX
URf
−−−−→ URY

Since f is a weak equivalence, so is Rf . Since U preserves weak equivalences
between fibrant objects, URf is a weak equivalence. Thus the bottom horizontal
composite is a weak equivalence, as is the right vertical map. It follows that the
top horizontal composite ϕf is a weak equivalence. Similarly, if ϕf : X −→ UY is a
weak equivalence, then we have a commutative diagram

FQX
FQ(ϕf)
−−−−−→ FQUY −−−−→ Y

FqX

y FqUY

y
∥∥∥

FX
F (ϕf)
−−−−→ FUY

ε
−−−−→ Y

The bottom horizontal composite is f , and both the top horizontal composite and
the left vertical map are weak equivalences, so f is a weak equivalence.

To see that (b)⇔(c), note that the unit of Rϕ is the map X
q−1

X−−→ QX
UrF QX◦η
−−−−−−→

URFQX . Thus, by Theorem 1.2.10, the unit of Rϕ is an isomorphism if and only
if UrFQX ◦ η is a weak equivalence for all X . But this holds if and only if UrFX ◦ η
is a weak equivalence for all cofibrant X . The proof of this uses the fact that F
preserves weak equivalences between cofibrant objects, the fact that U preserves
weak equivalences between fibrant objects, and the commutative diagram

QX
η

−−−−→ UFQX
UrF QX
−−−−−→ URFQX

qX

y UFqX

y URFqX

y

X
η

−−−−→ UFX
UrX−−−−→ URFX

Dually, the counit of Rϕ is an isomorphism if and only if ε ◦ FqUX is a weak
equivalence for all fibrant X .

Proposition 1.3.13 has a couple of useful corollaries.

Corollary 1.3.14. Suppose (F,U, ϕ) and (F,U ′, ϕ′) are Quillen adjunctions
from C to D. Then (F,U, ϕ) is a Quillen equivalence if and only if (F,U ′, ϕ′) is
so. Dually, if (F ′, U, ϕ′′) is another Quillen adjunction, then (F,U, ϕ) is a Quillen
equivalence if and only if (F ′, U, ϕ′′) is so.

Proof. The adjunction (F,U, ϕ) is a Quillen equivalence if and only if the
derived adjunction (LF,RU,Rϕ) is an adjoint equivalence of categories. But this
will be true if and only if LF is an equivalence of categories, for then its adjoint
RU is automatically also an equivalence of categories. As is well known and easy to
prove, a functor G is an equivalence of categories if and only if it is full, faithful, and
essentially surjective on objects (i.e. if for every object Y in the codomain, there
is an object X in the domain and an isomorphism GX ∼= Y ). The dual statement
is similar.

Because of Corollary 1.3.14, we usually speak of a Quillen equivalence F , omit-
ting the rest of the adjunction.
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Corollary 1.3.15. Suppose F : C −→ D and G : D −→ E are left (resp. right)
Quillen functors. Then if two out of three of F , G, and GF are Quillen equivalences,
so is the third.

Proof. Recall that L(GF ) is naturally isomorphic to LG ◦ LF by Theo-
rem 1.3.7. In view of Proposition 1.3.13, it suffices to check that equivalences
of categories satisfy the two out of three property. We leave it to the reader to
check this well-known fact.

This corollary suggests that we should think of the category of model categories
as itself something like a model category, with the weak equivalences being the
Quillen equivalences. We do not know if it is possible to make this intuition rigorous.
Note, however, that a Quillen adjunction which is a retract of a Quillen equivalence
is itself a Quillen equivalence, as the intuition suggests. The easiest way to check
this is to use Theorem 1.4.3.

We now give the most useful criterion for checking when a given Quillen adjunc-
tion is a Quillen equivalence. Recall that a functor is said to reflect some property
of morphisms if, given a morphism f , if Ff has the property so does f .

Corollary 1.3.16. Suppose (F,U, ϕ) : C −→ D is a Quillen adjunction. The
following are equivalent :

(a) (F,U, ϕ) is a Quillen equivalence.
(b) F reflects weak equivalences between cofibrant objects and, for every fibrant

Y , the map FQUY −→ Y is a weak equivalence.
(c) U reflects weak equivalences between fibrant objects and, for every cofibrant

X, the map X −→ URFX is a weak equivalence.

Proof. Suppose first that F is a Quillen equivalence. We have already seen in
Proposition 1.3.13 that the map X −→ URFX is a weak equivalence for all cofibrant
X and that the map FQUY −→ Y is a weak equivalence for all fibrant Y . Now
suppose f −→ X −→ Y is a map between cofibrant objects such that Ff is a weak
equivalence. Then, since F preserves weak equivalences between cofibrant objects,
FQf is also a weak equivalence. Thus (LF )f is an isomorphism. Since LF is an
equivalence of categories, this implies that f is an isomorphism in the homotopy
category, and hence a weak equivalence. Thus F reflects weak equivalences between
cofibrant objects. The dual argument implies that U reflects weak equivalences
between fibrant objects. Thus (a) implies both (b) and (c).

To see that (b) implies (a), we will show that L(F,U, ϕ) is an equivalence of
categories. The counit map (LF )(RU)X −→ X is an isomorphism by hypothesis.
We must show that the unit map X −→ (RU)(LF )X is an isomorphism. But
(LF )X −→ (LF )(RU)(LF )X is inverse to the counit map of (LF )X , so is an
isomorphism. Since F reflects weak equivalences between cofibrant objects, this
implies that QX −→ QURFQX is a weak equivalence for all X . Since Q reflects
all weak equivalencs, this implies that X −→ URFQX = (RU)(LF )X is a weak
equivalence, as required. A similar proof shows that (c) implies (a).

As an example, consider the following proposition.

Proposition 1.3.17. Suppose F : C −→ D is a Quillen equivalence, and sup-
pose in addition that the terminal object ∗ of C is cofibrant and that F preserves
the terminal object. Then F∗ : C∗ −→ D∗ is a Quillen equivalence.
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Proof. Let U denote the right adjoint of F , and recall that U∗(X, v) =
(Ux,Uv). Since U reflects weak equivalences between fibrant objects, U∗ does
as well. We must check that, if (X, v) is cofibrant, the map (X, v) −→ U∗RF∗(X, v)
is a weak equivalence. Recall that (X, v) is cofibrant if and only if v : ∗ −→ X is a
cofibration: since ∗ is cofibrant, this implies in particular that X is cofibrant. Let
V denote the functor that forgets the basepoint. Then we must show that the map
X −→ V U∗RF∗X = UV RF∗(X, v) is a weak equivalence. The fibrant replacement
functor R on D∗ is defined to be the fibrant replacement functor on D together
with the induced basepoint (see Proposition 1.1.8), so UV RF∗(X, v) = URV F∗X .
Since F (∗) ∼= ∗, there is a natural isomorphism F∗(X, v) ∼= (FX,Fv). The result
follows.

This section has mostly been about when the total derived functor of a Quillen
functor is an equivalence of categories. We could also ask when the total derived
natural transformation is a natural isomorphism.

Lemma 1.3.18. Suppose τ : F −→ G is a natural transformation between left
(resp. right) Quillen functors. Then Lτ (Rτ) is a natural isomorphism if and only
if τX is a weak equivalence for all cofibrant (resp. fibrant) X.

Proof. Assume F and G are left Quillen functors. Then (Lτ)X = τQX , so Lτ
is a natural isomorphism if and only if τQX is a weak equivalence for all X . Since
F and G preserve weak equivalences between cofibrant objects, this is true if and
only if τX is a weak equivalence for all cofibrant X . We leave the dual statement
to the reader.

We think of natural transformations such that τX is a weak equivalence for all
cofibrant X as “2-weak equivalences”. They also satisfy the appropriate two out of
three property and are closed under retracts.

1.4. 2-categories and pseudo-2-functors

In this section, we give a summary of the basic language of 2-categories. Since
many of the theorems in this book assert that a certain correspondence is a pseudo-
2-functor between 2-categories, the language in this section is used throughout
the book. However, it is only language. The reader who is uninterested in the
language can skip this section and refer to it as needed. References for 2-categories
include [KS74] and [Gra74].

A 2-category will have objects, morphisms, and 2-morphisms, or morphisms
between morphisms. The basic example of a 2-category is the 2-category of cate-
gories. An object is a category, a morphism is a functor, and a 2-morphism is a
natural transformation. We use this example to discover and motivate the general
definition of a 2-category.

We first make a technical point. We follow the usual convention that the objects
of a category may form a proper class, but the morphisms between two given objects
form a set. This means that, in order to consider the 2-category of categories, we
must allow the objects of a 2-category to form a “superclass”, and the morphisms
between any two objects to form a class. Here a superclass is to a class as a class
is to a set. One might think that we could require the 2-morphisms between any
two morphisms to form a set, but there is an example of two functors such that the
natural transformations between them form a proper class. Hence we must allow
the 2-morphisms between any two morphisms to form a proper class as well. One
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could avoid all this by only considering the 2-category of all small categories, but
that would eliminate all model categories from consideration, so we do not do so.

Now, in the 2-category of categories, we can certainly compose functors. There
are two different ways to compose natural transformations, however. Given two
natural transformations σ : F −→ G and τ : G −→ H , we can form the vertical
composition τ ◦σ : F −→ H , where (τ ◦σ)X = τX ◦σX . The vertical composition is
associative, and there is an identity natural transformation 1F for each functor F .
The vertical composition makes functors from C to D into a category.

On the other hand, given natural transformations σ : F −→ F ′ : C −→ D and
τ : G −→ G′ : D −→ E, we can form the horizontal composition τ ∗ σ : G ◦ F −→
G′ ◦ F ′ : C −→ E defined in Definition 1.3.8. Horizontal composition is associative
and allows us to form a category whose objects are categories and whose morphisms
are natural transformations. The identity at C is the identity natural transformation
of the identity functor.

With this example in mind, we can now give the rather long definition of a
2-category.

Definition 1.4.1. A 2-category K consists of a superclass K0 called the ob-
jects of K, a superclass K1 called the morphisms of K, a superclass K2 called the
2-morphisms of K, two maps K0 −→ K1 and K1 −→ K2 each called the identity and
denoted 1, two maps K1 −→ K0 and K2 −→ K1 called domains and denoted d, two
maps K1 −→ K0 and K2 −→ K1 called codomains and denoted c, and three com-
position maps ◦ : K1 ×K0 K1 −→ K1, vertical composition ◦ : K2 ×K1 K2 −→ K2,
and horizontal composition ∗ : K2 ×K0 K2 −→ K2 satisfying the properties below.
The pullbacks used to define the compositions ◦ are taken over the domain and
codomain maps, and the pullback used to define ∗ is taken over the composition d2

of the domain maps and the composition c2 of the codomain maps. The properties
these structures must satisfy are the following, where we use roman capital letters
to denote objects of K, roman lower-case letters to denote morphisms of K, and
lower-case greek letters to denote 2-morphisms of K.

1. We have d2 = dc and c2 = cd as maps K2 −→ K0.
2. We have d1A = c1A = A for all objects A, and d1f = c1f = f for all

morphisms f .
3. If dg = cf so the composition is defined, then d(g◦f) = df and c(g◦f) = cg.

Similarly, if dτ = cσ so the vertical composition is defined, then d(τ◦σ) = dσ,
and c(τ ◦σ) = cτ . Also, if d2τ = c2σ so the horizontal composition is defined,
we have d(τ ∗ σ) = dτ ◦ dσ and c(τ ∗ σ) = cτ ◦ cσ.

4. Composition is unital. That is, we have 1cf ◦ f = f = f ◦ 1df for all 1-
morphisms f . Similarly, we have 1cτ ◦ τ = τ = τ ◦ 1dτ for all 2-morphisms
τ . And we have 11ccτ

∗ τ = τ ∗ 11ddτ
for all 2-morphisms τ .

5. Composition is associative. That is, if dg = cf and dh = cg, then h◦(g◦f) =
(h ◦ g) ◦ f . Similarly, if dσ = cρ and dτ = cσ, then τ ◦ (σ ◦ ρ) = (τ ◦ σ) ◦ ρ.
Finally, if d2σ = c2ρ and d2τ = c2σ, then τ ∗ (σ ∗ ρ) = (τ ∗ σ) ∗ ρ.

6. The two different compositions of 2-morphisms are compatible. That is, if
we have four 2-morphisms τ ′, σ′, τ and σ such that dτ = cσ, dτ ′ = cσ′, and
d2τ ′ = c2τ , then (τ ′ ◦ σ′) ∗ (τ ◦ σ) = (τ ′ ∗ τ) ◦ (σ′ ∗ σ).

7. Given two objects A and B, the collection of all morphisms f with df = A
and cf = B is a class. Similarly, given two morphisms f and g, the collection
of all 2-morphisms τ such that dτ = f and cτ = g is a class.
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Of course, if f is a morphism in a 2-category such that df = A and cf = B,
we write f : A −→ B. And if τ is a 2-morphism such that dτ = f and cτ = g,
we write τ : f −→ g. An invertible 2-morphism is called a 2-isomorphism, and
an invertible morphism is called an isomorphism. We have an obvious notion of
a 2-functor between 2-categories as well, which is simply a correspondence that
preserves identities, domains, codomains, and all compositions.

We leave to the reader the easy check that categories, functors, and natural
transformations do form a 2-category. An even more important example for us
is the 2-category of categories, adjunctions, and natural transformations. Here
an adjunction is a triple (F,U, ϕ) as in Definition 1.3.1, and a 2-morphism from
(F,U, ϕ) to (F ′, U ′, ϕ′) is just a natural transformation F −→ F ′. We leave it
the reader to verify that this does form a 2-category, which we denote by Catad.
Similarly, we get a 2-category of model categories, Quillen adjunctions, and natural
transformations, which we denote by Mod.

Examples of 2-functors include the obvious forgetful 2-functors from Mod to
Catad and from Catad to the 2-category of categories and functors. A more inter-
esting example is the contravariant duality 2-functor on Catad and Mod. Here we
defineDC = Cop, given the opposite model structure if we are in Mod. Given an ad-
junction (F,U, ϕ), we define D(F,U, ϕ) = (U, F, ϕ−1). Given adjunctions (F,U, ϕ)
and (F ′, U ′, ϕ′) and a natural transformation τ : F −→ F ′, we define Dτ : U ′ −→ U
as the composite

U ′X
ηU′X−−−→ UFU ′X

UτU′X−−−−→ UF ′U ′X
Uε′X−−−→ UX.

where η is the unit of ϕ and ε′ is the counit of ϕ′. Note that τ and Dτ are
compatible, in the sense that the following diagram commutes.

D(F ′A,B)
τ∗

A−−−−→ D(FA,B)

ϕ′

y ϕ

y

C(A,U ′B)
((Dτ)B)∗
−−−−−−→ C(A,UB)

Furthermore, the commutativity of this diagram characterizes Dτ . This defines
contravariant 2-functors D : Catad −→ Catad and D : Mod −→Mod such that D2

is the identity 2-functor. Note in particular that τ is a natural isomorphism if and
only if Dτ is.

One of the guiding principles of category theory is that, in a category, the
natural equivalence relation on objects is not equality, but isomorphism. Similarly,
in a 2-category, the natural equivalence relation on morphisms is not equality, but
isomorphism. That is, two morphisms f, g : A −→ B are isomorphic if there is an
invertible 2-morphism τ : f −→ g. This induces an equivalence relation on objects,
called equivalence. Two objects A and B are equivalent if there are morphisms
f : A −→ B and g : B −→ A such that the compositions g◦f and f ◦g are isomorphic
(not equal) to the respective identities. Of course, in the 2-category of categories,
this is just the usual notion of equivalence of categories.

If we apply this principle to functors, we are led to the following definition.

Definition 1.4.2. Suppose K and L are 2-categories. A pseudo-2-functor
F : K −→ L is three maps of superclasses K0 −→ L0, K1 −→ L1, and K2 −→ L2

all denoted F , together with 2-isomorphisms α : F (1A) −→ 1FA for all objects A of
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K and 2-isomorphisms mgf : Fg ◦ Ff −→ F (g ◦ f) for all (ordered) pairs (g, f) of
morphisms of K such that gf makes sense, satisfying the following properties.

1. F preserves domains and codomains. That is, dF (f) = F (df) and cF (f) =
F (cf) for all morphisms f of K. Similarly, dF (τ) = F (dτ) and cF (τ) =
F (cτ) for all 2-morphisms of K.

2. F is functorial with respect to vertical composition. That is, F (1f ) = 1Ff
for all morphisms f of K, and F (τ ◦ σ) = F (τ) ◦ F (σ) for all ordered pairs
(τ, σ) of 2-morphisms of K such that τ ◦ σ makes sense.

3. An associativity coherence diagram commutes. That is, for all ordered
triples (h, g, f) of morphisms of K such that h ◦ g ◦ f makes sense, the
following diagram commutes.

(Fh ◦ Fg) ◦ Ff
mhg∗1F f
−−−−−−→ F (h ◦ g) ◦ Ff

m(h◦g)f
−−−−−→ F ((h ◦ g) ◦ f)

∥∥∥
∥∥∥

Fh ◦ (Fg ◦ Ff)
1F h∗mgf
−−−−−−→ Fh ◦ F (g ◦ f)

mh(g◦f)
−−−−−→ F (h ◦ (g ◦ f))

4. A left unit coherence diagram commutes. That is, for all morphisms f of
K, the following diagram commutes

F1cf ◦ Ff
m

−−−−→ F (1cf ◦ f)

α∗1F f

y
∥∥∥

1F (cf) ◦ Ff Ff

5. A right unit coherence diagram commutes. That is, for all morphisms f of
K, the following diagram commutes

Ff ◦ F1df
m

−−−−→ F (f ◦ 1df )

1F f∗α

y
∥∥∥

Ff ◦ 1F (df) Ff

6. m is natural with respect to horizontal composition. That is, if σ : f −→ f ′

and τ : g −→ g′ are 2-morphisms of K such that g ◦ f makes sense, then the
following diagram commutes.

Fg ◦ Ff
mgf
−−−−→ F (g ◦ f)

Fτ∗Fσ

y F (τ∗σ)

y

Fg′ ◦ Ff ′
mg′f′

−−−−→ F (g′ ◦ f ′)

Note that pseudo-2-functors need not preserve isomorphisms, but they do pre-
serve equivalences. Similarly, if we apply a pseudo-2-functor to a commutative
diagram of morphisms, the resulting diagram need no longer be commutative; but
it is commutative up to natural isomorphism.

Then we can restate Theorem 1.3.7 and Lemma 1.3.9 in the following way.

Theorem 1.4.3. The homotopy category, derived adjunction, and derived nat-
ural transformation define a pseudo-2-functor Ho : Mod −→ Catad from the 2-
category of model categories and Quillen adjunctions to the 2-category of categories
and adjunctions. Furthermore, Ho commutes with the duality 2-functor, in the
sense that D ◦Ho = Ho ◦D.
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We leave the proof of the statement about duality to the reader. In particular,
one must check that D(Lτ) = R(Dτ) for a natural transformation τ of left Quillen
functors. To check this, one uses the diagram that characterizes D(Lτ).

Corollary 1.4.4. (a) A Quillen adjunction (F,U, ϕ) is a Quillen equiva-
lence if and only if D(F,U, ϕ) is so.

(b) A natural transformation τ : F −→ F ′ between left Quillen functors is a weak
equivalence for all cofibrant X if and only if (Dτ)Y is a weak equivalence
for all fibrant Y .

Proof. For part (a), use the characterization of Quillen equivalences as Quillen
adjunctions (F,U, ϕ) such that Ho(F,U, ϕ) is an equivalence of categories, and
Theorem 1.4.3. For part (b), use the analogous characterization in Lemma 1.3.18.

Another example of a pseudo-2-functor on Mod is the correspondence that
takes a model category C to C∗ (Proposition 1.1.8), and a Quillen adjunction
(F,U, ϕ) to the Quillen adjunction (F∗, U∗, ϕ∗) (Proposition 1.3.5). This is not
a 2-functor due to the choice of pushouts necessary to define F∗, but it is a pseudo-
2-functor since any two choices of pushout are uniquely isomorphic.



CHAPTER 2

Examples

In this chapter we discuss four different examples of model categories: modules
over a Frobenius ring, chain complexes of modules over a ring, topological spaces,
and cochain complexes of comodules over a Hopf algebra. We defer the more
involved discussion of the central example of simplicial sets to the next chapter.
None of these examples is necessary for the theory that appears in later chapters,
except that we need the model structure on (compactly generated) topological
spaces in order to prove that simplicial sets form a model category. However, we
will frequently use these categories as examples.

We use the method of cofibrantly generated model categories, which we discuss
in Section 2.1. We have chosen to use arbitrary transfinite compositions in our study
of cofibrantly generated model categories, though in fact we could get away with
countable compositions in all the examples we consider. The reason we have done
so is primarily one of taste: it seems artificial to restrict oneself to categories where
countable composition will suffice. Furthermore, the localization process discussed
in [Hir97] will almost always require transfinite compositions. This is already
clear in [Bou79]. In practice, using transfinite compositions just means replacing
induction arguments with arguments using Zorn’s lemma. This is a simple enough
switch that we feel no qualms in asking the reader to make it.

Our treatment of cofibrantly generated model categories is based on [Hir97]
and [DHK]. The ideas behind cofibrantly generated model categories are already
apparent in [Qui67], and were expanded in [GZ67]. We will use the notion of
cofibrantly generated model categories throughout the rest of the book.

The simplest non-trivial example of a model category is probably the category
of modules over a Frobenius ring. We discuss that example first. It does not seem
to have been described before. Its homotopy category, in case the Frobenius ring
is the group ring of a finite group, has been studied a great deal recently by group
representation theorists. See for example [BCR96] and [Ric]. Next, we consider
chain complexes of modules over an arbitrary ring, in Section 2.3. Most discussions
of this example, as in [Qui67] and in [DS95], restrict attention to chain complexes
concentrated in nonnegative degrees. This again seems like an artificial restriction,
and we do not make it.

We then discuss the example of topological spaces in Section 2.4. The major
difference between our treatment and the ones in [Qui67], [DS95], and [GJ97] is
that we give complete proofs of results that are generally left to the reader. We find
these results quite tricky to prove, so we hope that the reader will find our proofs
valuable.

We conclude the chapter with Section 2.5, where we discuss chain complexes
of comodules over a Hopf algebra. The homotopy category of this model category
is the stable homotopy category discussed in [HPS97, Section 9.5]. So far as the

27
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author is aware, this model category has never been studied before. The main
difference between it and chain complexes of modules over a ring is that the weak
equivalences are homotopy isomorphisms, not homology isomorphisms.

2.1. Cofibrantly generated model categories

It tends to be quite difficult to prove that a category admits a model structure.
The axioms are always hard to check. This section is devoted to minimizing the
things we need to check. We have to do this in some form before constructing any
interesting examples, unfortunately. This section will require the reader to fight
through some thickets of abstraction. It may help the less experienced reader to
assume that all ordinal and cardinal numbers are either finite or ∞ = ℵ0, the first
infinite ordinal.

The author learned the results in this section from [DHK] and [Hir97], which
also contain other results about this material which the reader may find useful.

The main tool in this section is the small object argument, which tells us how
to construct functorial factorizations in categories. In order to develop this tool,
we will need some results about infinite compositions in categories. This in turn
will require some basic set theory, which we now begin with.

2.1.1. Ordinals, cardinals, and transfinite compositions. We require of
the reader some basic familiarity with ordinals, cardinals, and transfinite induction.
Recall that an ordinal is the well-ordered set of all smaller ordinals. Every ordinal
λ has a successor ordinal λ + 1. We will often think of an ordinal as a category
where there is a unique map from α to β if and only if α ≤ β.

We can use ordinals to define the notion of transfinite composition.

Definition 2.1.1. Suppose C is a category with all small colimits, and λ is an
ordinal. A λ-sequence in C is a colimit-preserving functor X : λ −→ C, commonly
written as

X0 −→ X1 −→ . . . −→ Xβ −→ . . . .

Since X preserves colimits, for all limit ordinals γ < λ, the induced map

colimβ<γ Xβ −→ Xγ

is an isomorphism. We refer to the map X0 −→ colimβ<λXβ as the composition
of the λ-sequence, though actually the composition is not unique, but only unique
up to isomorphism under X , since the colimit is not unique. If D is a collection of
morphisms of C and every map Xβ −→ Xβ+1 for β + 1 < λ is in D, we refer to the
composition X0 −→ colimβ<λXβ as a transfinite composition of maps of D.

Of course, if λ = ℵ0, a λ-sequence is just an ordinary sequence.
Our next goal is to define what it means for an object to be small. Essentially

an object is small if a map from it to a long enough composition factors through
some stage in the composition. To make this precise, we need to remind the reader
of some facts about cardinals. Given a set A, define the cardinality of A, |A|, to be
the smallest ordinal for which there is a bijection |A| −→ A. A cardinal is an ordinal
κ such that κ = |κ|.

Definition 2.1.2. Let γ be a cardinal. An ordinal α is γ-filtered if it is a limit
ordinal and, if A ⊆ α and |A| ≤ γ, then supA < α.
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An ordinal λ is γ-filtered if and only if the cofinality of λ is greater than
γ [Jec78, p. 26]. Note that, if γ is finite, a γ-filtered ordinal is just a limit ordinal.
Given an infinite cardinal γ, the smallest γ-filtered ordinal is the first cardinal γ1

larger than γ. In general, any successor cardinal larger than an infinite cardinal γ
is γ-filtered, where a successor cardinal is the first cardinal larger than some other
cardinal. But there are also non-cardinal ordinals which are γ-filtered, such as 2γ1.

Now we define a small object.

Definition 2.1.3. Suppose C is a category with all small colimits, D is a col-
lection of morphisms of C, A is an object of C and κ is a cardinal. We say that A
is κ-small relative to D if, for all κ-filtered ordinals λ and all λ-sequences

X0 −→ X1 −→ . . . −→ Xβ −→ . . .

such that each map Xβ −→ Xβ+1 is in D for β + 1 < λ, the map of sets

colimβ<λ C(A,Xβ) −→ C(A, colimβ<λXβ)

is an isomorphism. We say that A is small relative to D if it is κ-small relative to
D for some κ. We say that A is small if it is small relative to C itself.

Note that, if κ < κ′ and A is κ-small relative to D, then A is also κ′-small
relative to D, since every κ′-filtered ordinal is κ-filtered.

The simplest case of Definition 2.1.3 is when the cardinal κ is finite.

Definition 2.1.4. Suppose C is a category with all small colimits, D is a col-
lection of morphisms of C, and A is an object of C. We say that A is finite relative
to D if A is κ-small relative to D for a finite cardinal κ. We say A is finite if it
is finite relative to C itself. In this case, maps from A commute with colimits of
arbitrary λ-sequences, as long as λ is a limit ordinal.

Example 2.1.5. Every set is small. Indeed, if A is a set, we claim that A is
|A|-small. To see this, suppose λ is a |A|-filtered ordinal, and X is a λ-sequence of

sets. Given a map A
f
−→ colimβ<λXβ , we find for each a ∈ A an index βa such that

f(a) is in the image of Xβa
. Then we let γ be the supremum of the βa. Because

λ is |A|-filtered, γ < λ, and the map f will factor through a map g : A −→ Xγ as
required. A similar argument shows that if two maps A −→ Xβ and A −→ Xγ are
equal in the colimit, they must be equal in some stage of the colimit. Note that
a set is finite in the category of sets if and only if it is a finite set, whence the
terminology.

Example 2.1.6. If R is a ring, every R-module is small. Indeed, suppose A is
an R-module. Let κ = |A|(|A| + |R|). Let λ be a κ-filtered ordinal, and let X be
a λ-sequence of R-modules. By Example 2.1.5, the map colimR-mod(A,Xβ) −→
R-mod(A, colimXβ) is injective, and any map f : A −→ colimXβ factors as a map
of sets through a map g : A −→ Xα for some α < λ. The map g may not be an R-
module map, of course. Nevertheless, for each pair (x, y) ∈ A×A, there is a β(x,y)

such that g(x+ y) = g(x) + g(y) in Xβ(x,y)
. Similarly, for each pair (r, x) ∈ R×X ,

there is a β(r,x) such that g(rx) = rg(x) in Xβ(r,x)
. Let γ be the supremum of all

this ordinals. Then γ < λ, and the map g defines a factorization of f through an
R-module map A −→ Xγ , as required. Note that finitely presented R-modules are
finite.
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2.1.2. Relative I-cell complexes and the small object argument. The
main advantage of knowing that certain objects are small is that such knowledge
allows us to construct functorial factorizations. We begin with some preliminary
definitions.

Definition 2.1.7. Let I be a class of maps in a category C.

1. A map is I-injective if it has the right lifting property with respect to every
map in I . The class of I-injective maps is denoted I-inj.

2. A map is I-projective if it has the left lifting property with respect to every
map in I . The class of I-projective maps is denoted I-proj.

3. A map is an I-cofibration if it has the left lifting property with respect to
every I-injective map. The class of I-cofibrations is the class (I-inj)-proj
and is denoted I-cof.

4. A map is an I-fibration if it has the right lifting property with respect to
every I-projective map. The class of I-fibrations is the class (I-proj)-inj and
is denoted I-fib.

If C is a model category, and I is the class of cofibrations, then I-inj is the class
of trivial fibrations, and I-cof = I . Dually, if I is the class of fibrations, then I-proj
is the class of trivial cofibrations, and I-fib = I .

Note that I ⊆ I-cof and I ⊆ I-fib. Also, we have (I-cof)-inj = I-inj and
(I-fib)-proj = I-proj. Furthermore, if I ⊆ J , then I-inj ⊇ J-inj and I-proj ⊇
J-proj. Thus I-cof ⊆ J-cof and I-fib ⊆ J-fib.

The following lemma is often useful.

Lemma 2.1.8. Suppose (F,Uϕ) : C −→ D is an adjunction, I is a class of maps
in C, and J is a class of maps in D. Then

(a) U(FI-inj) ⊆ I-inj.
(b) F (I-cof) ⊆ FI-cof.
(c) F (UJ-proj) ⊆ J-proj.
(d) U(J-fib) ⊆ UJ-fib.

Proof. For part (a), suppose g ∈ FI-inj, and f ∈ I . Then g has the right
lifting property with respect to Ff , and so, by adjointness, Ug has the right lifting
property with respect to f . Thus Ug ∈ I-inj, as required. For part (b), suppose
f ∈ I-cof and g ∈ FI-inj. Then, by part (a), Ug ∈ I-inj, and so f has the left
lifting property with respect to Ug. Adjointness implies that Ff has the left lifting
property with respect to g, and so Ff ∈ (FI-inj)-proj = FI-cof. Parts (c) and (d)
are dual.

In general, the maps of I-cof may have little to do with I . We single out a
certain subclass of I-cof.

Definition 2.1.9. Let I be a set of maps in a category C containing all small
colimits. A relative I-cell complex is a transfinite composition of pushouts of el-
ements of I . That is, if f : A −→ B is a relative I-cell complex, then there is an
ordinal λ and a λ-sequence X : λ −→ C such that f is the composition of X and
such that, for each β such that β + 1 < λ, there is a pushout square

Cβ −−−−→ Xβ

gβ

y
y

Dβ −−−−→ Xβ+1
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such that gβ ∈ I . We denote the collection of relative I-cell complexes by I-cell. We
say that A ∈ C is an I-cell complex if the map 0 −→ A is a relative I-cell complex.

Note that the identity map at A is the transfinite composition of the trivial
1-sequence A, so identity maps are relative I-cell complexes. In fact, if f : A −→ B
is an isomorphism, then f is also (another choice for) the composition of the 1-
sequence A, so f is a relative I-cell complex.

Lemma 2.1.10. Suppose I is a class of maps in a category C with all small
colimits. Then I-cell ⊆ I-cof.

Proof. It suffices to show that I-cof is closed under transfinite compositions
and pushouts. Since I-cof is defined by a lifting property, this is straightforward.

We need some basic results about relative I-cell complexes. We begin with the
following technical lemma.

Lemma 2.1.11. Suppose λ is an ordinal and X : λ −→ C is a λ-sequence such
that each map Xβ −→ Xβ+1 is either a pushout of a map of I or an isomorphism.
Then the transfinite composition of X is a relative I-cell complex.

Proof. Define an equivalence relation ∼ on λ as follows. If α ≤ β, define
α ∼ β if, for all γ such that α ≤ γ < β, the map Xγ −→ Xγ+1 is an isomorphism.
Then each equivalence class [α] under ∼ is a closed interval [α′, α′′] of λ, and
one can easily check that if α ≤ β and α ∼ β then the map Xα −→ Xβ is an
isomorphism. The set of equivalence classes is itself a well-ordered set, and so is
isomorphic to a unique ordinal µ. The functor X descends to a functor Y : µ −→ C,
where Y[α] = Xα′ . Each map Yβ −→ Yβ+1 is a pushout of a map of I . Once can
check that Y is a µ-sequence, since if [β] is a limit ordinal of µ, then β ′ must be
a limit ordinal of λ. Since the transfinite composition of Y is isomorphic to the
transfinite composition of X , the proof is complete.

Lemma 2.1.12. Suppose C is a category with all small colimits, and I is a set
of maps of C. Then I-cell is closed under transfinite compositions.

Proof. Suppose X : λ −→ C is a λ-sequence of relative I-cell complexes, so
that each map Xβ −→ Xβ+1 is a relative I-cell complex. Then Xβ −→ Xβ+1 is the
composition of a λ-sequence Y : γβ −→ C of pushouts of maps of I . Consider the set
S of all pairs of ordinals (β, γ) such that β < λ and γ < γβ . Put a total order on
S by defining (β, γ) < (β′, γ′) if β < β′ or if β = β′ and γ < γ′. Then S becomes a
well-ordered set, so is isomorphic to a unique ordinal µ. We therefore get a functor
Z : µ −→ C, which one can readily verify is a µ-sequence. Each map Zα −→ Zα+1 is
either one of the maps Yγ −→ Yγ+1 or else is an isomorphism. Since a composition
of X is also a composition of Z, Lemma 2.1.11 implies that a composition of X is
a relative I-cell complex.

Another useful property of relative I-cell complexes is that we can take the
pushout over coproducts of maps of I rather than just maps of I .

Lemma 2.1.13. Suppose C is a category with all small colimits, and I is a set
of maps of C. Then any pushout of coproducts of maps of I is in I-cell.
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Proof. Suppose K is a set and gk : Ck −→ Dk is a map of I for all k in K.
Suppose f is the pushout in the diagram∐

Ck −−−−→ X

�
gk

y f

y
∐
Dk −−−−→ Y

We must show that f is a relative I-cell complex. To do so, we may as well assume
that K is an ordinal λ, since every set is isomorphic to an ordinal. We then form
a λ-sequence by letting X0 = X , by letting Xβ+1 be the pushout Xβ qCβ

Dβ over
gβ, and by letting Xβ = colimα<β Xα for limit ordinals β. One can easily check
that the transfinite composition X −→ Xλ of this λ-sequence is isomorphic to the
map f , and hence that f is a relative I-cell complex.

It is also easily checked that a pushout of a relative I-cell complex is a relative
I-cell complex, though we do not need this result.

The reason for considering the theory of transfinite compositions and relative
I-cell complexes is the small object argument, which we now present.

Theorem 2.1.14 (The small object argument). Suppose C is a category con-
taining all small colimits, and I is a set of maps in C. Suppose the domains of the
maps of I are small relative to I-cell. Then there is a functorial factorization (γ, δ)
on C such that, for all morphisms f in C, the map γ(f) is in I-cell and the map
δ(f) is in I-inj.

Proof. Choose a cardinal κ such that every domain of I is κ-small relative
to I-cell, and let λ be a κ-filtered ordinal. Given f : X −→ Y , we will define a

functorial λ-sequence Zf : λ −→ C such that Zf0 = X and a natural transformation

Zf
ρf

−→ Y factoring f . Each map Zfβ −→ Zfβ+1 will be a pushout of a coproduct

of maps of I . Then we will define γf to be the composition of Zf , and δf to be
the map Ef = colimZf −→ Y induced by ρf . Of course, γ and δ will then also
depend on a choice of colimit functor as well. It follows from Lemma 2.1.13 and
Lemma 2.1.12 that γf is a relative I-cell complex.

We will define Zf and ρf : Zf −→ Y by transfinite induction, beginning with

Zf0 = X and ρf0 = f . If we have defined Zfα and ρfα for all α < β for some limit

ordinal β, define Zfβ = colimα<β Z
f
α, and define ρfβ to be the map induced by the

ρfα. Having defined Zfβ and ρfβ , we define Zfβ+1 and ρfβ+1 as follows. Let S be the
set of all commutative squares

A −−−−→ Zfβ

g

y ρ
f
β

y

B −−−−→ Y

where g ∈ I . For s ∈ S, let gs : As −→ Bs denote the corresponding map of I .

Define Zfβ+1 to be the pushout in the diagram
∐
s∈S As −−−−→ Zfβ

�
gs

y
y

∐
s∈S Bs −−−−→ Zfβ+1
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Define ρfβ+1 to be the map induced by ρfβ .

It remains to show that δf = colim ρfβ : Ef = colimZfβ −→ Y has the right
lifting property with respect to I . To see this, suppose we have a commutative
square

A
h

−−−−→ Ef

g

y δf

y

B
k

−−−−→ Y

where g is a map of I . Since the domains of the maps of I are κ-small relative

to I-cell, there is a β < λ such that h is the composite A
hβ
−→ Zfβ −→ Ef . By

construction, there is a map B
kβ
−→ Zfβ+1 such that kβg = ihβ and k = ρβ+1kβ ,

where i is the map Zfβ −→ Zfβ+1. The composition B
kβ
−→ Zfβ+1 −→ Ef is the required

lift in our diagram.

Corollary 2.1.15. Suppose I is a set of maps in a category C with all small
colimits. Suppose as well that the domains of I are small relative to I-cell. Then
given f : A −→ B in I-cof, there is a g : A −→ C in I-cell such that f is a retract of
g by a map which fixes A.

Proof. The small object argument gives us a factorization f = pg, where
g ∈ I-cell and p ∈ I-inj. Since f is in I-cof, f has the left lifting property with
respect to p, and so the retract argument 1.1.9 completes the proof.

Corollary 2.1.15 then implies the following result, which is due to Hirschhorn.

Proposition 2.1.16. Suppose I is a set of maps in a category C which has all
small colimits. Suppose the domains of I are small relative to I-cell, and A is some
object which is small relative to I-cell. Then A is in fact small relative to I-cof.

Proof. Suppose A is κ-small relative to I-cell. Suppose λ is a κ-filtered ordinal
and X : λ −→ C is a λ-sequence of I-cofibrations. We construct a λ-sequence Y of
relative I-cell complexes, and natural transformations i : X −→ Y and r : Y −→ X
with ri = 1 by transfinite induction. Define Y0 = X0, and i0 and r0 to be the
identity map. Having defined Yβ , iβ, and rβ , apply the functorial factorization of

Theorem 2.1.14 to the composite Yβ
rβ
−→ Xβ

fβ
−→ Xβ+1 to obtain gβ : Yβ −→ Yβ+1

and rβ+1 : Yβ+1 −→ Xβ+1, with gβ ∈ I-cell, rβ+1 ∈ I-inj, and rβ+1gβ = fβrβ . Then
we have a commutative square

Xβ

gβiβ
−−−−→ Yβ+1

fβ

y
yrβ+1

Xβ+1 Xβ+1

Since fβ ∈ I-cof and rβ+1 ∈ I-inj, there is a lift iβ+1 : Xβ+1 −→ Yβ+1 in this
diagram. For limit ordinals β, we define Yβ = colimα<β , iβ = colimα<β iα, and
rβ = colimα<β rα.

Now once can easily check that the map colimC(W,Xβ) −→ C(W, colimXβ) is
a retract of the corresponding map for Y . Since W is κ-small relative to I-cell, the
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corresponding map for Y is an isomorphism. Therefore the map for X must also
be an isomorphism, and so W is κ-small relative to I-cof as well.

2.1.3. Cofibrantly generated model categories. The small object argu-
ment gives us the tool we need to construct model categories. We begin by defining
a cofibrantly generated model category, following [DHK].

Definition 2.1.17. Suppose C is a model category. We say that C is cofibrantly
generated if there are sets I and J of maps such that:

1. The domains of the maps of I are small relative to I-cell;
2. The domains of the maps of J are small relative to J-cell;
3. The class of fibrations is J-inj; and
4. The class of trivial fibrations is I-inj.

We refer to I as the set of generating cofibrations, and to J as the set of generating
trivial cofibrations. A cofibrantly generated model category C is called finitely gen-
erated if we can choose the sets I and J above so that the domains and codomains
of I and J are finite relative to I-cell.

Finitely generated model categories will be important in Section 7.4, but cofi-
brantly generated model categories will suffice until then.

The following proposition sums up the basic properties of cofibrantly generated
model categories. Its proof follows from Corollary 2.1.15 and Proposition 2.1.16.

Proposition 2.1.18. Suppose C is a cofibrantly generated model category, with
generating cofibrations I and generating trivial cofibrations J .

(a) The cofibrations form the class I-cof.
(b) Every cofibration is a retract of a relative I-cell complex.
(c) The domains of I are small relative to the cofibrations.
(d) The trivial cofibrations form the class J-cof.
(e) Every trivial cofibration is a retract of a relative J-cell complex.
(f) The domains of J are small relative to the trivial cofibrations.

If C is finitely generated, then the domains and codomains of I and J are finite
relative to the cofibrations.

Most of the model categories in common use are cofibrantly generated, and
are often finitely generated. One (possible) exception is the category of chain com-
plexes of abelian groups, where the weak equivalences are chain homotopy equiva-
lences. Similar model categories, such as the Hurewicz model category of topolog-
ical spaces [Str72], where the weak equivalences are the homotopy equivalences,
are also probably not cofibrantly generated.

Notice that the functorial factorizations in a cofibrantly generated model cat-
egory need not be given by the small object argument, though those factorizations
are always available.

Note that we could define fibrantly generated model categories as well. In-
deed, a model category is fibrantly generated if and only if its dual is cofibrantly
generated. However, most of the categories one comes across in practice have no
“cosmall” objects, so this definition is much less useful. For example, in the cat-
egory of sets the only cosmall objects are the empty set and the one-point set.
Indeed, the two-point set is a retract of every other set, so it suffices to show the
two-point set is not cosmall. If the two-point set were cosmall, then every map from
a sufficiently large product to the two-point set would factor through a projection
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map of the product. But take the map which assigns to every point in the diagonal
one of the two points and to every other point in the product the other. Then this
map does not factor through any projection.

When we need to consider the 2-category of cofibrantly generated model cate-
gories, we will just use the full sub-2-category of the category of model categories.
That is, we make no requirement that Quillen functors preserve the generators.

We now show how to construct cofibrantly generated model categories.

Theorem 2.1.19. Suppose C is a category with all small colimits and limits.
Suppose W is a subcategory of C, and I and J are sets of maps of C. Then there
is a cofibrantly generated model structure on C with I as the set of generating
cofibrations, J as the set of generating trivial cofibrations, and W as the subcategory
of weak equivalences if and only if the following conditions are satisfied.

1. The subcategory W has the two out of three property and is closed under
retracts.

2. The domains of I are small relative to I-cell.
3. The domains of J are small relative to J-cell.
4. J-cell ⊆W ∩ I-cof.
5. I-inj ⊆W ∩ J-inj.
6. Either W ∩ I-cof ⊆ J-cof or W ∩ J-inj ⊆ I-inj.

Proof. These conditions certainly hold in a cofibrantly generated model cat-
egory. Conversely, suppose we have a category C with a subcategory W and sets
of maps I and J satisfying the hypotheses of the theorem. Define a map to be a
fibration if and only if it is in J-inj, and define a map to be a cofibration if and
only if it is in I-cof. Then certainly the cofibrations and fibrations are closed under
retracts. It follows from the hypotheses that every map in J-cell is a trivial cofi-
bration, and hence that every map in J-cof is a trivial cofibration. It also follows
that every map in I-inj is a trivial fibration.

Define functorial factorizations f = β(f)◦α(f) = δ(f)◦γ(f) by using the small
object argument on I and J respectively (choosing colimit functors and appropriate
cardinals). Thus α(f) is in I-cell, and is hence a cofibration, β(f) is in I-inj, and
is hence a trivial fibration, γ(f) is in J-cell, and is hence a trivial cofibration, and
δ(f) is in J-inj, and is hence a fibration.

It remains to verify the lifting axiom. This is where the last hypothesis comes
in, with its two cases. Suppose first that W ∩ I-cof ⊆ J-cof. Then every trivial
cofibration is in J-cof, and so has the left lifting property with respect to the
fibrations, which form the class J-inj. Now given a trivial fibration p : X −→ Y , we
need to show that p has the right lifting property with respect to all cofibrations,
or equivalently, with respect to I . We can factor p = β(p) ◦ α(p), where α(p) is a
cofibration and β(p) ∈ I-inj. Since W has the two out of three property, α(p) is a
trivial cofibration. Hence, by the half of the lifting axiom we have already proven,
p has the right lifting property with respect to α(p). It follows from the retract
argument 1.1.9 that p is a retract of β(p), so p ∈ I-inj as required.

The other case, where we assume W ∩ J-inj ⊆ I-inj, is similar, and we leave it
to the reader.

There are many advantages to knowing that a model category is cofibrantly
generated. One of them is that it is easier to check that functors are Quillen
functors.
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Lemma 2.1.20. Suppose (F,U, ϕ) : C −→ D is an adjunction between model cat-
egories. Supppose as well that C is cofibrantly generated, with generating cofibrations
I and generating trivial cofibrations J . Then (F,U, ϕ) is a Quillen adjunction if
and only if Ff is a cofibration for all f ∈ I and Ff is a trivial cofibration for all
f ∈ J .

Proof. Obviously the conditions are necessary. For the converse, note that
Lemma 2.1.8 says that F (I-cof) ⊆ FI-cof. Let K be the class of cofibrations in D.
Then, by hypothesis, FI ⊆ K, and so FI-cof ⊆ K-cof. But the axioms imply that
K-cof = K. Therefore F (I-cof) ⊆ K, and so F preserves cofibrations. A similar
argument shows that F preserves trivial cofibrations, and so F is a left Quillen
functor.

The following lemma will be useful below.

Lemma 2.1.21. Suppose C is a cofibrantly generated model category. Then the
model category C∗ of Proposition 1.1.8 is cofibrantly generated. If C is finitely
generated, so is C∗.

Proof. Suppose I and J are sets of generating cofibrations and trivial cofi-
brations for C. We claim that I+ and J+ will serve as generating cofibrations and
trivial cofibrations for C∗. Indeed, adjointness immediately implies that J+-inj is
the class of fibrations and that I+-inj is the class of trivial fibrations. It remains
to show that the domains of I+ are small relative to I+-cell, and similarly for J+.
Since the forgetful functor U commutes with sequential colimits, adjointness implies
that we need only show that the domains of I are small relative to U(I+-cell). But
the maps of U(I+-cell) are cofibrations, so the result follows. A similar proof will
show that C∗ is finitely generated if C is so.

2.2. The stable category of modules

Perhaps the simplest nontrivial example of a model category is the category of
modules over a Frobenius ring R, given the stable model structure.

Given a ring R, let R-mod denote the category of left R-modules.

Definition 2.2.1. A ring R is a (left) Frobenius ring if the projective and
injective R-modules coincide.

Examples of Frobenius rings include the group ring k[G] of a finite group G
over a field k [CR88, Section 62], and a finite graded connected Hopf algebra over
a field [Mar83, Section 12.2].

Definition 2.2.2. Suppose R is a ring. Given maps f, g : M −→ N , define f
to be stably equivalent to g, written f ∼ g, if f − g factors through a projective
module.

Although we have defined stable equivalence for arbitrary rings, we will be
interested in it only for Frobenius rings.

Lemma 2.2.3. Stable equivalence is an equivalence relation which is compatible
with composition. That is, if f ∼ g, then hf ∼ hg and fk ∼ gk, whenever these
compositions make sense.

We leave the proof of this lemma to the reader.
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Definition 2.2.4. Let R be a ring. The stable category of R-modules is the
category whose objects are left R-modules and whose morphisms are stable equiv-
alence classes of R-module maps. A map f of R-modules is a stable equivalence if
it is an isomorphism in the stable category.

The goal of this section is to show that the stable category of R-modules is the
homotopy category of a model structure on the category of R-modules, when R is
a Frobenius ring.

Note that the stable equivalences are closed under retracts and satisfy the two
out of three property. Furthermore, if P is projective, then the inclusion M −→
M ⊕ P is a stable equivalence, as is its stable inverse, the surjection M ⊕ P −→ P .

In order to define a cofibrantly generated model structure on R-mod, we need
a set I of generating cofibrations and a set J of generating trivial cofibrations.

Definition 2.2.5. Suppose R is a Frobenius ring. Let I denote the set of
inclusions a −→ R, where a is a left ideal in R. Let J denote the set consisting of
the inclusion 0 −→ R. Define a map f of R-modules to be a fibration if it has the
right lifting property with respect to J , and define f to be a cofibration if f ∈ I-cof.

We claim that the cofibrations, fibrations, and stable equivalences define a
model structure on R-mod. We prove this using Theorem 2.1.19, whose hypotheses
we verify in a series of propositions and lemmas.

The following simple lemma, which does not require that R be a Frobenius
ring, is left to the reader.

Lemma 2.2.6. A map p in R-mod is a fibration if and only if it is surjective.

We now investigate the trivial fibrations.

Lemma 2.2.7. Suppose R is a Frobenius ring. Then a map p in R-mod is a
trivial fibration if and only if p is a surjection with projective kernel.

Proof. Certainly a surjection with injective kernel is a trivial fibration. Con-
versely, suppose p is a trivial fibration. Then Lemma 2.2.6 implies that p : M −→ N
is surjective. Let q : N −→ M be a stable inverse for p. Then there is a projective
module P and maps i : N −→ P and h : P −→ N such that pq − 1N = hi. Consider
the diagram of short exact sequences

0 −−−−→ ker f −−−−→ M
f

−−−−→ N −−−−→ 0
y

y
∥∥∥

0 −−−−→ Q −−−−→ M ⊕ P −−−−→
f⊕h

N −−−−→ 0

The map (q,−i) : N −→M⊕P defines a splitting of the lower short exact sequence.
Furthermore, since the inclusion M −→ M ⊕ P is a stable equivalence, the two
out of three property implies that f ⊕ h is a stable equivalence. Therefore, the
inclusion Q −→M ⊕ P is stably trivial, and so factors through a projective. Using
the retraction M ⊕ P −→ Q coming from the splitting, we find that the identiity
map of Q factors through a projective. Hence Q is projective. The snake lemma
implies that Q/ kerf ∼= P , and so Q/ kerf is also projective. Thus ker f is a retract
of Q, and so is projective as required.
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We must now characterize surjections with injective kernel. This can be done
over an arbitrary ring, and relies on the following standard lemma [Jac89, Propo-
sition 3.15].

Lemma 2.2.8. An R-module Q is injective if and only if, for all left ideals a in
R, every homomorphism a −→ Q can be extended to a homomorphism A −→ Q.

Proposition 2.2.9. If R is an arbitrary ring, a map p is in I-inj if and only
if p is a surjection with injective kernel. In particular, if R is a Frobenius ring, the
trivial fibrations form the class I-inj.

Proof. The second statement follows from the first and Lemma 2.2.7. Now
suppose p is a surjection with injective kernel, and suppose we have a commutative
diagram

a
f

−−−−→ M

i

y
yp

A −−−−→
g

N

Let j : ker f −→ M denote the inclusion of the kernel of p. Since the kernel is
injective, there is a splitting q : N −→ M such that pq = 1N . Consider the map
qgi− f −→ a −→ M . This map is in the kernel of p, so defines a map r : a : ker f ,
such that jr = qgi− f . Since ker f is injective, there is an extension s : A −→ ker f
such that si = r. Then the map qg − js : A −→M is a lift in the diagram. Thus p
is in I-inj.

Conversely, suppose p ∈ I-inj. Since J ⊆ I , it follows that p ∈ J-inj, and so
p is surjective. We must show that the kernel of p is an injective R-module. So
suppose a is a left ideal of R and f : a −→ ker f is a homomorphism. Then we have
a commutative diagram

a
jf

−−−−→ M
y

yp

A −−−−→
0

N

Since p is in I-inj, there is a lift in this diagram. Such a lift defines an extension of
f to a homomorphism A −→ kerf , and so Q is injective by Lemma 2.2.8.

We need corresponding facts about the cofibrations.

Lemma 2.2.10. Over an arbitrary ring R, a map i of R-modules is in I-cof if
and only if i is an injection.

Proof. By Proposition 2.2.9, i is in I-cof if and only if i has the left lift-
ing property with respect to all surjections with injective kernel. The proof that
injections have the left lifting property with respect to all surjections with injec-
tive kernel is exactly the same as the proof of the first half of Proposition 2.2.9.
Conversely, suppose i : A −→ B has the left lifting property with respect to all sur-
jections with injective kernel. Choose an embedding A −→ Q where Q is injective.
Since i has the left lifting property with respect to Q −→ 0, there is an extension
B −→ Q. In particular, i must be injective.



2.2. THE STABLE CATEGORY OF MODULES 39

Lemma 2.2.11. Over an arbitrary ring R, a map is in J-cof if and only if it is
an injection with projective cokernel. In particular, the elements of J-cof are stable
equivalences.

Proof. The proof of this lemma is dual to the proof of Proposition 2.2.9. We
have already seen, in Lemma 2.2.6, that J-inj is the class of surjections. Suppose
i is an injection with projective cokernel j : B −→ C and we have a commutative
diagram

A
f

−−−−→ M

i

y
yp

B −−−−→
g

N

where p is surjective. Since the cokernel of i is projective, there is a retraction
r : B −→ A. The map pfr − g : B −→ N satisfies (pfr − g)i = 0, and so factors
through a map s : C −→ N . Since C is projective, there is a map t : C −→ M such
that pt = s. Then fr − tj is the desired lift in the diagram. Hence i ∈ J-cof.

Conversely, suppose i : A −→ B is in J-cof. In particular, i ∈ I-cof and so i
is injective. Let q : B −→ C denote the cokernel of i. We must show that C is
projective. Suppose f : C −→ N is a map and p : M −→ N is a surjection. Then we
have a commutative diagram

A
0

−−−−→ M

i

y
yp

B −−−−→
fq

N

A lift in this diagram is a map h : B −→M such that hi = 0 and ph = fq. It follows
that h factors through a map g : C −→ M lifting f . Therefore C is projective as
required.

It is now straightforward to prove that R-mod is a model category when R is
a Frobenius ring.

Theorem 2.2.12. Suppose R is a Frobenius ring. Then there is a cofibrantly
generated model structure on R-mod where the cofibrations are the injections, the
fibrations are the surjections, and the weak equivalences are the stable equivalences.
If R is Noetherian, then the model structure above is finitely generated.

Proof. Apply Theorem 2.1.19, using the sets I and J in Definition 2.2.5.
We have already seen that every R-module is small in Example 2.1.6. In case R
is Noetherian, then every ideal a is finitely presented, and so the domains and
codomains of I and J are finite.

Note that if there is a cofibrantly generated model structure on R-mod with I as
the set of generating cofibrations and J as the set of generating trivial cofibrations,
then in fact R must be a Frobenius ring and the weak equivalences must be the
stable equivalences. Indeed, if P is projective, then 0 −→ P is in J-cof, and so is
a weak equivalence. But then P −→ 0 is a weak equivalence and a fibration, so
must be in I-inj. Thus P is injective. The converse is similar, and so R must be a
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Frobenius ring. The weak equivalences are determined by I and J , as composites
of the form I-inj ◦ J-cof, so must be the stable equivalences.

Also note that R-mod is a very unusual model category, since every object is
both cofibrant and fibrant. One can easily check that f and g are either left or
right homotopic in R-mod if and only if f and g are stably equivalent.

Given a homomorphism f : R −→ S of Frobenius rings, we get an adjunction
from R-mod to S-mod whose left adjoint is the induction functor that takes M to
B⊗AM , and whose right adjoint is the restriction functor. This adjunction will be
a Quillen adjunction if and only if f makes B into a flat right A-module. Indeed,
if induction is to preserve cofibrations, f must clearly be flat. If f is flat, then
induction preserves cofibrations, so restriction preserves trivial fibrations. Since
restriction always preserves surjections, restriction is a right Quillen functor as
required.

2.3. Chain complexes of modules over a ring

Another fairly simple algebraic example of a model category is the category of
chain complexes Ch(R) of (say, left) modules over a ring R. This section is devoted
to that example.

We begin with the standard definitions.

Definition 2.3.1. Let R be a ring. Define the category Ch(R) of chain com-
plexes over R and chain maps as follows. An object of Ch(R) is a chain complex of
left R-modules: i.e. a collection of R-modules Xn for each integer (positive or neg-
ative) n and a differential d = {dn : Xn −→ Xn−1}, where each dn is an R-module
map and dn−1dn = 0 for all n. A morphism f : X −→ Y of Ch(R) is a chain map:
i.e. a collection of R-module maps fn : Xn −→ Yn such that dnfn = fn−1dn.

Note that the category Ch(R) has all small limits and colimits, which are taken
degreewise. The initial and terminal object is the chain complex 0, which is 0 in
each degree. The category Ch(R) is also an abelian category, where short exact
sequences are defined degreewise.

Since we will be using the small object argument on Ch(R), the following lemma
is useful.

Lemma 2.3.2. Every object in Ch(R) is small. Every bounded complex of
finitely presented R-modules is finite.

Proof. Suppose X ∈ Ch(R). Let γ be an infinite cardinal larger than |R ×⋃
nXn|, let λ be a γ-filtered ordinal, and let Y : λ −→ Ch(R) be a λ-sequence.

Denote the image of α under Y by Y α. Suppose f : X −→ colimY is a chain map.
Then, since the R-module Xn is γ-small by Example 2.1.6, and we chose γ to be
infinite, there is an α < λ such that f factors through a map g : X −→ Y α of graded
R-modules. The map g need not be a chain map, but for each homogeneous x ∈ X ,
there is a βx > α such that g(dx) = d(gx) in Y βx . Taking β to be the supremum
of the βx, we find that β < λ and we get the desired factorization of f through a
chain map X −→ Y β .

Similarly, if f and g are two chain maps X −→ Y α which are equal as maps to
colimY , then for each x ∈ X there is a βx > α such that fx = gx in Y βx . Taking
β to be the supremum of the βx, we find that f = g as maps to Y β , as required.

A similar argument shows that every bounded complex of finitely presented
R-modules is finite.



2.3. CHAIN COMPLEXES OF MODULES OVER A RING 41

We now define the standard model structure on Ch(R).

Definition 2.3.3. Let R be a ring. Given an R-module M , define Sn(M) ∈
Ch(R) by Sn(M)n = M and Sn(M)k = 0 if k 6= n. Similarly, define Dn(M) by
Dn(M)k = M if k = n or k = n−1, and 0 otherwise. The differential dn in Dn(M)
is the identity. We often denote Sn(R) by simply Sn, and Dn(R) by Dn. There is
an evident injection Sn−1(M) −→ Dn(M). Now define the set I to consist of the
maps Sn−1 −→ Dn, and define the set J to consist of the maps 0 −→ Dn. Define
a map to be a fibration if it is in J-inj, and define a map to be a cofibration if it
is in I-cof. Define a map f to be a weak equivalence if the induced map Hn(f) on
homology is an isomorphism for all n.

Of course, the homology HnX of chain complex X is defined by Hn(X) =
kerdn/im dn+1. A chain complexX is called acyclic ifH∗X = 0. Because homology
is functorial, the weak equivalences are closed under retracts and satisfy the two
out of three axiom. The only other thing we need about homology is that a short
exact sequence of chain complexes induces a long exact sequence in homology.

We now characterize the fibrations. Before doing so, note that the functor Dn

is left adjoint to the evaluation functor Evn : Ch(R) −→ R-mod that takes X to Xn.
Similarly, the functor Sn is left adjoint to the cycle functor Zn : Ch(R) −→ R-mod
that takes X to ZXn, the kernel of dn.

Proposition 2.3.4. A map p : X −→ Y in Ch(R) is a fibration if and only if
pn : Xn −→ Yn is surjective for all n.

Proof. A diagram of the form

0 −−−−→ X
y p

y

Dn −−−−→ Y

is equivalent to an element y in Yn. A lift in this diagram is equivalent to an element
x in Xn such that px = y. The lemma follows immediately.

We also characterize the trivial fibrations.

Proposition 2.3.5. A map p : X −→ Y in Ch(R) is a trivial fibration if and
only if it is in I-inj.

Proof. The set of diagrams

Sn−1 f
−−−−→ X

y p

y

Dn g
−−−−→ Y

is in one-to-one correspondence with {(y, x) ∈ Yn ⊕ Zn−1X | px = dy}. A lift in
such a diagram is a class z ∈ Xn such that dz = x and pz = y.

Now suppose p ∈ I-inj. Take a cycle y ∈ ZnY . Then the pair (y, 0) defines a
diagram as above, so there is a class z ∈ Xn such that pz = y and dz = 0. Hence
Znp : ZnX −→ ZnY is surjective. It follows immediately that Hnp is surjective. It
also follows that p itself is surjective. Indeed, suppose y is an arbitrary element of
Yn. Then dy is a cycle, so there is a class x ∈ Zn−1X such that px = dy. The
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pair (y, x) corresponds to a diagram as above, so there is a class z ∈ Xn such that
pz = y. Hence p is surjective, so by Proposition 2.3.4, p is a fibration.

It remains to prove that Hnp : HnX −→ HnY is injective. Take an x ∈ ZnX
such that px = dy for some y ∈ Yn+1. Then (y, x) also defines a diagram as above,
so there is a class z ∈ Xn+1 such that dz = x. Thus Hnp is injective as well, so p
is a weak equivalence.

Conversely, suppose p is a trivial fibration. Given (y, x) such that y ∈ Yn,
x ∈ Zn−1X , and px = dy, we must find a z ∈ Xn such that pz = y and dz = x.
Since p is a fibration, it is surjective. Thus we have a short exact sequence

0 −→ K −→ X
p
−→ Y −→ 0.

Since p is a weak equivalence, we have H∗K = 0. First choose w ∈ Xn such
that pw = y. Then dw − x ∈ Zn−1K, since p(dw) = d(pw) = dy = px, and
d(dw−x) = dx = 0. Since H∗K = 0, there is a v ∈ Kn such that dv = dw− x. Let
z = w − v. Then pz = y and dz = x, as required.

Our next goal is to characterize the cofibrations. We begin with the cofibrant
objects.

Lemma 2.3.6. Suppose R is a ring. If A is a cofibrant chain complex, then
An is a projective R-module for all n. As a partial converse, any bounded below
complex of projective R-modules is cofibrant.

Proof. Suppose M
q
−→ N is a surjection of R-modules. Then we have a trivial

fibration DnM
p
−→ DnN , which is q in degrees n and n − 1 and 0 elsewhere. A

map An−1
f
−→ N induces a chain map A

g
−→ DnN which is f in degree n− 1, fd in

degree n, and 0 elsewhere. If A is cofibrant, there must be a lift A
h
−→ DnM . Then

hn−1 : An−1 −→M is a lift of f . Thus An−1 is projective.
Now suppose that A is a bounded below complex of projective R-modules,

and p : X −→ Y is a trivial fibration. Let K denote the kernel of p, and note
H∗K = 0 since p is trivial. Suppose we are given g : A −→ Y . We must construct
a lift h : A −→ X of g. We construct hn such that pnhn = gn and dhn = hn−1d
by induction. There is no trouble getting started since A is bounded below. So
suppose we have defined hk for all k < n satisfying the conditions above. Since pn
is surjective and An is projective, there is a map f : An −→ Xn such that pnf = gn.
Consider the map F : An −→ Xn−1 defined by F = df −hn−1d. Then one can check

that pF = dF = 0, so that F is actually a map Xn
F
−→ ZKn−1. Since K is acyclic,

we have ZKn−1 = BKn−1, where BKn−1 denotes the image of dn in Kn−1. So,
since An is projective, there is a map G : An −→ Kn such that dG = F . Now define
hn = f −G. Then phn = gn and dhn = df − F = hn−1d, as required.

Remark 2.3.7. Not every complex of projective R-modules is cofibrant. To
prove this, we will use the not yet proved fact that Ch(R) is a model category.
Suppose R = E(x), the exterior algebra on x over a field k. Let A be the complex
which is R in every degree, and where the differential is multiplication by x. Then A
is acyclic, so if A were also cofibrant, the map 0 −→ A would be a trivial cofibration.
Now let X be the complex S0, which is R in degree 0 and 0 elsewhere, and let Y
be the complex which is k in degree 0 and 0 elsewhere. Then there is a fibration

p : X −→ Y which is the augmentation of R in degree 0. There is a map A
g
−→ Y that

is also the augmentation in degree 0. But there can be no lift A
h
−→ X , since such a
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lift would have to be the identity in degree 0 and that is not a chain map. Thus A
cannot be cofibrant. In fact, the cofibrant objects correspond to the DG-projective
complexes of [AFH97]. We leave it to the interested reader to check this.

Recall that two chain maps f, g : X −→ Y are said to be chain homotopic if there
is a collection of R-module mapsDn : Xn −→ Yn+1 such that dDn+Dn−1d = fn−gn
for all n.

Lemma 2.3.8. Suppose R is a ring, C is a cofibrant chain complex, and H∗K =
0. Then every map from C to K is chain homotopic to 0.

Proof. Let P be the chain complex defined by Pn = Kn⊕Kn+1, with d(x, y) =
(dx, x− dy). Then there is an obvious surjection p : P −→ K that takes (x, y) to x.
The kernel of p is just a shifted version ofK. In particular, H∗(ker p) ∼= H∗−1K = 0.
Thus p is a trivial fibration. Since C is cofibrant, there is a map g = (f,D) : C −→ P
lifting f . Since g is a chain map, we must have f −Dd = dD, so D is the desired
chain homotopy.

With these two lemmas in hand, we can characterize the cofibrations.

Proposition 2.3.9. Suppose R is a ring. Then a map i : A −→ B in Ch(R)
is a cofibration if and only if i is a dimensionwise split injection with cofibrant
cokernel.

Proof. By definition, i is a cofibration if and only if it has the left lifting
property with respect to surjections with acyclic kernel. Suppose first that i is a
cofibration. Consider the map A −→ Dn+1An which is d in degree n + 1 and the
identity in degree n. Since Dn+1An is acyclic, there is an extension of this map to
a map B −→ Dn+1An. In particular, in is a split monomorphism. The collection
K-proj is always closed under pushouts, for any K in any category. Since the map
0 −→ cok i is the pushout of i through the map A −→ 0, it follows that cok i is
cofibrant.

Now suppose that in is an inclusion for all n and the cokernel C of i is cofibrant.
Given a diagram

A
f

−−−−→ X

i

y p

y

B
g

−−−−→ Y

where p is a homology isomorphism and a dimensionwise surjection, we must find
a lift h : B −→ X such that ph = g and hi = f . Let j : K −→ X denote the
kernel of p. We can write Bn = An ⊕ Cn, since Cn is projective. Then the
differential d : Bn −→ Bn−1 is given by d(a, c) = (da+τc, dc), where τ : Cn −→ An−1

can be an arbitrary map such that dτ + τd = 0. The map g is then defined by
g(a, c) = pf(a) + σ(c), where the collection of maps σn : Cn −→ Yn must satisfy
dσ = pfτ + σd, since g is a chain map. A lift h in the diagram is then equivalent a
collection of maps νn : Cn −→ Xn such that pν = σ and dν = νd+ fτ .

Using the fact that Cn is projective for all n, choose maps Gn : Cn −→ Xn

such that pnGn = σn. Consider the map r = dG − Gd − fτ : Cn −→ Xn−1. Then
pr = 0, so r defines a map s : Cn −→ Kn−1 such that js = r. Furthermore,
dr = −dGd + fτd = −rd, so s : C −→ ΣK is actually a chain map, where ΣK is
the chain complex defined by (ΣK)n = Kn−1 and dΣK = −dK . By Lemma 2.3.8
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, s is chain homotopic to 0. There is therefore a map D : Cn −→ Kn such that
−dD+Dd = s, where the extra minus sign comes from the fact that the differential
in ΣK is the negative of the differential in K. Let ν = G+ jD. Then pν = pG = σ,
and dν = νd + fτ . Therefore h = (f, ν) : B −→ X is the desired lift in our
diagram.

The trivial cofibrations are a little simpler to understand.

Proposition 2.3.10. Suppose R is a ring. Then a map i : A −→ B is in J-cof
if and only if i is an injection whose cokernel is projective as a chain complex. In
particular, every map in J-cof is a trivial cofibration.

Proof. The proof of the first part is the same as the proof of Lemma 2.2.11.
For the second part, we must show that a projective chain complex, which is obvi-
ously cofibrant, is also acyclic. Let C be projective. Let P be the complex defined
by Pn = Cn ⊕ Cn+1, where d(x, y) = (dx, x − dy), as in Lemma 2.3.8. Then
there is a surjection P −→ C. Since C is projective, the identity map of C lifts
to a map C −→ P . The second component of this map is a collection of maps
Dn −→ Cn −→ Cn+1 such that dDx +Ddx = x. In particular, if x is a cycle, then
dDx = x, so x is also a boundary, and so C is acyclic.

Since we have now verified all the hypotheses of Theorem 2.1.19, we have proved
the following theorem.

Theorem 2.3.11. Ch(R) is a finitely generated model category with I as its
generating set of cofibrations, J as its generating set of trivial cofibrations, and
homology isomorphisms as its weak equivalences. The fibrations are the surjections.

It follows from Theorem 2.3.11 that every trivial cofibration is in J-cof, and so
is an injection with projective cokernel. In particular, X is projective if and only if
it is cofibrant and acyclic. Note that every chain complex is fibrant in this model
structure. One can easily check that the right homotopy relation is precisely the
chain homotopy relation. Indeed, given a chain complex X , a path object for X
is given by the chain complex P , where Pn = Xn ⊕Xn ⊕ Xn+1, with differential
d(x, y, z) = (dx, dy,−dz + x− y).

Th model structure we have just described is not the only commonly used
model structure on Ch(R).

Definition 2.3.12. Let R be a ring. Define a map f in Ch(R) to be an injective
fibration if f has the right lifting property with respect to all maps which are both
injections and weak equivalences.

Theorem 2.3.13. The injections, injective fibrations, and weak equivalences
are part of a cofibrantly generated model structure, called the injective model struc-
ture, on Ch(R). The injective fibrations are the surjections with fibrant kernel ;
every fibrant object is a complex of injectives, and every bounded above complex of
injectives is fibrant. The injective trivial fibrations are the surjections with injective
kernel ; a complex is injective if and only if it is fibrant and acyclic.

To the author’s knowledge, Theorem 2.3.13 has not appeared before. The
injective model structure is usually used only with bounded above complexes,
where one can use inductive arguments which are not available in the general case.
Grodal [Gro97] has constructed the injective model structure using the results
of [AFH97], but he does not prove that it is cofibrantly generated.
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To prove this theorem, we need sets I ′ of generating injections and J ′ of gener-
ating injective weak equivalences. We do not construct such sets explicitly; rather,
we just take all injective (trivial) cofibrations whose cardinality is not too large.
This idea is sometimes referred to as the Bousfield-Smith cardinality argument, and
is the tool used to construct localizations of model categories in [Hir97].

Definition 2.3.14. Let R be a ring. Given a chain complex X ∈ Ch(R),
define |X | to be the cardinality of

⋃
nXn. Define γ to be the supremum of |R|

and ω. Define I ′ to be a set containing a map from each isomorphism class of
injections i : A −→ B in Ch(R) such that |B| ≤ γ. Define J ′ to be the set of all
weak equivalences in I ′.

We prove Theorem 2.3.13 in a series of propositions and lemmas.

Proposition 2.3.15. The class I ′-cof is the class of injections, and the class
I ′-inj is the class of surjections whose kernel is injective as a chain complex.

Proof. Let us first note that, given a chain complexX and an element x ∈ Xn,
there is a sub-chain complex Y containing x of cardinality at most γ. Indeed, we
let Yn be the submodule of Xn generated by x, Yn−1 be the submodule of Xn−1

generated by dx, and Yk = 0 otherwise. Then |Yn| ≤ |R| ≤ γ, and similarly for
Yn−1.

Now, the class of injections is the class K-proj, where K is the class of sur-
jections with injective kernel. The proof of this is very similar to the proof of
Proposition 2.2.9, and so we leave it to the reader. In particular, since I ′ ⊆ K-proj,
we have I ′-cof ⊆ (K-proj)-cof = K-proj, and so every I ′-cofibration is an injec-
tion. Conversely, suppose i : A −→ B is injective. In order to show that i is an
I ′-cofibration, we must show that i has the left lifting property with respect to
I ′-inj. So suppose p : X −→ Y is in I ′-inj, and we have a commutative diagram

A
f

−−−−→ X

i

y
yp

B −−−−→
g

Y

Let S be the partially ordered set of partial lifts in this diagram. That is, an
element of S is a pair (C, h), where C is a sub-chain complex of B containing the
image of i, and h : C −→ X is a chain map making the diagram commute. We give
S the obvious partial ordering; (C, h) ≤ (C ′, h′) if C ⊆ C ′ and h′ is an extension
of h. Then S is nonempty and every chain in S has an upper bound. Therefore,
Zorn’s lemma applies and we can find a maximal element (M,h) of S. We claim
that M = B. Indeed, suppose not, and choose a homogeneous x ∈ B but not in
M . Let Z be the sub-chain complex generated by x; then we have already seen
that |Z| ≤ γ. Let M ′ denote the sub-chain complex generated by M and x. Then
we have a pushout diagram

M ∩ Y −−−−→ Y
y

y

M −−−−→ M ′
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Since the top horizontal map is in I ′, the bottom horizontal map is in I ′-cof. Hence
there is a lift h′ in the diagram

M
h

−−−−→ X
y

yp

M ′ −−−−→
g

Y

Then (M ′, h′) is in S, but (M ′, h′) > (M,h). This contradiction shows that we must
have had M = B, and therefore that i has the left lifting property with respect to
I ′-inj.

We have now proved that I ′-cof is the class of injections. It follows that I ′-inj
consists of all maps which have the right lifting property with respect to all in-
jections. This is easily seen to be the surjections with injective kernel, by a slight
modification of Proposition 2.2.9.

Corollary 2.3.16. Every injective object is fibrant and acyclic. Every map
in I ′-inj is an injective fibration and a weak equivalence.

Proof. Any map in I ′-inj has the right lifting property with respect to all
injections, so is a in particular an injective fibration. We have just seen that if
p ∈ I ′-inj, then p is a surjection with injective kernel K. Let P be the complex
defined by Pn = Kn ⊕ Kn−1, with d(x, y) = (dx + y,−dy). Then there is an
obvious injection K −→ P . Since K is injective, the identity map extends to a map

P
H
−→ K, where H(x, y) = x+Dy. Then D is a chain homotopy from the identity

map of K to the zero map, and so K is acyclic. It follows that p is a homology
isomorphism.

We now need similar results for J ′. We begin by characterizing the injective
fibrations.

Lemma 2.3.17. Let R be a ring. If A is an injectively fibrant chain complex,
then each An is an injective R-module. Any bounded above complex of injective
R-modules is injectively fibrant.

The proof of this lemma is very similar to the proof of Lemma 2.3.6, so we
leave it to the reader.

Remark 2.3.18. Just as in the projective case, not every complex of injective
R-modules is injectively fibrant, and the injectively fibrant objects correspond to
the DG-injective complexes of [AFH97]. The same example will work, assuming
the yet to be proved fact that the injective model structure on Ch(R) is a model
structure. Let k be a field, let R = E(x), and let A be the complex with An = R and
d being multiplication by x. One can easily check that R is self-injective; indeed, R
is a Frobenius ring. If the complex of injectives A were fibrant, then A −→ 0 would
be an injective trivial fibration. Consider the inclusion S0(k) −→ S0(R) that takes 1
to x. There is a map S0(k) −→ A which takes 1 to x in degree 0. The only possible
extension to a map S0(R) −→ A is the identity in degree 0, but this is not a chain
map. Thus A cannot be fibrant.

We also have the analogue of Lemma 2.3.8, which has the dual proof.
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Lemma 2.3.19. Suppose R is a ring, C is an acyclic chain complex, and K
is an injectively fibrant chain complex. Then every map from C to K is chain
homotopic to 0.

With these two lemmas in hand, the analogue of Proposition 2.3.9 also holds,
with the dual proof.

Proposition 2.3.20. Suppose R is a ring. Then p is an injective fibration if
and only if p is a dimensionwise split surjection with injectively fibrant kernel.

We must now show that the J ′-cofibrations are the injective weak equivalences.
This is a little more difficult, so we begin with a lemma.

Lemma 2.3.21. Let R be a ring, and suppose i : A −→ B is an injective weak
equivalence in Ch(R). For every sub-chain complex C of B with |C| ≤ γ, there
is a sub-chain complex D of B with |D| ≤ γ such that i : D ∩ A −→ D is a weak
equivalence.

Proof. For each element inH∗(C/C∩A) choose an element c in C representing
it. Then there is a b ∈ B such that db − c is in A, since H∗(B/A) = 0. Form the
complex C+Rb+R(db), which also has size ≤ γ. If we iterate this construction for
each of the ≤ γ nontrivial classes in H∗(C/C ∩A), we get a new sub-chain complex
FC ⊇ C with |FC| ≤ γ, such that the map H∗(C/C ∩ A) −→ H∗(FC/FC ∩ A) is
zero.

Now let D be the union of all the F nC. Then |D| ≤ γ, and we claim that
H∗(D/D∩A) = 0. Indeed, a cycle in D/D∩A must be represented by an x ∈ FnC
for some n, and this x will be a cycle in FnC/FnC ∩ A. It follows that x is a
boundary in Fn+1C/Fn+1C ∩A, and therefore also a boundary in D/D ∩A. Thus
the inclusion D ∩ A −→ D is a weak equivalence, as required.

Proposition 2.3.22. The class J ′-cof consists of the injective weak equiva-
lences. The class J ′-inj consists of the injective fibrations.

Proof. The second statement follows from the first. We first prove that maps
in J ′-cof are injective weak equivalences. Since J ′ ⊆ I ′, J ′-cof ⊆ I ′-cof, so maps
in J ′-cof are injections. Suppose i : A −→ B is in J ′-cof. We must show that i
is a weak equivalence, or, equivalently, that the cokernel C of i is acyclic. Since
J ′-cof is closed under pushouts, the map j : 0 −→ C is in J ′-cof. Since every map
in J ′ is an injective weak equivalence, j has the left lifting property with respect to
injective fibrations. Now let Q be an injective hull of Cn/dCn+1. There is a map
DnQ −→ Sn(Q) which is the identity in degree n. This map is an injective fibration,
since the kernel is a bounded above complex of injectives, and so is fibrant. There
is a map C −→ Sn(Q) which is the composite Cn −→ Cn/dCn+1 −→ Q in degree
n. Since j has the left lifting property with respect to injective fibrations, there
is a lift C −→ DnQ. This gives an extension of the injection Cn/dCn+1 −→ Q to
a map Cn−1 −→ Q. In particular, the map Cn/dCn+1 −→ Cn−1 must be injective,
and so C has no homology. This shows that the maps in J ′-cof are injective weak
equivalences.

Now suppose i : A −→ B is an injective weak equivalence. To show that i ∈
J ′-cof, we must show that i has the left lifting property with respect to J ′-inj. So
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suppose p ∈ J ′-inj and we have a commutative diagram

A
f

−−−−→ X

i

y
yp

B −−−−→
g

Y

Let S be the set of partial lifts (C, h), where iA ⊆ C ⊆ B, the injection i : A −→ C is
a weak equivalence, and h : C −→ X is a partial lift in our diagram. Once again S is
nonempty and every chain in S has an upper bound. So Zorn’s lemma applies and
we can find a maximal element (M,h) of S. Since A −→M is a weak equivalence, so
is the inclusion M −→ B. If M is not all of B, choose an x in B but not in M , and
let C denote the subcomplex generated by x. Then |C| ≤ γ, and so Lemma 2.3.21
implies that there is a subcomplex D containing x with |D| ≤ γ and such that the
inclusion D∩M −→ D is a weak equivalence. Thus the pushout M −→ D+M of this
inclusion through the inclusion D∩M −→M is in J ′-cof. Since p is in J ′-inj, we can
find an extension of h to a partial lift h′ on D ∪M . This violates the maximality
of (M,h), and so we must have had M = B. Thus i ∈ J ′-cof, as required.

The recognition theorem 2.1.19 now implies that the injections, injective fi-
brations, and weak equivalences define a cofibrantly generated model structure on
Ch(R), and this in turn implies that every complex that is injectively fibrant and
acyclic is injective. This completes the proof of Theorem 2.3.13.

Note that the identity functor is a Quillen equivalence from the standard model
structure on Ch(R) to the injective model structure. In general, a map of rings
f : R −→ R′ will induce a Quillen adjunction Ch(R) −→ Ch(R′) of the standard
model structures. The left adjoint, induction, takes X to R′⊗RX , and the right ad-
joint, restriction, is the forgetful functor. Restriction obviously preserves fibrations
and trivial fibrations, so this is a Quillen adjunction. Since restriction preserves
and reflects weak equivalences, induction is a Quillen equivalence if and only if the
map f : R −→ R′ is an isomorphism. On the other hand, if we give Ch(R) and
Ch(R′) the injective model structures, induction will be a Quillen functor if and
only if f makes R′ into a flat R-module. Again, this will be a Quillen equivalence
if and only if f is an isomorphism.

Note that if M and N are R-modules, then [SnM,S0N ] ∼= ExtnR(M,N). In-
deed, a projective resolution ofM is a cofibrant replacement for S0M in Ch(R), and
shifting it up n places gives us a cofibrant replacement for SnM . Since S0N is al-
ready fibrant, [SnM,S0N ] is just chain homotopy classes of maps from a projective
resolution of M to N , which is the usual definition of Ext.

2.4. Topological spaces

In this section we construct the standard model structure on Top. Our proof
differs from the proofs in [Qui67] and [DS95] mostly in the level of detail. We give
full proofs of the required smallness results, and we provide a careful proof that triv-
ial fibrations have the right lifting property with respect to relative cell complexes.
Both of these issues are completely avoided in both [Qui67] and [DS95]. We also
briefly discuss the model categories of pointed topological spaces and compactly
generated topological spaces.
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Let Top denote the category of topological spaces and continuous maps. Basic
facts about Top can be found in [Mun75]. In particular, Top is a symmetric
monoidal category under the product. The product − × X does not commute
with colimits in general. Given topological spaces X and Y , we can form the
function space Y X of continuous maps from X to Y , given the compact-open
topology [Mun75, Section 7.5]. This function space is not well-behaved in gen-
eral: however, if X is locally compact Hausdorff, then (−)X is right adjoint to the
functor − × X : Top −→ Top (see [Mun75, Corollary 7.5.4]). Thus − × X does
commute with colimits when X is locally compact Hausdorff.

We now recall the construction of colimits and limits in Top. If F : I −→ Top

is a functor, where I is a small category, a limit of F is obtained by taking the limit
in the category of sets, then topologizing it as a subspace of the product

∏
F (i)

for i ∈ I . The product is of course given the product topology. A colimit of F is
obtained by taking the colimit colimF in the category of sets, and declaring a set
U in colimF to be open if and only if j−1

i (U) is open in F (i) for all i ∈ I , where
ji : F (i) −→ colimF is the structure map of the colimit.

Unlike the categories of sets, R-modules, and chain complexes of R-modules,
not every object in Top is small. In fact, the Sierpinski space, consisting of two
points where exactly one of them is open, is not small in Top, as was pointed out to
the author by Stefan Schwede. To see this, given a limit ordinal λ, give the set Y =
λ ∪ {λ} the order topology. Let Xα be Y × {0, 1} modulo the equivalence relation
(x, 0) ∼ (x, 1) if x < α. Then the Xα define a λ-sequence in Top. The colimit X of
the Xα is Y with an extra point (λ, 1) with exactly the same neighborhoods at λ.
These two points define a continuous map from the Sierpinski space into X which
does not factor continuously through any Xα. The same example shows that the
indiscrete space on two points is not small.

The best we can do is the following lemma. Recall that an injective map
f : X −→ Y in Top is an inclusion if U is open in X if and only if there is a V open
in Y such that f−1(V ) = U .

Lemma 2.4.1. Every topological space is small relative to the inclusions.

Proof. Suppose X : λ −→ Top is a λ-sequence of inclusions. This means that
each map Xα −→ Xα+1 is an inclusion. However, it follows by transfinite induction
that each map Xα −→ Xβ is an inclusion for β > α, and hence that the map
Xα −→ colimX is an inclusion. Thus, if we can factor a map A −→ colimX through
a map of sets A −→ Xα , then this map is automatically continuous. The lemma
then follows from the fact that every set is small (Example 2.1.5).

Lemma 2.4.1 is enough to let us use the small object argument. However, we
also need a more refined smallness proposition. Define a map f : X −→ Y to be a
closed T1 inclusion if f is a closed inclusion and if every point not in Y \ f(X) is
closed in Y .

Proposition 2.4.2. Compact topological spaces are finite relative to closed T1

inclusions.

Proof. Let λ be a limit ordinal, and letX : λ −→ Top be a λ-sequence of closed
T1 inclusions. It follows that each map Xα −→ colimXα is a closed T1 inclusion.
It suffices to show that, for all maps f : A −→ colimXα, the image f(A) ⊆ Xα for
some α. Suppose the image of f is not contained in Xα for any α < λ. Then we can
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find a sequence of points S = {xn}∞n=1 in f(A) and a sequence of ordinals {αn}∞n=1

such that xn ∈ Xαn
\Xαn−1 . We take α0 = 0. Let µ be the supremum of the αn.

Then µ is a limit ordinal and µ ≤ λ. The intersection of any subset of S with any
Xαn

is finite and avoids X0, and is therefore closed in Xαn
. Since Xµ is the colimit

in Top of the Xαn
, it follows that S has the discrete topology as a subspace of

Xµ. Since Xµ −→ colimXα is a closed inclusion, S also has the discrete topology
as a subset of the compact space f(A) ⊆ colimXα. This is a contradiction, and so
f(A) ⊆ Xα for some α as required.

The symbol R will denote the topological space of real numbers. The symbol
Dn will denote the unit disk in Rn, and the symbol Sn−1 will denote the unit
sphere in Rn, so that we have the boundary inclusion Sn−1 −→ Dn. In order for
this to make sense when n = 0, we let D0 = {0} and S−1 = ∅.

Recall that two maps f, g : X −→ Y are homotopic if there is a mapH : X×I −→
Y such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X . The map H is called
a homotopy from f to g. Homotopy is an equivalence relation. In case X and Y are
pointed spaces with basepoints x and y, respectively, and f and g are basepoint-
preserving maps, then we define f and g to be homotopic if there is a homotopy
H between them such that H(x, t) = y for all t ∈ I . Choose ∗ = (1, 0, . . . , 0)
as the basepoint of Sn. Given a space X and a point x ∈ X , we denote the set
of pointed homotopy classes of pointed maps from (Sn, ∗) to (X, x) by πn(X, x),
and refer to it as the nth homotopy set of X at x. For example, π0(X, x) is the
set of path components of X . One can readily verify that the homotopy sets are
functorial. Note that πn(X, x) is isomorphic to the set of pointed homotopy classes
of pointed maps from (In, ∂In) to (X, x), where In denotes the n-cube I×n, and ∂In

denotes its boundary. Using this description, it is fairly straightforward to show that
πn(X, x) is a group for n ≥ 1, and that πn(f, x) is a group homomorphism for n ≥ 1.
If f, g : (In, ∂In) −→ (X, x) are maps, their product is defined by (fg)(t1, . . . , tn) =
f(2t1, t2, . . . , tn) if t1 ≤

1
2 , and (fg)(t1, . . . , tn) = g(2t1 − 1, t2, . . . , tn) if t1 ≥

1
2 .

This product is visibly not associative or unital, but it is so up to homotopy. If
n ≥ 2, we can use the second coordinate instead of the first to define a different
multiplication; these two multiplications commute and have the same unit, so they
must coincide. This implies that πn(X, x) is abelian for n ≥ 2. See [Spa81, Section
7.2] for details.

If f, g : X −→ Y are homotopic by a homotopy that fixes a point x ∈ X , then
one can easily check that πn(f, x) = πn(g, x). However, if f and g are merely
homotopic, then the trajectory of x defines a path α : I −→ Y . Conjugation by α
defines an isomorphism hαπn(Y, f(x)) −→ πn(Y, g(x)). In this case, one can check,
by constructing explicit homotopies, that πn(g, x) = hα ◦ πn(f, x). In particular,
πn(g, x) is an isomorphism if and only if πn(f, x) is an isomorphism. For more
details, see [Spa81, Section 7.3].

We can now define the model structure on Top.

Definition 2.4.3. A map f : X −→ Y in Top is a weak equivalence if

πn(f, x) : πn(X, x) −→ πn(Y, f(x))

is an isomorphism for all n ≥ 0 and all x ∈ X . Define the set of maps I ′ to consist
of the boundary inclusions Sn−1 −→ Dn for all n ≥ 0, and define the set J to consist
of the inclusions Dn −→ Dn × I which take x to (x, 0), for n ≥ 0. The define the
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map f to be a cofibration if it is in I ′-cof, and define f to be a fibration if it is in
J-inj.

A map in I ′-cell is usually called a relative cell complex ; a relative CW -complex
is a special case of a relative cell complex, where, in particular, the cells can be
attached in order of their dimension. Note in particular that the maps of J are
relative CW complexes, hence are relative I-cell complexes. Thus J-cof ⊆ I ′-cof.
A fibration is often known as a Serre fibration in the literature.

The comments immediately preceding Definition 2.4.3 imply that if f and g
are homotopic, then f is a weak equivalence if and only if g is a weak equivalence.
Recall that a map f : X −→ Y is called a homotopy equivalence if there is a map
g : Y −→ X such that fg is homotopic to 1Y and gf is homotopic to 1X . Then
every homotopy equivalence is a weak equivalence.

As usual, we need to verify the hypotheses of Theorem 2.1.19. We begin with
the weak equivalences.

Lemma 2.4.4. The weak equivalences in Top are closed under retracts and sat-
isfy the two out of three axiom.

Proof. This lemma is straightforward, except for the case where f : X −→ Y
is a weak equivalence and g : Y −→ Z is a map such that g ◦f is a weak equivalence.
In this case, a given point y ∈ Y may not be in the image of f . However, since
π0(f) is an isomorphism, there is a point x ∈ X and a path α : I −→ Y from f(x)
to y. We then have a commutative diagram

πn(Y, y) −−−−→ πn(Z, g(y))y
y

πn(Y, f(x)) −−−−→ πn(Z, g(f(x)))

where the left vertical map is conjugation by the path α, and the right vertical map
is conjugation by the path g ◦ α. The bottom horizontal map is easily seen to be
an isomorphism, and it follows that the top horizontal map is also an isomorphism,
as required.

In view of Lemma 2.4.1, in order to apply the small object argument, we need
to know that the maps of I ′-cell are inclusions.

Lemma 2.4.5. Every map in I ′-cell is a closed T1 inclusion.

Proof. Since every map of I ′ is a closed T1 inclusion, it suffices to verify
that closed T1 inclusions are closed under pushouts and transfinite compositions.
Suppose we have a pushout diagram

A
f

−−−−→ C

i

y
yj

B −−−−→
g

D

where i is a closed T1 inclusion. Then j is injective, so it suffices to show that,
for every closed set V in C, its image j(V ) is closed in D. By definition of the
topology on D, it suffices to show that g−1(j(V )) is closed in B. But, since i is
injective, g−1(j(V )) = i(f−1(V )). Since i is a closed inclusion, this is a closed set
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in B, and so j is a closed inclusion. Furthermore, if d ∈ D is not in the image
of j, then g−1(d) must be a single point not in the image of A. Hence g−1(d) is
closed, and since j−1(d) = ∅ is also closed, it follows that {d} is closed in D. Thus
j is a closed T1 inclusion. We leave the proof that closed T1 inclusions are closed
under transfinite compositions to the reader; it is very similar to the proof used in
Lemma 2.4.1.

Corollary 2.4.6. Every map in I ′-cof, and hence also every map in J-cof, is
a closed T1 inclusion.

Proof. Since we now know that the small object argument can be applied
to I ′, Corollary 2.1.15 implies that we need only check that closed T1 inclusions
are closed under retracts. So suppose f : A −→ B is a retract of the closed T1

inclusion g : X −→ Y by maps i : A −→ X and i : B −→ Y , and corresponding
retractions r : X −→ A and r : Y −→ B. Then f is injective, so to show that f is
a closed inclusion, we need only show that f(C) is closed in B for all closed sets
C in A. But one can easily check that f(C) = i−1gr−1C, so f(C) is closed in
B. Now suppose b ∈ B \ f(A). Then i(b) ∈ Y \ g(X). Indeed, if i(b) = g(x),
then b = rg(x) = fr(x), which is impossible. Hence i(b) is closed in Y , and so
b = i−1(i(b)) is closed in B, and so f is a closed T1 inclusion.

For later use, we prove yet another smallness result for compact spaces mapping
into cell complexes.

Lemma 2.4.7. Suppose λ is an ordinal and X : λ −→ Top is a λ-sequence of
pushouts of I ′ such that X0 = ∅. Then every compact subset of Xλ = colimXα

intersects the interiors of only finitely many cells.

Proof. Suppose K is a compact subset of Xλ, and suppose K intersect the
interiors of infinitely many cells. Then we can find an infinite set S in K such that
each point of S is in the interior of a different cell of Xλ. Let T be an arbitrary
subset of S. We will show that T is closed in Xλ, and hence in K. It follows
that S is an infinite subset of K with the discrete topology, a contradiction to the
compactness of K. To see that T is closed in Y , we will show that Xα \ T is open
in Xα by transfinite induction on α. The initial step of the induction is clear, as
is the limit ordinal case. So suppose Xα \ T is open in Xα. Note that Xα+1 is
the union of the subspace Xα and the cell eα, attached along the boundary of eα.
Hence Xα+1 \ T is union of Xα \ T with either the interior of eα of the interior of
eα minus one point. In either case, Xα+1 \ T is open in Xα+1.

We now show that every map in J-cof is a weak equivalence.

Lemma 2.4.8. Suppose λ is an ordinal, and X : λ −→ Top is a λ-sequence of
closed T1 inclusions that are also weak equivalences. Then the map X0 −→ colimXα

is a weak equivalence (and a closed T1 inclusion).

Proof. Let Xλ = colimXα. We show that each map iα : X0 −→ Xα is a weak
equivalence by transfinite induction on α. This is obvious for α = 0. The successor
ordinal case of the induction is also clear. Now suppose β is a limit ordinal and
iα is a weak equivalence for all α < β. Given a point x ∈ X0 and a homotopy
class [f ] ∈ πn(Xβ , x), Proposition 2.4.2 guarantees that [f ] is represented by a
(necessarily pointed) map g : (Sn, ∗) −→ (Xα, x) for some α < β. Hence [f ] is in
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the image of πn(Xα, x) for some α. Since iα is a weak equivalence, it follows that
πn(X0, x) −→ πn(Xβ , x) is surjective for all x ∈ X0.

To prove injectivity, suppose f, g : (Sn, ∗) −→ (X0, x) become homotopic in
Xβ. Then there is a basepoint-preserving homotopy H : Sn × I −→ Xβ between
iβf and iβg. Proposition 2.4.2 again guarantees that H factors through a map
H ′ : Sn × I −→ Xα for some α < β. Since all the maps in the diagram X are
injective, H ′ must be a basepoint-preserving homotopy between iαf and iαg. Hence
f and g represent the same element of πn(Xα, x), and so must also represent the
same element of πn(X0, x).

Proposition 2.4.9. Every map in J-cof is a trivial cofibration.

Proof. We have already seen that J-cof ⊆ I ′-cof, so every map in J-cof is a
cofibration. We must show that every map in J-cof is a weak equivalence. Recall
that a map i −→ A −→ B is an inclusion of a deformation retract if there is a
homotopy H : B × I −→ B such that H(i(a), t) = i(a) for all a ∈ A, H(b, 0) = b
for all b ∈ B, and H(b, 1) = ir(b) for some map r : B −→ A. It follows that i is an
inclusion map and r is a retraction of B onto A. The inclusion of a deformation
retract is a homotopy equivalence, and hence a weak equivalence. Furthermore,
each map of J is the inclusion of a deformation retract.

We now show that inclusions of deformation retracts are closed under pushouts.
Suppose we have a pushout diagram

A
f

−−−−→ C

i

y
yj

B −−−−→
g

D

where i is the inclusion of a deformation retract. Since I is locally compact Haus-
dorff, it follows that D × I is the pushout of B × I and C × I over A × I . Let
K : B × I −→ B be a homotopy that makes i into the inclusion of a deformation
retract. Then gK together with the map C × I −→ D that takes (c, t) to jc to-
gether define a homotopy H : D × I −→ D. By construction, H(c, t) = jc for all
c ∈ C, and H(d, 0) = d for all d ∈ D. Since K(b, 1) ∈ iA for all b ∈ B, it follows
that H(d, 1) ∈ jC for all d ∈ D. Since j is an inclusion map, H is a deformation
retraction, as required.

We now know that pushouts of maps of J are weak equivalences. They are
also closed T1 inclusions, by Corollary 2.4.6. Lemma 2.4.8 then guarantees that
transfinite compositions of pushouts of maps of J are weak equivalences. Hence
every map in J-cell is a weak equivalence. Since weak equivalences are closed
under retracts, every map in J-cof is a weak equivalence as well.

We now turn our attention to the fibrations.

Proposition 2.4.10. Every map in I ′-inj is a trivial fibration.

Proof. Since J-cof ⊆ I ′-cof, every map in I ′-inj is a fibration. Suppose
p : X −→ Y is in I ′-inj, and x ∈ X . We must show that the map πn(p, x) : πn(X, x) −→
πn(Y, p(x)) is an isomorphism for all n. Note first that the map ∗ −→ Sn, as the
pushout of the map Sn−1 −→ Dn, is in I ′-cof. Thus, given a map g : (Sn, ∗) −→
(Y, p(x)), there is a lift f : (Sn, ∗) −→ (X, x) such that pf = g. Hence πn(p, x) is
surjective. To prove that it is injective, suppose we have two maps f, g : (Sn, ∗) −→
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(X, x) such that pf and pg represent the same element of πn(Y, p(x)). Then there
is a homotopy H : Sn×I −→ Y such that H(x, 0) = p(f(x)), H(x, 1) = p(g(x)), and
H(∗, t) = p(x). The maps f and g define a map Sn∨Sn −→ X , where Sn∨Sn is the
space obtained from Sn q Sn by identifying basepoints. The homotopy H defines
a map H : Sn ∧ I+ = (Sn × I)/(∗ × I) −→ Y . We have a commutative diagram

Sn ∨ Sn
(f,g)
−−−−→ X

y
yp

Sn ∧ I+
H

−−−−→ Y

Since the left-hand vertical map is a relative CW complex (obtained by attaching
an n+ 1 disk to Sn ∨ Sn), we can find a lift in this diagram, giving us the desired
homotopy between f and g. Thus πn(p, x) is injective as well, so p is a weak
equivalence.

We must now prove that every trivial fibration is in I ′-inj. This statement is
claimed without proof in both [Qui67] and [DS95]. This would seem to indicate
that there is a simple proof; the author, however, has been unable to find one. We
will therefore give a complete proof, referring to [Spa81] where necessary.

Lemma 2.4.11. Suppose p : X −→ Y is a map. Then p ∈ I ′-inj if and only if
the map Q(i, p) : XB −→ P (i, p) = XA×Y A Y B is surjective for all maps i : A −→ B
in I ′. In particular, if Q(i, p) is a trivial fibration for all i ∈ I ′, then p ∈ I ′-inj.

Proof. The first part holds by an adjointness argument, using the fact that
the domains and codomains of the maps of I ′ are locally compact Hausdorff. The
second part holds because all trivial fibrations are surjective. To see this, suppose
q : W −→ Z is a trivial fibration. Then π0(q) is surjective, so given z ∈ Z, thee is a
point w ∈ W and a path H : I −→ Z from qw to z. Since q is a fibration, we can lift
this path to a path H ′ : I −→ X such that H ′(0) = w. Then qH ′(1) = H(1) = z,
so q is surjective.

We can now outline the proof.

Theorem 2.4.12. Every trivial fibration is in I ′-inj.

Proof. Suppose p : X −→ Y is a trivial fibration. By Lemma 2.4.11, it suffices
to show that the map Q(i, p) is a trivial fibration, where i : Sn−1 −→ Dn is the
boundary inclusion. By Lemma 2.4.13, Q(i, p) is a fibration. Consider the pullback
square

P (i, p) −−−−→ Y D
n

y
y

XSn−1

−−−−→ Y S
n−1

By Corollary 2.4.14, the right-hand vertical map is a fibration. By Lemma 2.4.17,
the bottom horizontal map is a weak equivalence. By Proposition 2.4.18, the top
horizontal map is also a weak equivalence. Using Lemma 2.4.15, we find that the
composite XDn

−→ P (i, p) −→ Y D
n

is a weak equivalence. The two out of three
property then guarantees that Q(i, p) is a weak equivalence, as required.

We begin the detailed analysis by showing that the map Q(i, p) is a fibration.
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Lemma 2.4.13. Suppose p : X −→ Y is a fibration, and i : Sn−1 −→ Dn is the
boundary inclusion. Then the map Q(i, p) is a fibration.

Proof. By the same adjointness argument used in Lemma 2.4.11, it suffices
to show that the map

(Dm × Sn−1 × I) qDm×Sn−1×{0} (Dm ×Dn × {0}) −→ Dm ×Dn × I

is in J-cof for all m,n ≥ 0. The pair (Dn, Sn−1) is homeomorphic to the pair
(In, ∂In), where In is the n-cube I × I×· · ·× I , and the boundary is the collection
of points where at least one coordinate is 0 or 1. Therefore the map

f : (Sn−1 × I) qSn−1×{0} (Dn × {0}) −→ Dn × I

is homeomorphic to the map

(∂In × I)q∂In×{0} (In × {0}) −→ In × I

which is in turn homeomorphic to the map Dn × {0} −→ Dn × I , by flattening out
the sides of the box (∂In× I)∪ In×{0}. Thus the map f is in J-cof, and the map
Dm × f is homeomorphic to Dm+n × {0} −→ Dm+n × I , so is also in J-cof.

Corollary 2.4.14. Every topological space is fibrant. Hence the map Y Dn

−→

Y S
n−1

is a fibration for all n ≥ 0.

Proof. Every map of J is the inclusion of a retract. Hence every map of the
form Y −→ ∗ has the right lifting property with respect to J , so is a fibration. It
follows from Lemma 2.4.13 applied to the fibration Y −→ ∗ that the map Y Dn

−→

Y S
n−1

is a fibration.

Lemma 2.4.15. If p : X −→ Y is a weak equivalence, so is pD
n

: XDn

−→ Y D
n

.

Proof. Let 0 denote the origin in Dn. The evaluation at 0 map q : ZD
n

−→ Z
has a section j : Z −→ ZD

n

that takes z to the constant map at z. The composite qj
is the identity, and the composite jq is homotopic to the identity by the homotopy
H : ZD

n

× I −→ ZD
n

defined by H(f, t)(x) = f(tx). Therefore q is a homotopy
equivalence, and hence a weak equivalence. The lemma then follows using the two
out of three property.

We must still show that pS
n−1

is a weak equivalence, and that weak equivalences
are preserved by pullbacks through fibrations. The basic tool for both of these
arguments is the long exact homotopy sequence of a fibration.

Lemma 2.4.16. Suppose p : X −→ Y is a fibration in Top, and x ∈ X. Let
F = p−1(p(x)), and i : F −→ X denote the inclusion. Then there is a long exact
sequence

. . . −→ πn+1(Y, p(x))
d∗−→ πn(F, x)

πn(i,x)
−−−−→ πn(X, x)

πn(p,x)
−−−−−→ πn(Y, p(x))

d∗−→ πn−1(F, x) −→ . . .
π0(p,x)
−−−−→ π0(Y, p(x)).

which is natural with respect to commutative squares

X −−−−→ X ′

p

y
yp′

Y −−−−→ Y ′
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where p and p′ are fibrations. Here d∗ is a group homomorphism πn(Y, p(x)) −→
πn−1(F, x) when n > 1, and exactness just means the image of one map is the
kernel of the next.

This lemma is proved in [Spa81, Theorem 7.2.10], but the proof is better left
as an exercise for the interested reader.

Lemma 2.4.17. Suppose p : X −→ Y is a weak equivalence. Then pS
n

: XSn

−→
Y S

n

is a weak equivalence for all n ≥ −1, where S−1 = ∅.

Proof. The proof is by induction on n. The pushout square

Sn−1 −−−−→ Dn

y
y

∗ −−−−→ Sn

gives rise to a pullback square

ZS
n

−−−−→ ZD
n

y
y

Z −−−−→ ZS
n−1

for any Z, where, by Lemma 2.4.13, the right-hand vertical map, and hence also
the left-hand vertical map, is a fibration. The map p induces a map between this
pullback square with Z = X to this pullback square with Z = Y . The homo-
topy long exact sequence of these fibrations then allows us to do the induction
step. To be more precise, given a point α ∈ XSn

, let FX denote the fiber of
XSn

−→ X containing α. Let FY denote the corresponding fiber of Y S
n

−→ Y
containing pα. We first show that FX −→ FY is a weak equivalence. Note that

FX is also the fiber of XDn

−→ XSn−1

, and similarly for FY , so a five-lemma ar-
gument using the inductive hypothesis and the long exact sequence of a fibration
shows that the map FX −→ FY induces an isomorphism on positive-dimensional
homotopy. The five-lemma runs into trouble on π0, but a point of FX just a
basepoint-preserving map (Sn, ∗) −→ (X,α(0)), and similarly for FY . By definition,
π0(FX , α) = πn(X,α(0)), and similarly for Y . Hence, by hypothesis, the induced
map π0(FX , α) −→ π0(FY , pα) is an isomorphism, and thus FX −→ FY is a weak
equivalence.

Now we would like to use the five-lemma argument again to show that XSn

−→
Y S

n

is a weak equivalence. Once again, there is no difficulty with positive-dimensional
homotopy, but we run into trouble with π0. Suppose we have two points α and β of
XSn

that are sent to the same path component of Y S
n

. Since π0 does not depend
on the choice of basepoint, we may as well choose α as our basepoint. Then the
long exact sequence implies that α(∗) and β(∗) lie in the basepoint path component
of X . We can then repeat the usual five-lemma argument to conclude that π0(p

Sn

)
is injective.

To see that π0(p
Sn

) is surjective, note that π0(X
Sn

, α) ∼= [Sn, X ], where [A,Z]
means (free) homotopy classes of maps from A to Z. Similarly, π0(Y

Sn

, pα) ∼=
[Sn, Y ]. Now, any element [f ] of [Sn, Y ] represents an element of πn(Y, y) for some
y ∈ Y . Since π0(p) is an isomorphism, there is a point x ∈ X such that p(x) is
in the same path component of Y . Choose a path ω from y to p(x). Then, as in
the discussion preceding Definition 2.4.3, there is an isomorphism hω : πn(Y, y) −→
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πn(Y, p(x)), given by conjugating with ω. Choose a preimage [g] ∈ πn(X, x) of
hω[f ]. Then pg is homotopic to hωf by a basepoint-preserving homotopy, and
it follows that pg is freely homotopic to f . See [Spa81, Section 7.3] for more
details.

Finally, we prove that topological spaces are right proper, in the following sense.

Proposition 2.4.18. Suppose we have a pullback square

W
f

−−−−→ X

q

y p

y

Z
g

−−−−→ Y

in Top, where p is a fibration and g is a weak equivalence. Then f is a weak
equivalence.

Proof. This is another five-lemma argument. Given w ∈ W , let F denote
q−1(q(w)). Then the induced map F −→ F ′ = p−1(pf(w)) is a homeomorphism.
Hence the induced map πn(F,w) −→ πn(F ′, f(w)) is an isomorphism for all n. The
map πn(Z, q(w)) −→ πn(Y, gq(w)) is also an isomorphism for all n since g is a weak
equivalence. Lemma 2.4.16 and a diagram chase then show that πn(f, w) is an
isomorphism for n ≥ 1. In fact, this same diagram chase also shows that π0(f) is
an injection, using the trick of changing the basepoint that we used the proof of
Lemma 2.4.17.

We still must show that π0(f) is surjective. Suppose x ∈ X . Then there is a
point z ∈ Z and a path α : D1 −→ Y from p(x) to g(z), since π0(g) is surjective.
Because p is a fibration, we can find a lift of this path to a path β : I −→ X
such that β(0) = x. In particular, (z, β(1)) ∈ W and there is a path in X from
f(z, β(1)) = β(1) to x. Hence π0(f) is surjective, as required.

We have now completed the proof of Theorem 2.4.12. The recognition theo-
rem 2.1.19 then immediately implies that topological spaces form a model category.

Theorem 2.4.19. There is a finitely generated model structure on Top with I ′

as the set of generating cofibrations, J as the set of generating trivial cofibrations,
and the weak equivalences as above. Every object of Top is fibrant, and the cofibrant
objects are retracts of relative cell complexes.

The corollary below then follows from Proposition 1.1.8 and Lemma 2.1.21.

Corollary 2.4.20. There is a finitely generated model structure on the cate-
gory Top∗ of pointed topological spaces, with generating cofibrations I ′+ and gen-
erating trivial cofibrations J+. Every object is fibrant, and a map is a cofibration,
weak equivalence, or fibration if and only if its image in Top is so.

There are several model categories associated with the model category of topo-
logical spaces that we now consider. As we have discussed above, the function
space (−)X is not a right adjoint to the product −×X in general. This is a serious
drawback with the category Top, but there are several subcategories of Top which
do not have this drawback. We will discuss two of them.

Definition 2.4.21. Let X be a topological space.

1. X is weak Hausdorff if, for every continuous map f : K −→ X , where K is
compact Hausdorff, the image f(K) is closed in X .
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2. A subset U of X is compactly open if for every continuous map f : K −→
X where K is compact Hausdorff, f−1(U) is open in K. Similarly, U is
compactly closed if for every such map f , f−1(U) is closed in K.

3. X is a Kelley space, or a k-space, if every compactly open subset is open,
or equivalently, if every compactly closed subset is closed. A k-space that is
also weak Hausdorff is called a compactly generated space. We denote the
full subcategory of Top consisting of k-spaces by K, and the full subcategory
of K consisting of compactly generated spaces by T.

4. The k-space topology on X , denoted kX , is defined by letting U be open in
kX if and only if U is compactly open in X .

5.

The definitive source for k-spaces and compactly generated spaces is [Lew78,
Appendix]; see also [Wyl73]. The category T is the most commonly used category
of topological spaces in algebraic topology; in particular, it is used in [LMS86],
and hence also in [EKMM97], and also in [HSS98].

The basic facts about k-spaces and compactly generated spaces are contained
in the following omnibus proposition. See [Lew78, Appendix] for the proof.

Proposition 2.4.22. 1. The inclusion functor K −→ Top has a right ad-
joint and left inverse k : Top −→ K that takes X to X with its k-space
topology.

2. The inclusion functor T −→ K has a left adjoint and right inverse w : K −→
T that takes X to its maximal weak Hausdorff quotient.

3. K has all small limits and colimits, where colimits are taken in Top and
limits are taken by applying k to the limit in Top.

4. T has all small limits and colimits, where limits are taken in K and colimits
are taken by applying w to the colimit in K.

5. For X,Y ∈ K, define C(X,Y ) to be the set of continuous maps from X to
Y , given the topology generated by the subbasis S(f, U). Here U is an open
set in Y , f : K −→ X is a continuous map from a compact Hausdorff space
K into X, and S(f, U) is the set of all g : X −→ Y such that (g ◦f)(K) ⊆ U .
Define Hom(X,Y ) to be kC(X,Y ). Then we have a natural isomorphism
K(k(X × Y ), Z) −→ K(X,Hom(Y, Z)) for all X,Y, Z ∈ K.

6. If X ∈ K and Y ∈ T, then C(X,Y ) is weak Hausdorff. Hence, for X,Y, Z ∈
T, we have a natural isomorphism T(k(X × Y ), Z) −→ T(X,Hom(Y, Z)).

The biggest drawback of T is that it is difficult to understand colimits. How-
ever, in practive most colimits are already weak Hausdorff, so there is no need
to apply w. This is true for transfinite compositions of injections and pushouts
of closed inclusions [Lew78, Appendix]. We also point out that an adjointness
argument shows that w preserves the k-space product.

Both K and T are model categories in their own right.

Theorem 2.4.23. The category K of k-spaces admits a finitely generated model
structure, where a map is a cofibration (fibration, weak equivalence) if and only if
it is so in Top. The inclusion functor K −→ Top is a Quillen equivalence.

Proof. We define a map to be a weak equivalence if and only if it is so in Top,
and we use the same sets I ′ of generating cofibrations and J of generating trivial
cofibrations. Then it is clear that a map is a fibration or trivial fibration if and
only if it is so in Top, and hence that the trivial fibrations form the class I ′-inj. If
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f ∈ K is a cofibration in Top, then it has the left lifting property with respect to all
maps in I ′-inj, and hence is also a cofibration in K. Conversely, suppose f ∈ I ′-cof
in K. Then f is a retract of a transfinite composition of pushouts of I ′. Since the
forgetful functor K −→ Top preserves colimits, it follows that f is in I ′-cof in Top.
Therefore, a map is a cofibration if and only if it is so in Top. Similarly, a map
is in J-cof in K if and only f it is a map in K which is in J-cof as a map in Top.
Thus, the trivial cofibrations coincide with J-cof, and the cofibrations are closed
T1 inclusions. The recognition theorem 2.1.19 therefore applies.

To see that the forgetful functor is a Quillen equivalence, note that it cer-
tainly reflects weak equivalences between cofibrant objects. It follows from Corol-
lary 1.3.16 that we need only show the map kX −→ X is a weak equivalence. But, if
A is compact Hausdorff, then Top(A,X) = Top(A, kX). It follows that kX −→ X
is a weak equivalence as required.

The corollary below then follows from Proposition 1.1.8 and Proposition 1.3.17.

Corollary 2.4.24. There is a finitely generated model structure on the cate-
gory K∗ of pointed k-spaces, with generating cofibrations I ′+ and generating trivial
cofibrations J+. A map is a cofibration, fibration, or weak equivalence if and only
if it is so in Top. The inclusion functor is a Quillen equivalence K∗ −→ Top∗.

Similarly, we have the following theorem.

Theorem 2.4.25. The category T of compactly generated spaces admits a finitely
generated model structure, where a map is a cofibration (fibration, weak equivalence)
if and only if it is so in K. The functor w : T −→ K is a Quillen equivalence.

Proof. We use the same argument as in Theorem 2.4.23. We use the same
generating sets I ′ and J . The same argument shows that a map is a fibration in
T if and only if it is a fibration in K, and hence that trivial fibrations coincide
with I ′-inj. Once again, a map in T that is a cofibration in K has the left lifting
property with respect to all maps in I ′-inj, so is a cofibration in T. The converse is
slightly more complicated, since the forgetful functor T −→ K does not preserve all
colimits. However, it does preserves pushouts of closed inclusions and transfinite
compositions of injections, and this is sufficient to guarantee that a cofibration in T

is also a cofibration in K. The same argument implies that a map in T is in J-cof
as a map of T if and only if it is J-cof as a map of K. It follows that the trivial
cofibrations are the class J-cof, and that the cofibrations are closed inclusions.
(Note that every space in T is T1). The recognition theorem 2.1.19 then completes
the proof that T is a cofibrantly generated model category.

The forgetful functor T −→ K obviously preserves fibrations and trivial fibra-
tions and reflects weak equivalences. By Corollary 1.3.16, to show that w : K −→ T,
it suffices to show that X −→ wX is a weak equivalence for all cofibrant X . How-
ever, cofibrant X are already weak Hausdorff, since w preserves the colimits used
to form a cofibrant X from I ′, so in fact wX −→ X is an isomorphism for cofibrant
X .

We get the standard corollary for pointed compactly generated spaces.

Corollary 2.4.26. There is a finitely generated model structure on T∗ with
generating cofibrations I ′+ and generating trivial cofibrations J+. A map is a cofi-
bration, fibration, or weak equivalence if and only if it is so in Top. The functor
w∗ : K∗ −→ T∗ is a Quillen equivalence.
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2.5. Chain complexes of comodules over a Hopf algebra

Suppose that k is a field and B is a commutative Hopf algebra over k. Let
B-comod denote the category of left B-comodules, and let Ch(B) denote the cate-
gory of chain complexes of left B-comodules. There is some ambiguity of notation
here, since Ch(B) could also denote the category of chain complexes of B-modules,
but this ambiguity should be easily tolerated. We will put a cofibrantly generated
model category structure on Ch(B) so the associated homotopy category is the
stable homotopy category considered in [HPS97, Section 9.5].

Throughout this section, the symbol A⊗B will mean A⊗k B, and the symbol
Hom(A,B) will mean Homk(A,B).

2.5.1. The category of B-comodules. Since the category of B-comodules
is considerably less familiar to most mathematicians than the category of modules
over a ring, we will need to prove some basic results about this category first. These
results can also be found in [HPS97, Section 9.5].

First we remind the reader that a commutative Hopf algebra over k is, by
definition, a cogroup object in the category of commutative k-algebras. Equiva-
lently, a commutative Hopf algebra B is a commutative k-algebra B, whose unit
we always denote by η : k −→ B and whose multiplication we always denote by
µ : B ⊗ B −→ B, together with maps of algebras ∆: B −→ B ⊗ B (the comulti-
plication or diagonal), ε : B −→ k (the counit), and χ : B −→ B (the conjugation
or inverse), satisfying the following conditions. We require that ∆ is coassocia-
tive, so that (∆ ⊗ 1)∆ = (1 ⊗ ∆)∆. We require that ∆ is counital, so that
(ε⊗1)∆ = (1⊗ε)∆ = 1B, where we have used the identification B⊗k ∼= B ∼= k⊗B.
And we require that the inverse be an inverse, so that µ(1⊗χ)∆ = ηε = µ(χ⊗1)∆.
Note that, in considering ∆ as a map of algebras, the multiplication on B⊗B that
we use is the composite

B ⊗B ⊗B ⊗B
1⊗T⊗1
−−−−→ B ⊗B ⊗B ⊗B

µ⊗µ
−−−→ B ⊗B

where T is the twist map. We have an obvious notion of a map of Hopf algebras as
well.

Since χ corresponds to the inverse map, the usual properties of the inverse
map hold for χ. For example, we have χ2 = 1 and, corresponding to the relation
(xy)−1 = y−1x−1, we have ∆χ = T (χ⊗ χ)∆.

A standard example of a commutative Hopf algebra is F (G, k), the algebra of
functions from a finite group G to k (dual to the group ring k[G]). Any affine
group scheme over k corresponds to a Hopf algebra over k. For example SL2(k)
corresponds to the Hopf algebra k[x11, x12, x21, x22][d

−1], where d is the determinant
x11x22 − x12x21, and where the comultiplcation is dual to matrix multiplication.
Thus ∆(x11) = x11 ⊗ x11 + x12 ⊗ x21.

We can also consider graded commutative Hopf algebras. In this case, we
would require B to be a graded commutative k-algebra. That is, we would define
T (x ⊗ y) = (−1)d(x)d(y)(y ⊗ x), where d(x) denotes the degree of x. The dual
Steenrod algebra A∗ is an example of a graded commutative Hopf algebra.

Given a commutative Hopf algebra B, its dual B∗ = Hom(B, k) is always an
algebra, but need not have any kind of diagonal map. Indeed, there is a natural
map B∗ ⊗B∗ −→ (B ⊗B)∗, but this map is only an isomorphism when B is finite-
dimensional. Thus we can get a multiplication on B∗ dual to ∆, but not always
a comultiplication. If B is graded, B∗ is defined using the graded Hom, so B∗

n =
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Hom(B−n, k). In this case, B∗ is a graded algebra, which has a comultiplication if
B is finite-dimensional in each degree.

Given a commutative Hopf algebra B, recall that a (left) B-comodule is a k-
vector space M equipped with a map of vector spaces ψ : M −→ B ⊗M which is
coassociative and counital. That is, we have (∆⊗1)ψ = (1⊗ψ)ψ and (ε⊗1)ψ = 1M
under the identification M ∼= k⊗M . Given comodules M and N , a comodule map

M
f
−→ N is a vector space map such that ψf = (1⊗ f)ψ. Of course, if B is graded,

we require a B-comodule to be graded and the coaction ψ to be a graded map.
If M is a B-comodule, we can think of M as a B∗-module using the structure

map

B∗ ⊗M
1⊗ψ
−−−→ B∗ ⊗B ⊗M

ev⊗1
−−−→M

where ev is the evaluation map B∗ ⊗ B −→ k. This defines a functor from the
category of B-comodules to the category of B∗-modules which is obviously full and
faithful. Hence the category of B-comodules is isomorphic to a full subcategory of
the category of B∗-modules. We must determine exactly which subcategory this is.

Choose a basis {bi} for B over k, which should be homogeneous if B is graded.
We will commonly write ψ(m) =

∑
bi ⊗ mi for m ∈ M , where M is a left B-

comodule. Of course, all but finitely many of the mi must be 0 in this description.
The most important fact about comodules is the following.

Lemma 2.5.1. Suppose M is a B-comodule, and m ∈M . Then the subcomod-
ule generated by m is finite-dimensional.

Proof. Write ψ(m) =
∑
bi ⊗mi as above. Let M ′ denote the vector space

spanned by the mi. Then M ′ is a subcomodule of M , as may be seen by applying
1⊗ψ and using coassociativity. Since M ′ contains m and is finite-dimensional, the
result follows.

Corollary 2.5.2. Suppose B is a commutative Hopf algebra and M is a sim-
ple B-comodule. That is, suppose M is nonzero and has no nontrivial proper sub-
comodules. Then M is finite-dimensional.

Proof. Take a nonzero element m ∈M . Then the comodule generated by m
must be M , since M is simple. Lemma 2.5.1 completes the proof.

Corollary 2.5.3. Suppose B is a commutative Hopf algebra over a field k.
Then every nonzero comodule has a simple subcomodule.

Proof. Certainly every comodule has a finite-dimensional subcomodule, by
Lemma 2.5.1. Since every one-dimensional comodule is simple, we can prove by
induction on the dimension that every finite-dimensional comodule has a simple
subcomodule.

Lemma 2.5.1 motivates the following definition.

Definition 2.5.4. Define a B∗-module M to be tame if, for all m ∈ M , the
submodule generated by m is finite-dimensional.

If M is a B-comodule, then when we think of M as a B∗-module as above, M
is tame. This leads to the following proposition.
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Proposition 2.5.5. There is an isomorphism of categories which is the iden-
tity on objects between the category of left B-comodules and the category of tame
left B∗-modules. Furthermore, the inclusion functor from left B-comodules to left
B∗-modules has a right adjoint R.

Proof. We have already seen that a B-comodule M can be made into a B∗-
module. In concrete terms, we define for f ∈ B∗ and m ∈ M , fm =

∑
f(bi)mi,

where ψ(m) =
∑
bi⊗mi and {bi} is a basis for B. In particular, the sub-B∗-module

generated by m is the sub-B-comodule generated by m, so M is a tame B∗-module.
Conversely, suppose M is a B∗-module, with structure map B∗ ⊗M −→ M .

This structure map corresponds to a map M −→ Hom(B∗,M). There is an inclusion

B ⊗M
i
−→ Hom(B∗,M) defined by i(b ⊗ m)(f) = f(b)m. The image of i is the

set of g ∈ Hom(B∗,M) which factor through a finite-dimensional quotient of B∗.
In particular, if M is tame, the map M −→ Hom(B∗,M) factors through B ⊗M ,
giving us the required B-comodule structure.

Now, given an arbitrary B∗-module M , we can define RM to be the submodule
consisting of allm such that B∗m is finite-dimensional. Then RM is obviously tame
and corresponds to a B-comodule, which we also denote RM . This defines a functor
R which is both a left inverse and a right adjoint to the inclusion functor.

Corollary 2.5.6. The category of B-comodules has all small limits and col-
imits.

Proof. Given a functor F from a small category to B-comodules, let colimF
denote a colimit of F in the category of vector spaces. Because the tensor product
preserves colimits, there is a unique B-comodule structure on colimF , and this
comodule structure makes colimF into a colimit in the category of B-comodules.

This is not true with limits. There may be no B-comodule structure on limF ,
but there is certainly a B∗-module structure on it making limF into a limit in the
category of B∗-modules. Hence R(limF ) is a B-comodule, which one can check is
a limit of F in the category of B-comodules.

Corollary 2.5.6 then implies that Ch(B) also has all small limits and colimits,
taken dimensionwise.

Corollary 2.5.7. Every B-comodule is small. Every finite-dimensional B-
comodule is finite.

Proof. For the first part, we already know that every B∗-module is small,
by Example 2.1.6. For the second part, suppose we have a limit ordinal λ and
a λ-sequence X : λ −→ BB-comod. Suppose A is finite-dimensional. The usual
arguments show that the map colimBB-comod(A,Xα) −→ BB-comod(A, colimXα)
is injective, and that any map A −→ colimXα factors through a map of vector space
g : A −→ Xα for some α < λ. The map g may not be a comodule map. However,
for each basis element a of A, there is a βa < λ so that g respects the diagonal of a
when we go out to Xβa

. Since A is finite-dimensional, we can find a simgle β and
a factorization of f through a map of comodules A −→ Xβ, as required.

The same argument as in Lemma 2.3.2 then shows that every object on Ch(B)
is small, and that every totally finite-dimensional complex is finite.

We now show that the category of B-comodules is a closed symmetric monoidal
category. See Section 4.1 for a precise definition of a closed symmetric monoidal
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category. The main point is that there is a tensor product and a Hom functor.
Indeed, given comodules M and N , we can put a B-comodule structure on M ⊗N
by the composite

M ⊗N
ψ⊗ψ
−−−→ B ⊗M ⊗B ⊗N

1⊗T⊗1
−−−−→ B ⊗B ⊗M ⊗N

µ⊗1⊗1
−−−−→ B ⊗M ⊗N

where ψ denotes the comodule structure on M and N , T is the commutativity
isomorphism of the tensor product, and µ is the multiplication map of B. We
require B to be commutative in order for this composite to be coassociative. We
leave it to the reader to check that this tensor product is commutative, associative,
and unital up to coherent isomorphism. The unit is the trivial comodule k. If
B is graded, then M ⊗ N is defined to be the graded tensor product, so that
(M ⊗N)m =

⊕
Mk ⊗Nm−k, and the B-comodule structure is defined as above.

We claim that this tensor product has a right adjoint (in each variable). This
right adjoint will of course be related to Homk(M,N), but it is rather complicated to
define it. First suppose M and N are tame B∗-modules. Dual to the multiplication
and conjugation on B we have maps ∆∗ : B∗ −→ Homk(B,B

∗) and χ∗ : B∗ −→ B∗.
We are going to define a B∗-module structure on Homk(M,N) by a horrendous
formula, which is necessary since we are not assuming that B is finite-dimensional.
Recall we have chosen a basis {bi} for B; we let {b∗i } denote the dual basis for B∗.
Given f ∈ Homk(M,N) and u ∈ B∗, we define uf by the formula

uf(x) =
∑

i

b∗i f [χ∗((∆∗u)(bi))x].

Since M and N are both tame, this sum is in fact finite. Indeed, B∗x is finite-
dimensional, so f(B∗x) is as well; thus b∗i f(B∗x) is zero for almost all i. We leave
it to the reader to check that this gives a B∗-module structure on Homk(M,N). If
B is graded, we get a graded B∗-module structure on the graded Hom.

Hence, given B-comodules M and N , we get a B-comodule RHomk(M,N).
We leave it to the reader to verify that this functor is indeed right adjoint to the
tensor product.

Now we consider injective B-comodules. First note that the forgetful functor
U from B-comodules to k-vector spaces has a right adjoint. Indeed, given a vector
space V , this right adjoint takes V to the comodule B⊗V with structure map ∆⊗1.

A map M
f
−→ V of vector spaces induces a comodule map (1 ⊗ f)ψ. Conversely,

a comodule map g : M −→ B ⊗ V induces a vector space map εg : M −→ V . A
comodule of the form B ⊗ V for some vector space V is called a cofree comodule.
Note that adjointness implies that cofree comodules are injective.

Proposition 2.5.8. Suppose B is a commutative Hopf algebra over a field k.

(a) For any comodule M , there is a natural isomorphism B ⊗M
t
−→ B ⊗ UM ,

where B⊗UM denotes the cofree comodule on UM and B⊗M denotes the
tensor product of comodules.

(b) Every comodule is isomorphic to a subcomodule of an injective comodule. In
particular, there are enough injectives in the category of B-comodules and
so we can define the functors ExtnB(M,N) for comodules M and N as usual.

(c) A comodule is injective if and only if it is a retract of a cofree comodule.
(d) Coproducts of injective comodules are injective.
(e) If I is injective and M is any comodule, then I ⊗M is injective.
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(f) A comodule I is injective if and only if, for all inclusions M
i
−→ N of

finite-dimensional comodules and all maps f : M −→ I, there is an extension
g : N −→ I such that gi = f .

(g) A comodule I is injective if and only if Ext1B(M, I) = 0 for all simple co-
modules M .

Proof. For part (a), define t as the composite

B ⊗M
1⊗ψ
−−−→ B ⊗B ⊗M

µ⊗1
−−→ B ⊗M

because µ is a map of coalgebras, t is a comodule map. The inverse of t is the
composite

B ⊗M
1⊗ψ
−−−→ B ⊗B ⊗M

1⊗χ⊗1
−−−−→ B ⊗B ⊗M

µ⊗1
−−→ B ⊗M

We leave it to the reader to check that these maps are inverse isomorphisms of
comodules.

For part (b), suppose M is a comodule. The injection k
η
−→ B of comodules

gives an injection M −→ B ⊗M ∼= B⊗UM of comodules. Since B⊗UM is cofree,
it is injective. We then define Ext∗(M,N) in the usual way, by taking an injective
resolution of N , applying HomB(M,−) to it, and taking homology.

For part (c), we have already seen that any cofree comodule, and hence any
retract of a cofree comodule, is injective. By part (b), any injective embeds into a
cofree comodule, and this embedding must split.

Part (d) follows from part (c) and the fact that direct sums of cofree comodules
are cofree. Similarly, if I is injective and M is any comodule, then I is a retract of
B ⊗ I . Hence I ⊗M is a retract of B ⊗ (I ⊗M) ∼= B ⊗U(I ⊗M), which is cofree.
Thus I ⊗M is injective.

For part (f), we use Zorn’s lemma. Suppose I satisfies the hypotheses of part (f),
i : M −→ N is an arbitrary injection of comodules, and f : M −→ I is a map. Let S
denote the set of all pairs (P, h), where P is a subcomodule of N containing i(M)
and hi = f . Partially order S by defining (P, h) ≤ (P ′, h′) if and only if P ⊆ P ′ and
h′ is an extension of h. It is easy to see that a totally ordered subset of S has an
upper bound, so by Zorn’s lemma S has a maximal element (N ′, g). We claim that
N ′ = N . Indeed, suppose not, and choose an n ∈ N but not in N ′. Let L denote
the subcomodule generated by n, which is finite-dimensional. Then the restriction
of g defines a map L ∩ N ′ −→ I , which by hypothesis can be extended to a map
g′ : L −→ I . Then g and g′ define an extension L+N ′ −→ I of g, contradicting the
maximality of (N ′, g). Hence we must have had N ′ = N , and so I is injective.

Finally, for part (g), suppose Ext1B(M, I) = 0 for all simple comodules M .
We use induction on the dimension to show that Ext1B(N, I) = 0 for all finite-
dimensional comodulesN . We can certainly get started, since every one-dimensional
comodule is simple. Now suppose we have proved it for all comodules of dimension
< n, and N has dimension n. If N is simple, there is nothing to prove. If not, then
N has a subcomodule N ′ of smaller dimension. We then have an exact sequence

Ext1B(N/N ′, I) −→ Ext1B(N, I) −→ Ext1B(N ′, I)

so we must have Ext1B(N, I) = 0. Now suppose M
i
−→ N is an arbitrary inclusion

of finite-dimensional comodules. Then we have an exact sequence

0 −→ HomB(N/M, I) −→ HomB(N, I) −→ HomB(M, I) −→ Ext1B(N/M, I) = 0
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Hence any map M −→ I has an extension to N . By part (f), it follows that I is
injective.

2.5.2. Weak equivalences. We now describe the weak equivalences in our
model structure on Ch(B).

First note that the tensor product on the category of B-comodules extends to a
tensor product on Ch(B). Indeed, given chain complexes X and Y of B-comodules,
we define

(X ⊗ Y )n =
⊕

m

Xm ⊗ Yn−m

wherem runs through all integers, including the negative ones. We define d(x⊗y) =
dx ⊗ y + (−1)mx ⊗ dy on Xm ⊗ Yn−m. In a similar fashion, we also get a Hom
functor using the Hom functor on B-comodules.

Now choose a specfic injective resolution Lk of the trivial comodule k. We think
of Lk as a complex of injective comodules concentrated in nonpositive degrees.

Definition 2.5.9. Suppose B is a commutative Hopf algebra over a field k,
M is a simple B-comodule (see Corollary 2.5.2), X ∈ Ch(B), and n is an integer.
Define the nth homotopy group of X with respect to M , πMn (X), to be the vector
space [SnM,Lk⊗X ] of chain homotopy classes of chain maps from SnM to Lk⊗X .
Here SnM is the complex whose only nonzero comodule is M in degree n, and Lk
is an injective resolution of k.

The reader who has forgotten the definition of chain homotopy can consult the
paragraph preceding Lemma 2.3.8.

Note that πMn (X) does not depend on the choice of injective resolution Lk of
k. Indeed, any two such injective resolutions are chain homotopy equivalent, and
so will still be chain homotopy equivalent after tensoring with X .

Note as well that k itself is a simple comodule. If M is an arbitrary comodule,
then Lk⊗M is an injective resolution for M , by Proposition 2.5.8. Hence we have
πkn(M) ∼= ExtnB(k,M). There are many cases when k is the only simple comodule,
as for example when B = F (G, k), G is a finite p-group, and k has characteristic
p. When B is a connected graded Hopf algebra (i.e. when B0 = k and Bn = 0 for
n < 0), the only simple (graded) comodules are one-dimensional (but can be in any
degree).

Finally, note that πMn (X) is functorial in X .

Definition 2.5.10. Suppose B is a commutative Hopf algebra over a field k.
Define a map f : X −→ Y in Ch(B) to be a weak equivalence if πMn (f) is an isomor-
phism for all simple comodules M and integers n.

We need some basic properties of weak equivalences. First note that weak
equivalences obviously form a subcategory, are closed under retracts, and obey the
two out of three axiom.

Lemma 2.5.11. (a) Suppose 0 −→ W −→ X −→ Y −→ 0 is a short exact
sequence in Ch(B). Then there is an induced long exact sequence

. . . −→ πMn+1Y −→ πMn W −→ πMn X −→ πMn Y −→ πMn−1W −→ . . .

for all simple comodules M .
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(b) Suppose we have a pushout square in Ch(B)

C −−−−→ X

f

y g

y

D −−−−→ Y

where f is an injective weak equivalence. Then g is an injective weak equiv-
alence.

(c) Suppse λ is an ordinal, and X : λ −→ Ch(B) is a λ-sequence of weak equiv-
alences. Then the transfinite composition X0 −→ colimXα of X is a weak
equivalence. More generally, if X is an arbitrary λ-sequence, and λ is a
limit ordinal, the map colimπMn (Xα) −→ πMn (colimXα) is an isomorphism
for all simple comodules M and integers n.

Proof. For part (a), we have a short exact sequence

0 −→ Lk ⊗W −→ Lk ⊗X −→ Lk ⊗ Y −→ 0

which is split since Lk ⊗W is injective in each dimension by Proposition 2.5.8. A
class in πMn Y is represented by a map M −→ Zn(Lk ⊗ Y ) of comodules. Applying
the splitting, we get a map M −→ (Lk ⊗ X)n. Applying d, we get a map M −→
Zn−1(Lk⊗X), which in fact is a map M −→ Zn−1(Lk⊗W ). The reader can verify
by standard diagram chases that this defines a map πMn Y −→ πMn−1W and that the
associated long sequence is exact.

For part (b), let K denote the cokernel of f . By part (a) we have πMn K = 0
for all simple comodules M and integers n. Since we have a short exact sequence

0 −→ C
g
−→ D −→ K −→ 0,

part (a) implies that g is also a weak equivalence.
For part (c), we prove the more general statement, from which the first state-

ment follows easily. So we must show that the map colimπMn (Xα) −→ πMn (colimXα)
is an isomorphism. This is a consequence of the smallness argument used to
prove that all modules are small in Example 2.1.6. We first show that our map
is surjective. A class [g] in πMn (colimXα) is represented by a map g : SnM −→
Lk ⊗ colimXα. The map g is determined by gn : M −→ Zn(colimLk ⊗ Xα) of
comodules, where ZnY is the cycles in dimension n of the chain complex Y . Both
the tensor product functor and the cycles functor commute with colimits. Since M
is finite-dimensional, gn must factor through a map hn : M −→ Zn(Lk ⊗ Xβ) for
some β < λ. (Recall that gn obviously factors through a map h′n of sets, but by
going farther out we can get a map of comodules.) The map h : SnM −→ Lk ⊗Xα

represents a class [h] in πMn (Xα) which hits the class [g].
We now show that the map colimπMn (Xα) −→ πMn (colimXα) is injective. Let

ϕβ : Xβ −→ colimXα denote the structure maps of the colimit, and ϕβ,γ : Xβ −→ Xγ

denote the structure maps of X . Suppose [g] ∈ πMn (Xβ) goes to 0. This means
that there is a map h : M −→ (Lk⊗ colimXα)n+1 such that dh = ϕβgn. As before,

this map must factor through a comodule map h′ : M
Lk⊗Xγ
−−−−−→n+1 for some γ < λ.

By going out farther, if necessary, we can also arrange that dh′ = ϕβ,γg. It follows
that [g] goes to 0 in colimπMn (Xα), as required.
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2.5.3. The model structure. We now want to define a model structure on
Ch(B) with the homotopy isomorphisms as the weak equivalences.

Definition 2.5.12. Let B be a commutative Hopf algebra over a field k. Define
J ′ to be a set of maps containing a representative of each isomorphism class of
inclusions i : M −→ N of finite-dimensional comodules. Then define the set J in
Ch(B) to be the set of maps Dnj, where n is an integer and j ∈ J ′. Define the
set I to be the union of J and the maps Sn−1M −→ DnM , where n is an integer
and M runs through the isomorphism classes of simple comodules. Define a map
in Ch(B) to be a cofibration if it is in I-cof, and define a map to be a fibration if it
is J-inj.

Proposition 2.5.13. Every map in J-cof is a trivial cofibration in Ch(B).

Proof. Since J ⊆ I , J-cof ⊆ I-cof, so every map of J-cof is a cofibration.
Since every object of Ch(B) is small, the small object argument applies. Thus,
every map in J-cof is a retract of a map in J-cell. It therefore suffices to show that
transfinite compositions of pushouts of maps of J are weak equivalences. In light
of Lemma 2.5.11, it suffices to show that the maps of J are weak equivalences (and
injections). The complex DnM is chain homotopy equivalent to 0, so Lk ⊗DnM
is also chain homotopy equivalent to 0. It follows that the maps of J are weak
equivalences, as required.

Proposition 2.5.14. A map p : X −→ Y in Ch(B) is a fibration if and only if
pn : Xn −→ Yn is a surjection with injective kernel for all n.

Proof. Suppose first that p is a fibration. Consider an element y in Yn. The
subcomodule M generated by y is finite-dimensional, by Lemma 2.5.1. We have a
commutative diagram

Dn0 −−−−→ X
y p

y

DnM −−−−→ Y

Since p is a fibration, there is a lift DnM −→ X . The image of the class y is a
preimage of y ∈ Yn. Hence each pn is surjective.

Now let A be the kernel of p, and let i : A −→ X denote the inclusion map. We
want to show that An is injective. We will use Proposition 2.5.8. Suppose we have

a map M
f
−→ An and an injection M

g
−→ N , where N is finite-dimensional. The

map f corresponds to a map DnM
f ′

−→ A, so we get a commutative diagram

DnM
i◦f ′

−−−−→ X

Dng

y p

y

DnN
0

−−−−→ Y

Since p is a fibration, we get a lift DnN
h′

−→ X . Since ph′ = 0, we can think of h′

as a map DnN −→ A, corresponding to h : N −→ An. This map h is an extension
of f , so An is injective.
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Now suppose that p is surjective with dimensionwise injective kernel. Suppose
we have a commutative diagram

DnM
f

−−−−→ X

Dng

y p

y

DnN
h

−−−−→ Y

where g is an inclusion of finite-dimensional comodules. This diagram is equivalent
to the commutative diagram

M
fn

−−−−→ Xn

g

y pn

y

N
hn−−−−→ Yn

and we want to find a lift k : N −→ Xn in this diagram. Since pn is a surjection with
injective kernel, there is a splitting q : Yn −→ Xn. Note that pn(fn − qhng) = 0, so
fn−qhng defines a map M −→ An. Since An is injective, there is a map r : N −→ An
such that rg = fn−qhng. Then one can easily check that the map r+qhn : N −→ Xn

gives the required lift.

Next, we characterize the trivial fibrations. We need a lemma first. This lemma
is the key fact that makes this construction of a model structure on Ch(B) work.

Lemma 2.5.15. Suppose A is a complex of injective comodules in Ch(B). Then

the map A
j
−→ Lk ⊗ A is a chain homotopy equivalence. In particular, πMn A

∼=
[SnM,A] for all simple comodules M and integers n.

Proof. The plan of the proof is as follows. We first show that j is a chain
homotopy equivalence when A is a bounded above complex of injectives. We then
use this to conclude that πMn A

∼= [SnM,A] for all complexes of injective comodules
A, simple comodules M , and integers n. We then show that this implies that j is
a chain homotopy equivalence for arbitrary complexes of injectives A.

Let C denote the cokernel of j. If C is chain homotopic to 0, then j is a
chain homotopy equivalence. Indeed, since A is a complex of injectives, j is a
split inclusion in each dimension (so C is a complex of injectives as well). Thus,
the differential on Lk ⊗ A must be of the form d(a, c) = (da + ϕc, dc), where the
maps ϕn : Cn −→ An−1 can be any comodule maps such that ϕd = −dϕ. Given a
contracting homotopy Dn : Cn −→ Cn+1 such that dD+Dd = 1C , we define a chain
homotopy inverse r : Lk⊗A −→ A to j by r(a, c) = a−ϕDc. The reader can verify
that r is a chain map and that rj = 1A. The map that takes (a, c) to (0, Dc) is a
chain homotopy between jr and 1Lk⊗A. Hence j is a chain homotopy equivalence
if C is chain homotopic to 0.

Now suppose A is bounded above. The map k −→ Lk is a homology isomor-
phism, so j is also a homology isomorphism, since we are tensoring over a field. Thus
C is a bounded above complex of injectives with no homology. We construct the
contracting homotopy D by downward induction on n. For n sufficently large, Cn
and Cn+1 are 0, so we takeDn = 0. Now suppose we have constructed Dn such that
dDn+1 +Dnd = 1C for all n > m. Define a function Em : ZmC −→ Cm+1 as follows.
Given a cycle x, there is a y such that dy = x, since C has no homology. Define
Emx = y−dDm+1y. This is well-defined, since if dz = x as well, then y−z is a cycle,
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so there is a w such that dw = y− z. It follows that Dm+1(y− z) = w− dDm+2w,
so dDm+1(y − z) = dw = y − z. Define Dm : Cm −→ Cm+1 to be an extension of
Em to all of Cm.

We have now proved that j is a chain homotopy equivalence for all bounded
above complexes of injectives A. Suppose A is an arbitrary complex of injectives.
Let An be the cotruncation of A at dimension n, so that (An)i = 0 if i > n and
(An)i = Ai if i ≤ n. The differential on An is the same as the differential on A in
degrees ≤ n and 0 elsewhere. The map jn : An −→ Lk ⊗ An is a chain homotopy
equivalence, so induces an isomorphism [SiM,An] −→ [SiM,Lk⊗An] for all integers
i and simple comodules M . There are obvious chain maps An −→ An+1, and A is
the colimit of the An. Similarly, L(k)⊗A is the colimit of the L(k)⊗An, and so j
is the colimit of the jn. Since [SiM,−] commutes with colimits, by the argument
used to prove part (c) of Lemma 2.5.11, we find that j induces an isomorphism
[SiM,A] −→ πMi (A) for any complex of injectives A.

It follows that the cokernelC of j is a complex of injectives such that [SnM,C] =
0 for all simple comodules M and integers n. We will show this forces C to be chain
homotopic to 0. This will prove that j is a chain homotopy equivalence, as above.
The short exact sequence

0 −→ ZnC −→ Cn
d
−→ Bn−1C −→ 0

gives rise to an exact sequence

0 −→ HomB(M,ZnC) −→ HomB(M,Cn)

−→ HomB(M,Bn−1C) −→ Ext1B(M,ZnC) −→ 0

for all simple comodules M , since Cn is injective. On the other hand, a map
f : M −→ ZnC corresponds to a chain map SnM −→ C. A chain homotopy between
f and 0, which must exist by hypothesis, is a map g : M −→ Cn+1 such that
dg = f . Thus the map HomB(M,Cn) −→ HomB(M,Zn−1C) is surjective, and
in particular the map HomB(M,Cn) −→ HomB(M,Bn−1C) is surjective. Hence
Ext1B(M,ZnC) = 0 for all simple comodules M , and so, by Proposition 2.5.8, ZnC
is injective.

It follows that there is a retraction r : Cn+1 −→ Zn+1C. and a section q : BXn −→
Cn+1. In particular, Cn+1

∼= Zn+1C ⊕ BnC, so BnC is injective as well. Hence
ZnC ∼= BnC ⊕HnC. But the map HomB(M,BnC) −→ HomB(M,ZnC) is an iso-
morphism (we saw above that it was surjective and it is obviously injective) for
all simple comodules M , so HomB(M,HnC) = 0 for all simple comodules M . It
follows from Corollary 2.5.3 that HnC = 0, so ZnC = BnC.

We now define a chain homotopy D : Cn −→ Cn+1 as the composite

Cn
r
−→ ZnC = BnC

q
−→ Cn+1

We leave it to the reader to verify that dD+Dd = 1C , so that C is chain homotopic
to 0.

Proposition 2.5.16. A map p : X −→ Y in Ch(B) is a trivial fibration if and
only if it has the right lifting property with respect to I.

Proof. Suppose first that p is a trivial fibration. Let A denote the kernel
of p, so that A is dimensionwise injective by Proposition 2.5.14. Pick a simple
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comodule M . The long exact sequence in homotopy shows that πM∗ A = 0. Hence
[SiM,A] = 0 as well, by Lemma 2.5.15. Suppose we have a commutative diagram

Sn−1M −−−−→ X
y p

y

DnM −−−−→ Y

We need to show that there is a lift DnM −→ X . This diagram corresponds to a
comodule map f : M −→ Zn−1X and a comodule map g : M −→ Yn such that pf =
dg. A lift in the diagram corresponds to a map r : M −→ Xn such that pr = g and
dr = f . Choose a splitting q : Yn −→ Xn such that pq = 1. Then p◦(f−dqg) = 0, so
f − dqg is really a map M −→ Zn−1A. Since [SnM,An−1] = 0, there is a comodule
map h : M −→ An such that dh = f − dqg. The map h + qg : M −→ Xn gives the
desired lift DnM −→ X , and so p has the right lifting property with respect to I .

Now suppose p has the right lifting property with respect to I . Then p is a
fibration, since J ⊆ I . Let A denote the kernel of p, so that A is dimensionwise
injective. We want to show that p is a weak equivalence. By Lemma 2.5.15 and
the long exact sequence in homotopy, it suffices to show that [SnM,A] = 0 for all
simple comodules M and all integers n. But this is clear: if f : SnM −→ A is a chain
map, then there is a map g : Dn+1M −→ X such that pg = 0 and the composite

SnM −→ Dn+1M
g
−→ X is f , since p has the right lifting property with respect to

I . The map g corresponds to a map M −→ An+1 which gives a chain homotopy
between f and 0.

The following theorem then follows immediately from Theorem 2.1.19.

Theorem 2.5.17. Suppose B is a commutative Hopf algebra over a field k.
Then the category Ch(B) of chain complexes of B-comodules is a finitely generated
model category with generating cofibrations I, generating trivial cofibrations J , and
weak equivalences the homotopy isomorphisms. The fibrations are the surjections
with dimensionwise injective kernel.

The homotopy category of Ch(B) is the stable homotopy category considered
in [HPS97, Section 9.5].

To complete our description of the model structure on Ch(B), we identify the
cofibrations.

Proposition 2.5.18. The cofibrations in Ch(B) are the injective maps.

Proof. Certainly every map of I is an injection, so every cofibration is an
injection. Conversely, suppose i : K −→ L is an inclusion. Given a diagram

K
f

−−−−→ X

i

y p

y

L
g

−−−−→ Y

where p is a trivial fibration, we must show there is a lift. Let A denote the
kernel of p. Then A is a complex of injectives with no homotopy, so by the proof of
Lemma 2.5.15, A is chain homotopy equivalent to 0 by a chain homotopy D : An −→
An+1 such that dD +Dd = 1A. Furthermore, the map p is a dimensionwise split
surjection. Choose a splitting Xn

∼= Yn ⊕ An in each dimension. With respect to
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this splitting, we can write the differential on X as d(y, a) = (dy, ky + da), where
dk = −kd. The map f can then be written f = (gi, f2), where f2d = kgi+ df2. If
h : Ln −→ An−1 is a map, the pair (g, h) will define a lift in our diagram if and only
if hi = f2 and hd = kg + dh.

Now, there is certainly a map h′ : Ln −→ An−1 such that h′i = f2, since An−1 is
injective. Choose such maps for all n. Then one can check that the map α = h′d−
dh′ − kg : Ln −→ An−1 satisfies αi = 0, so factors through a map β : Mn −→ An−1,
where M is the cokernel of i. One can also check that dβ = −βd. Let j : L −→ M
denote the evident map. Then one can check that h′ +Dβj gives us the required
map h : Ln −→ An.

The following lemma will be useful later.

Lemma 2.5.19. Suppose X is a bounded above complex in Ch(B) with no ho-
mology. Then X also has no homotopy, so becomes trivial in Ho Ch(B).

Proof. Since X is bounded above, so is Lk ⊗X . Since tensoring over a field
is exact, Lk ⊗X has no homology. Then Lemma 2.3.17 and Lemma 2.3.19 imply
that Lk ⊗X is chain homotopic to 0, and hence has no homotopy.

Now suppose B
f
−→ B′ is a map of commutative Hopf algebras over k. Then,

given a B-comodule M , we can make M into a B′-comodule by the structure map

M
ψ
−→ B ⊗M

f⊗1
−−→ B′ ⊗M . Let us denote this B′-comodule by FM . Conversely,

given a B′-comodule M , we can get a B-comodule UM by letting UM be the set
of all m such that ψ(m) is in the image of f ⊗ 1. We leave it to the reader to check
that UM is a B-comodule and that U is right adjoint to F . The functors F and U
induce corresponding functors F : Ch(B) −→ Ch(B′) and U : Ch(B′) −→ Ch(B).

Proposition 2.5.20. Suppose f : B −→ B′ is a map of commutative Hopf al-
gebras over a field k. Then the induced adjunction (F,U, ϕ) : Ch(B) −→ Ch(B ′) is
a Quillen adjunction.

Proof. It is obvious that F preserves injections, and hence cofibrations. It is
also clear that F takes the generating trivial cofibrations of Ch(B) to some of the
generating trivial cofibrations of Ch(B′). The result follows from Lemma 2.1.20.

A more interesting example of a Quillen adjunction arises as follows. Let B
be a finite-dimensional commutative Hopf algebra over a field k such that B∗ is
a Frobenius algebra over k. For example, B could be F (G, k) where G is a finite
group, or B could be a graded connected finite Hopf algebra. In this case, the
categories B∗-mod and BB-comod are isomorphic, since every B∗-module is tame.
We therefore identify BB-comod with B∗-mod.

We will construct a Quillen adjunction F : B∗-mod −→ Ch(B), where B∗-mod
is given the model structure of Section 2.2. To do so, let Tk be a Tate resolution
of the ground field k. Recall that Tk is a complex of projectives (which are also
injectives, of course) with no homology, such that Z0Tk = k. The usual way to
construct Tk is to splice a projective resolution P∗ −→ k with an injective resolution
k −→ I∗, so that (Tk)n = Pn−1 if n > 0 and (Tk)n = In if n ≤ 0. In particular, the
cycles in degree 0 are just k. Then we define FM = Tk ⊗M . The right adjoint
U : Ch(B) −→ B∗-mod of F is then defined by UX = Z0 Hom(Tk,X). Since we
are tensoring over a field, F preserves injections, and hence cofibrations. To show
that F is a Quillen functor, we have to show that F takes the generating trivial
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cofibration 0 −→ B∗ to a weak equivalence in Ch(B). Thus it suffices to show that
Tk ⊗ B is chain homotopy equivalent to 0. But the complex which is B in degree
0 and P∗ ⊗ B in positive degrees is a bounded below complex of projectives with
no homology, so it is chain homotopy equivalent to 0. Similarly, the complex which
is B in degree 1 and I∗ ⊗ B in nonpositive degrees is a bounded above complex of
injectives with no homology, so is chain homotopy equivalent to 0. By splicing these
chain homotopy equivalences, we find that Tk⊗B is chain homotopy equivalent to
0, as required.

The Quillen functor F induces an embedding of HoB∗-mod into Ho Ch(B) as
a full subcategory, as explained in [HPS97, Secion 9.6].



CHAPTER 3

Simplicial sets

This chapter is devoted to the central example of simplicial sets. This example
will recur throughout the book, so the reader is advised at least to skim this section.
It turns out to be quite difficult to prove that simplicial sets form a model category.
We follow the proof given in [GJ97, Chapter 1], which is similar, but not identical,
to the original proof of Quillen [Qui67]. Standard references for simplicial sets
include [May67], [Qui67], and [BK72].

3.1. Simplicial sets

We begin by reminding the reader of some basic definitions and properties of
simplicial sets.

Recall that the simplicial category ∆ is the category with objects

[n] = {0, 1, . . . , n}

for n ≥ 0 and ∆([n], [k]) the set of weakly order-preserving maps f from [n] to [k],
so that x ≤ y implies f(x) ≤ f(y). Note that ∆ has two obvious subcategories: the
category ∆+ of injective order-preserving maps, and the category ∆− of surjective
order-preserving maps. Furthermore, every morphism in ∆ can be factored uniquely
into a morphism in ∆− followed by a morphism in ∆+. In fact, ∆ is generated by
the morphisms di : [n − 1] −→ [n] ∈ ∆+ for n ≥ 1 and 0 ≤ i ≤ n, where the image
of di does not include i, and the morphisms si : [n] −→ [n− 1] ∈ ∆− for n ≥ 1 and
0 ≤ i ≤ n− 1, where si identifies i and i+ 1. All the relations among these maps
are implied by the cosimplicial identities :

djdi = didj−1 (i < j)
sjdi = disj−1 (i < j)

= id (i = j, j + 1)
= di−1sj (i > j + 1)

sjsi = si−1sj (i > j)

If C is any category, the category of cosimplicial objects in C is the functor
category C∆, and the category of simplicial objects in C is the functor category
C∆op

. Note that these functor categories have whatever colimits and limits exist
in C, taken objectwise. The most important example is when C is the category of
sets, in which case we denote C∆op

by SSet, and refer to SSet as the category of
simplicial sets.

If K is a simplicial set, we denote K[n] by Kn and refer to Kn as the set of
n-simplices of K. If x ∈ Kn, the integer n is referred to as the dimension of x. Dual
to the di we have the face maps di : Kn −→ Kn−1 for n ≥ 1 and 0 ≤ i ≤ n. Dual to
the si we have the degeneracy maps si : Kn−1 −→ Kn for n ≥ 1 and 0 ≤ i ≤ n− 1.

73
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These maps are subject to the simplicial identities

didj = dj−1di (i < j)
disj = sj−1di (i < j)

= id (i = j, j + 1)
= sjdi−1 (i > j)

sisj = sjsi−1 (i > j)

A simplicial set K is equivalent to a collection of sets Kn and maps di and si as
above satisfying the simplicial identities. A map of simplicial sets f : K −→ L is
equivalent to a collection of maps fn : Kn −→ Ln commuting with the face and
degeneracy maps.

Lemma 3.1.1. Every simplicial set is small.

Proof. Suppose K is a simplicial set and the cardinality of the set of simplices
of K is κ. Note that κ is infinite. We claim that K is κ-small. Indeed, suppose λ
is a κ-filtered ordinal and X : λ −→ SSet is a λ-sequence. Given a map f : K −→
colimXα of simplicial sets, there is an αn < λ such that fn factors through Xαn

,
the set Kn is κ-small. Since κ is infinite, there is an α < λ such that f factors
through a map of sets g : K −→ Xα. The map g may not be a map of simplicial
sets. However, for each pair (x, i), where x is a simplex of K and di is a face map
applicable to x, there is a β(x,i) such that g(dix) becomes equal to digx in Xβ(x,i)

.

There are κ such pairs (x, i), so there is a β < λ and a factorization of f through
Xβ compatible with the face maps. A similar argument shows that we can make
the factorization compatible with the degeneracy maps as well.

This shows that the map colimSSet(K,Xα) −→ SSet(K, colimXα) is surjec-
tive. The smallness of each Kn shows this map is injective as well.

Given a simplicial set K and a simplex x of K, any image of x under arbitrary
iterations of face maps is called a face of x. Similarly, any image of x under arbitrary
iterations of degeneracy maps is called a degeneracy of x. We include the case of
0 iterations, so x is both a face and degeneracy of itself. A simplex x is called
non-degenerate if it is a degeneracy only of itself. A simplicial set is called finite if
it has only finitely many non-degenerate simplices. Given any simplex x of K, there
is a unique non-degenerate simplex y of K such that x is a degeneracy of y. Indeed,
we can take y to be a simplex of smallest dimension such that x is a degeneracy
of y. The simplicial identities imply that there is a unique such simplex, and that
every simplex z such that x is a degeneracy of z is in fact a degeneracy of y.

Lemma 3.1.2. Finite simplicial sets are finite.

Proof. Suppose K is a finite simplicial set, λ is a limit ordinal, and X : λ −→
SSet is a λ-sequence. We must show that the canonical map colimSSet(K,Xα) −→
SSet(K, colimXα) is an isomorphism. We first show it is injective. Suppose
f, g : K −→ Xα are maps that become equal in the colimit. Since K is finite,
we can go out far enough in the colimit so that f and g are equal on the nondegen-
erate simplices of K. But then they are equal on all the simplices of K, since every
simplex is a degeneracy of a nondegenerate simplex, and f and g are simplicial
maps. This shows that the canonical map is injective.

Now suppose we have a map K −→ colimXα. For each nondegenerate simplex
x of K, there is an αx < λ and a simplex yx ∈ Xαx

such that f(x) = iαx
yx,

where iαx
: Xαx

−→ colimXα is the structure map. Since there are only finitely
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many nondegenerate simplices of K, we can assume that αx = α, independent of
x. We can then define a map g : K −→ Xα, compatible with the degeneracy maps,
such that iαg = f , using the fact that every simplex is a degeneracy of a unique
nondegenerate simplex. The map g may not be compatible with the face maps,
however. Nevertheless, for each face dix of a nondegenerate simplex x, we can find
an α(i,x) < λ such that gdix and digx become equal in Xα(i,x)

. Since there are only
finitely many such pairs, we can find a β < λ and a map h : K −→ Xβ such that
iβh = f and h is compatible with all the degeneracy maps and h is compatible with
the face maps when applied to nondegenerate simplices. The simplicial identities
then imply that h is a simplicial map, as required.

There is a very important functor ∆ −→ SSet, typically denoted ∆[−], defined
by the functor ∆(−,−) : ∆op ×∆ −→ Set. That is, ∆[n] is the functor ∆op −→ Set

which takes [k] to ∆([k], [n]). The simplicial set ∆[n] has
(
n
k

)
nondegenerate k-

simplices, corresponding to the injective order-preserving maps [k] −→ [n], and
in particular one nondegenerate n-simplex in. There is a natural isomorphism
SSet(∆[n],K) ∼= Kn which takes f to f(in).

Another important example of a simplicial set is ∂∆[n], the boundary of ∆[n],
whose nondegenerate k-simplices correspond to nonidentity injective order-preserving
maps [k] −→ [n]. Similarly, given an r with 0 ≤ r ≤ n, the simplicial set Λr[n], the
r-horn of ∆[n], has nondegenerate k-simplices all injective order-preserving maps

[k] −→ [n] except the identity and the injective order-preserving map [n− 1]
dr

−→ [n]
whose image does not contain r. The simplicial set Λr[n] is the closed star of the ver-
tex r in ∆[n]. Geometrically, Λr[n] is obtained from ∆[n] by omitting the interior of
∆[n] and the interior of the n−1-dimensional face opposite to r. Said another way,
consider the category D whose objects are nonidentity injective order-preserving
maps [k] −→ [n] whose image contains r, and whose morphisms are commutative
triangles. Then Λr[n] = colimD ∆[k].

This idea of constructing Λr[n] as a colimit of copies of ∆[k] is a general one.
Indeed, given a simplicial set K, let ∆K be the category whose objects are maps
∆[n] −→ K of simplicial sets, for some n. A morphism from f : ∆[k] −→ K to
g : ∆[n] −→ K is a map [k] −→ [n] in ∆ making the obvious triangle commutative.
The category ∆K is called the category of simplices of K in [DHK]. Note that a
map K −→ L of simplicial sets induces an obvious functor ∆K −→ ∆L, so that this
construction defines a functor from SSet to the category of small categories.

The category ∆K is very important and useful. One of the reasons for this is
the following simple lemma.

Lemma 3.1.3. Given a simplicial set K, the colimit of the functor ∆K −→ SSet

that takes f : ∆[n] −→ K to ∆[n] is K itself.

Proof. Use the isomorphism Kn
∼= SSet(∆[n],K).

The advantage of this description of the category of simplices is that it is func-
torial in the simplicial set K. However, if one is working with a specific simplicial
set K, it is often more helpful to consider the category of nondegenerate simplices

∆′K. An object of ∆′K is a map ∆[n]
f
−→ K such that fin is nondegenerate. A

morphism is an injective order-preserving map [k] −→ [n] making the obvious tri-
angle commute. We then have the following lemma, whose proof we leave to the
reader.
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Lemma 3.1.4. Given a simplicial set K, a colimit of the functor ∆′K −→ SSet

that takes f : ∆[n] −→ K to ∆[n] is K itself.

Another important use of the category of simplices is to show that any cosim-
plicial object gives rise to a functor from simplicial sets.

Proposition 3.1.5. Suppose C is a category with all small colimits. Then the
category C∆ is equivalent to the category of adjunctions SSet −→ C. We denote the
image of A• ∈ C∆ under this equivalence by (A• ⊗−,C(A•,−), ϕ) : SSet −→ C.

Proof. Suppose first that we have an adjunction (F,U, ϕ) : SSet −→ C. Then
the composite ∆ −→ SSet −→ C, where the first functor takes [n] to ∆[n], is an object
of C∆. This clearly defines a functor from adjunctions to C∆. Conversely, given a
simplicial set K, there is a functor ∆K −→ ∆ which takes a simplex ∆[n] −→ K to
[n]. We have a corresponding restriction functor C∆ −→ C∆K . On the other hand,
we also have the colimit functor C∆K −→ C. Given A• ∈ C∆, we define A• ⊗ K
to be the image of A• under the composite functor C∆ −→ C∆K −→ C. Since a
map of simplicial sets induces a functor ∆K −→ ∆L, the map A• ⊗ − is really a
functor. Since the identity map of ∆[n] is cofinal in the category ∆∆[n] we get an
isomorphism A• ⊗∆[n] ∼= A•[n]. Conversely, if F preserves colimits, then there is
a natural isomorphism F (∆[−])⊗K −→ FK.

The right adjoint C(A•,−) of the functorA•⊗−. Given Y ∈ C, the simplicial set
C(A•, Y ) is defined to have n-simplices C(A•[n], Y ). The adjointness isomorphism
is the composite

C(A• ⊗K,Y ) ∼= C(colim∆K A
•[n], Y ) ∼= lim∆K C(A•[n], Y )

∼= lim∆K SSet(∆[n],C(A•, Y )) ∼= SSet(colim∆K ∆[n],C(A•, Y ))

∼= SSet(K,C(A•, Y ))

Corollary 3.1.6. Suppose C is a pointed category with all small colimits.
Then the category C∆ is equivalent to the category of adjunctions SSet∗ −→ C. We
denote the image of A• ∈ C∆ under this equivalence by (A•∧−,C(A•,−), ϕ) : SSet −→
C. Furthermore, we have a natural isomorphism A• ∧K+

∼= A•⊗K, where A•⊗−
is the functor of Proposition 3.1.5.

Proof. Just as in the proof of Proposition 1.3.5, an adjunction SSet −→ C

gives rise to an adjunction SSet∗ −→ C∗ = C, since C is pointed. If F is the left
adjoint of the old adjunction and F∗ is the left adjoint of the new adjunction, we
have the pushout diagram

F (∗)
Fv
−−−−→ FX

y
y

∗ −−−−→ F∗(X, v)

We have also proved in Proposition 1.3.5 that F∗(X+) = (FX)+, which is isomor-
phic to FX itself when C is pointed. We leave it to the reader to prove that this
correspondence is an equivalence of categories between adjunctions SSet −→ C and
adjunctions SSet∗ −→ C.
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Remark 3.1.7. 1. Proposition 3.1.5 has a simplicial analog as well, ob-
tained by replacing C with Cop in Proposition 3.1.5. That is, if C has
all small limits, there is an equivalnce of categories between C∆op

and ad-
junctions SSetop −→ C. We denote the image of a simplicial object A• by
(Hom(−, A•),C(−, A•), ϕ). We might also write Hom(−, A•) = A−

• . There
is an analogous pointed version.

2. A functor C −→ C∆ gives rise, under the equivalence of Proposition 3.1.5, to a
functor from C to adjunctions from SSet to C. This gives rise to a bifunctor
− ⊗ − : C × SSet −→ C. The functor A ⊗ − : SSet −→ C will have a right
adjoint, but the functor − ×K −→ C −→ C need not have a right adjoint in
general. A similar remark holds in the simplicial case, and in the pointed
case.

We now give some important examples of this construction. We have an obvious
functor SSet −→ SSet∆ that takes a simplicial set K to the cosimplicial simplicial
set K ×∆[−]. The associated bifunctor SSet× SSet −→ SSet is just the product
functor (K,L) 7→ K × L, since the product obviously commutes with colimits. Its
adjoint is the function complex functor (K,L) 7→ Map(K,L), where an n-simplex
of Map(K,L) is a map of simplicial sets K ×∆[n] −→ L. In the terminology of the
next chapter, this makes SSet into a closed symmetric monoidal category.

As another example, in the category Top of topological spaces and continuous
maps, let |∆[n]| ⊆ Rn denote the convex hull of the points e0, e1, . . . , en, where
e0 = (0, . . . , 0) and ei has ith coordinate 1 and all other coordinates 0. That is,
|∆[n]| consists of all points (t1, . . . , tn) ∈ Rn such that ti ≥ 0 for all i and

∑
t1 ≤ 1.

We refer to |∆[n]| as the standard topological n-simplex. An order preserving map

[m]
f
−→ [n] obviously induces a linear, hence continuous, map |∆[m]| −→ |∆[n]|.

Indeed, just send ei to ef(i).
Hence |∆[−]| is a cosimplicial topological space. By Proposition 3.1.5, we get

an induced adjunction (| |, Sing, ϕ) : SSet −→ Top. The left adjoint | | is called the
geometric realization. The right adjoint Sing is called the singular functor. Note
that |∆[n]| is a compact Hausdorff space, so in particular is in K, the category of
k-spaces. Since K is closed under colimits in Top, it follows that the adjunction
(| |, Sing, ϕ) can be thought as of an adjunction SSet −→ K as well (without chang-
ing the definitions of the functors). In fact, |K| is Hausdorff, though we do not
need this fact. It will follow from Proposition 3.2.2 that |K| is a cell complex, and
hence weak Hausdorff.

The following lemma is of crucial importance.

Lemma 3.1.8. As a functor SSet −→ K the geometric realization preserves
finite products.

Proof. Since the product preserves colimits in each variable in both SSet and
K, it suffices to verify that the natural map |∆[m] × ∆[n]| −→ |∆[m]| × |∆[n]| is
a homeomorphism. Since both the source and target of this continuous map are
compact Hausdorff spaces (we will see this below for the source), it suffices to show
the map is a bijection. Proving this is somewhat combinatorially intricate. The
reader is encouraged to have a specific example, say m = 3 and n = 2, in mind
while reading this proof.

We must first understand the nondegenerate simplices of ∆[m] × ∆[n]. A p-
simplex of ∆[m]×∆[n] is the same thing as an order-preserving map [p] −→ [m]×[n],
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where (a, b) ≤ (a′, b′) in [m]× [n] if and only if a ≤ a′ and b ≤ b′. It is convenient to
visualize [m]× [n] as the integer lattice between (0, 0) and (m,n). A non-degenerate
p-simplex is an injective order-preserving map [p] −→ [m] × [n], or, equivalently, a
chain in [m]× [n]. Any such chain can be expanded to a maximal chain [m+n] −→
[m] × [n], and therefore any nondegenerate simplex of ∆[m] × ∆[n] is a face of a
nondegenerate m + n-simplex. Such a maximal chain is a path along the integer
lattice from (0, 0) to (m,n) which always goes right or up. It is convenient to label
the vertices of such a path, giving (0, 0) the label 0, the next vertex the label 1, and
so on, until (m,n) has the label m+n. Then such a path is completely determined
by the labels on the ends of the horizontal segments. For example, there are two
such paths from (0, 0) to (1, 1). The one which goes right first has 1 as the label on
the end of its horizontal segment, and the one which goes up first has 2 as the label
on the end of its horizontal segment. This constructs a one-to-one correspondence
between maximal chains of [m] × [n] and m-subsets of {1, 2, . . . ,m + n}, of which
there are

(
m+n
m

)
.

Now, let c(i) for 1 ≤ i ≤
(
m+n
m

)
be the complete list of maximal chains of [m]×

[n]. Given any chain c, let nc denote the number of edges in c. The considerations
above show that ∆[m]×∆[n] is the coequalizer in SSet of the two maps

f, g :
∐

1≤i<j≤(m+n
m )

∆[nc(i)∩c(j)] −→
∐

1≤i≤(m+n
m )

∆[nc(i)]

where f is induced by the inclusion c(i) ∩ c(j) −→ c(i), and g is induced by the
inclusion c(i) ∩ c(j) −→ c(j). For example, ∆[1] × ∆[1] is the union of two copies
of ∆[2], corresponding to the chains {(0, 0), (0, 1), (1, 1)} and {(0, 0), (1, 0), (1, 1)},
attached along the 1-simplex corresponding to the chain {(0, 0), (1, 1)}.

Since the geometric realization is a left adjoint, it preserves coequalizers. This
shows in particular that |∆[m]×∆[n]| is compact Hausdorff. We now describe the
maps hi : |∆[m+ n]| −→ |∆[m]| ×∆[n] defined by the composite

|∆[nc(i)]| −→ |∆[m]×∆[n]| −→ |∆[m]| × |∆[n]|

Let us denote a point of |∆[m + n]| by z = (z1, . . . , zm+n), where zi ≥ 0 for
all i and

∑
zi ≤ 1. Similarly, denote a point of |∆[m]| × |∆[n]| as (u, v) =

(u1, . . . , um, v1, . . . , vn). Suppose c(i) corresponds to the m-subset {a1 < · · · < am}
of {1, . . . ,m+n} whose complement is {b1 < · · · < bn}. Write am+1 = m+n+1 =

bn+1. Then hiz = (u, v), where uj =
∑aj+1−1
k=aj

zk and vj =
∑bj+1−1

k=bj
zk. We leave it

to the reader to verify that hi is injective.
Given a point (u, v) of |∆[m]|× |∆[n]|, we must find a chain c(i) and a point in

|∆[nc(i)]| hitting (u, v) under hi. We must also show that different choices for c(i)
are related by the coequalizer diagram describing ∆[m]×∆[n].

To find c(i), we let wj = uj + · · ·+ um, and xj = vj + · · ·+ vn. We then write
the set of xj and wj in descending order y1 ≥ y2 ≥ · · · ≥ ym+n. There may be
more than one way to do this, of course. Each wj must be some ykj

. The set of
the kj is an m-subset of m + n, so corresponds to a maximal chain c(i). Now let
zj = yj−yj+1, where ym+n+1 = 0. Then hi(z1, . . . , zm+n) = (u, v) as required. We
leave it to the reader to verify that the ambiguity in the choice of c(i) corresponds
exactly to points in

∐
|∆[nc(i)∩cj

]|. Thus the map |∆[m]×∆[n]| −→ |∆[m]|× |∆[n]|
is bijective, and so a homeomorphism, as required.
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This lemma is also proved in [GZ67, Section III.3], but using a different defi-
nition of |∆[n]|. Our proof is based on their proof, however.

This proof does not work in Top, because the product does not preserve colimits
unless one of the factors is locally compact Hausdorff. The geometric realization of
any simplicial set is Hausdorff, but is not always locally compact.

We will see later that the geometric realization preserves other kinds of finite
limits as well as products.

3.2. The model structure on simplicial sets

We now want to put a model structure on SSet, using Theorem 2.1.19 as
always. In this section, we will define the model structure, but we will not be able
to complete the proof that SSet is a model category.

Definition 3.2.1. Define the set I to consist of the canonical inclusions ∂∆[n] −→
∆[n] for n ≥ 0. Define the set J to consist of the canonical inclusions Λr[n] −→ ∆[n]
for n > 0 and 0 ≤ r ≤ n. A map f ∈ SSet is a cofibration if and only if it is in
I-cof. A map f ∈ SSet is a fibration (sometimes called a Kan fibration) if and only
if it is in J-inj. A map f ∈ SSet is a weak equivalence if and only if |f | is a weak
equivalence in Top. The maps in J-cof are called anodyne extensions.

Given a fibration p : X −→ Y and a vertex v : ∆[0] −→ Y , we will often refer to
the pullback ∆[0]×Y X as the fiber of p over v.

The cofibrations in SSet are particularly simple.

Proposition 3.2.2. A map f : K −→ L in SSet is a cofibration if and only if
it is injective. In particular, every simplicial set is cofibrant. Furthermore, every
cofibration is a relative I-cell complex.

Proof. Certainly the maps of I are injective. Since injections are closed un-
der pushouts, transfinite compositions, and retracts, every element of I-cof is an

injection as well. Conversely, suppose K
f
−→ L is injective. We write f as a count-

able composition of pushouts of coproducts of maps of I , thereby showing that
f ∈ I-cell. Define X0 = K. Having defined Xn and an injection Xn −→ L which
is an isomorphism on simplices of dimension less than n, let Sn denote the set of
n-simplices of L not in the image of Xn. Each such simplex s is necessarily non-
degenerate, and corresponds to a map ∆[n] −→ L. The restriction of s to ∂∆[n]
factors uniquely through Xn. Define Xn+1 as the pushout in the diagram

∐
S ∂∆[n] −−−−→ Xny

y
∐
S ∆[n] −−−−→ Xn+1

Then the inclusion Xn −→ L extends to a map Xn+1 −→ L. This extension is
surjective on simplices of dimension ≤ n, by construction. It is also injective, since
we are only adding non-degenerate simplices. The map f : K −→ L is a composition
of the sequence Xn, so f is a relative I-cell complex.

Since the maps of J are injective, J ⊆ I-cof, and so J-cof ⊆ I-cof.
Note that |∆[n]| is homeomorphic to Dn, and this homeomorphism takes

|∂∆[n]| to Sn−1. Of course, Dn is also homeomorphic to Dn−1× [0, 1], and one can
choose this homeomorphism to take |Λr[n]| to Dn−1. By Lemma 2.1.8, it follows
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that |I-cof| consists of cofibrations of k-spaces, and that |J-cof| consists of trivial
cofibrations of k-spaces. Furthermore, Lemma 2.1.8 also implies that the singu-
lar functor takes fibrations of k-spaces to Kan fibrations and trivial fibrations of
k-spaces to maps of I-inj.

The following proposition is then immediate.

Proposition 3.2.3. Every anodyne extension is a trivial cofibration of simpli-
cial sets.

These comments also allow us to prove the following fact about geometric
realizations.

Lemma 3.2.4. The geometric realization functor | | : SSet −→ K preserves all
finite limits, and in particular, preserves pullbacks.

Proof. We have already seen that the geometric realization functor preserves
finite products in Lemma 3.1.8. It therefore suffices to prove that the geometric
realization preserves equalizers. Suppose K is the equalizer in SSet of two maps
f, g : L −→M . Let Z be the equalizer in Top of |f | and |g|. The map ∅ −→M is an
injection, and hence is in I-cell by Proposition 3.2.2. Thus |M | is a cell complex. It
is well-known that every cell complex is Hausdorff; one can prove it by transfinite
induction, using the fact that cells themselves are normal and that the inclusion of
the boundary of a cell is a neighborhood deformation retract. It follows that Z is
a closed subspace of |L|. In particular, Z is a k-space, so is also the equalizer in K.
Now, |K| is also (homeomorphic to) a closed subspace of |L|. Indeed, K −→ L is an
injection, and so is in I-cell by Proposition 3.2.2. Thus |K| −→ |L| is a relative cell
complex in K, and any such is a closed inclusion by Lemma 2.4.5. Since the image
of |K| in |L| is obviously contained in Z, it suffices to show that every point of Z is
in the image of |K|. So take a z ∈ Z. The point z must be in the interior of a |x| for
a unique non-degenerate simplex x of L. By definition of the geometric realization,
the only way for |f |(z) to equal |g|(z) is if fx = gx. Hence x is a (necessarily
non-degenerate) simplex of K, and so z is in the image of |K| as required.

To complete the proof that SSet forms a model category, we must show that a
map f : K −→ L is a trivial fibration if and only if it is in I-inj. We can prove part
of this now, after the following lemma.

Lemma 3.2.5. Suppose f : K −→ L is in I-inj. Then |f | is a fibration.

Proof. Since f has the right lifting property with respect to I , f ahas the right
lifting property with respect to all inclusions of simplicial sets, by Proposition 3.2.2.
In particular, we can find a lift in the following commutative square.

K K

(id,f)

y f

y

K × L
p2

−−−−→ L

where p2 is the projection. This lift makes f into a retract of p2. Hence |f | is a
retract of |p2|, which is a fibration since the geometric realization preserves products
by Lemma 3.1.8. Thus |f | is a fibration.

Proposition 3.2.6. Suppose f : K −→ L is in I-inj. Then f is a trivial fibra-
tion.
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Proof. Since J ⊆ I-cell, it is clear that f is a fibration. We must show that
|f | is a weak equivalence. Let F = f−1(v) be the fiber of f over some vertex v ∈ L,
so that we have a pullback diagram

F −−−−→ K
y f

y

∆[0]
v

−−−−→ L

Then by Lemma 3.2.5 and Lemma 3.2.4, |f | is a fibration with fiber |F |.
Now, note that the map F −→ ∆[0] has the right lifting property with respect

to I , and hence with respect to all inclusions by Proposition 3.2.2. In particular,
F is nonempty, so we can find a 0-simplex w in F . We denote the resulting map

F −→ ∆[0]
w
−→ F by w as well. We can then find a lift H : F × ∆[1] −→ F in the

commutative square

F × ∂∆[1]
(id,w)
−−−−→ F

y
y

F ×∆[1] −−−−→ ∆[0]

Since the geometric realization preserves products, |H | is a homotopy between the
identity map of F and a constant map, so |F | is contractible.

By the long exact homotopy sequence of the fibration |f |, we are then reduced
to showing that |f | is surjective on path components. But one can easily see that
any point in |L| is in the same path component as the realization of some vertex
x of L. Since f has the right lifting property with respect to all inclusions, f is
surjective, and in particular surjective on vertices. Thus there is a vertex y of K
such that f(y) = x, and so the path component containing y goes to the path
component containing x.

To prove the converse of Proposition 3.2.6, we must develop a considerable
amount of homotopy theory in SSet, which we begin to do in the next section.

3.3. Anodyne extensions

The goal of this section is to prove the following theorem.

Theorem 3.3.1. Suppose i : K −→ L is an inclusion of simplicial sets, and
p : X −→ Y is a fibration of simplicial sets. Then the induced map

Map�(i, p) : Map(L,X) −→ Map(K,X)×Map(K,Y ) Map(L, Y )

is a fibration.

Recall that the analogue of this theorem in Top, Lemma 2.4.13, was essential
to the proof that Top is a model category.

In particular, if X is a fibrant simplicial set and K −→ L is an inclusion, Theo-
rem 3.3.1 implies that the induced map Map(L,X) −→ Map(K,X) is a fibration.

At first glance this theorem may seem to have little to do with the title of the
section. However, they are actually very closely related. Indeed, Theorem 3.3.1 is
equivalent to the following theorem.
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Theorem 3.3.2. For every anodyne extension f : A −→ B and inclusion i : K −→
L of simplicial sets, the induced map

i� f : P (i, f) = (K ×B) qK×A (L×A) −→ L×B

is an anodyne extension.

The proof that Theorem 3.3.1 is equivalent to Theorem 3.3.2 is an exercise in
adjointness, using the fact that fibrations from the class J-inj = (J-cof)-inj. We
leave the details to the reader.

In order to prove Theorem 3.3.2 we will need to construct some anodyne ex-
tensions.

Lemma 3.3.3. Let i : ∂∆[n] −→ ∆[n] denote the boundary inclusion for n ≥ 0,
and let f : Λε[1] −→ ∆[1] denote the obvious inclusion, for ε = 0 or 1. Then the
map i� f : P (i, f) = (∂∆[n] ×∆[1]) q∂∆[n]×Λε[1] (∆[n] × Λε[1]) −→ ∆[n]×∆[1] is
an anodyne extension.

Proof. Recall from the proof of Lemma 3.1.8 that a (non-degenerate) k-
simplex of ∆[n] ×∆[1] is just an (injective) order-preserving map [k] −→ [n] × [1].
There are thus n+ 1 non-degenerate n+ 1-simplices xj of ∆[n]×∆[1]. The n+ 1-
simplex xj , for 0 ≤ j ≤ n, is the maximal chain

xj = ((0, 0), . . . , (j, 0), (j, 1), . . . , (n, 1)).

Every simplex of ∆[n]×∆[1] is a degeneracy of a face of an xj . All the compatibility
between the xj ’s is implied by the relation

dj+1xj = dj+1xj+1 = ((0, 0), . . . , (j, 0), (j + 1, 1), . . . , (n, 1))

for 0 ≤ j < n. Furthermore, we have dixj ∈ ∂∆[n] × ∆[1] unless i = j or j + 1,
and d0x0 ∈ ∆[n]× Λ1[1] and dn+1xn ∈ ∆[n]× Λ0[1]. Hence, to get from (∂∆[n]×
∆[1])q∂∆[n]×Λ1[1] (∆[n]×Λ1[1]) to ∆[n]×∆[1], we first attach x0 along Λ1[n+ 1],

since all the faces except d1x0 are already there. We then attach x1 along Λ2[n+1],
since d1x1 = d1x0 is already there. Continuing in this fashion, we find that our map
is the composite of n+1 pushouts of maps of J , and hence is an anodyne extension.
When ε = 1 instead, we start by attaching xn and work our way downwards in a
similar fashion.

From Lemma 3.3.3 we can construct many more anodyne extensions.

Proposition 3.3.4. Let i : K −→ L be an inclusion of simplicial sets, and
let f : Λε[1] −→ ∆[1] be the usual inclusion, where ε = 0 or 1. Then the map
i� f : P (i, f) −→ L×∆[1] is an anodyne extension.

Proof. Lemma 3.3.3 says that the set I � f consists of anodyne extensions.
This means that the maps of I � f have the left lifting property with respect to
J-inj. By adjointness, we find that the maps of I have the left lifting property with
respect to Map�(f, J-inj). It follows that any map i in I-cof has the left lifting
property with respect to Map�(f, J-inj). Using adjointness again, we find that i�f
has the left lifting property with respect to J-inj. Therefore, i � f is an anodyne
extension, as required.

We can then give an alternative characterization of anodyne extensions. Let J ′

denote the set of maps J � f , where f is one of the maps Λε[1] −→ ∆[1].
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Proposition 3.3.5. A map g : K −→ L of simplicial sets is an anodyne exen-
sion if and only if it is in J ′-cof.

Proof. Proposition 3.3.4 implies that every map of J ′ is an anodyne extension,
and hence that J ′-cof ⊆ J-cof. To prove the converse, we will show that the maps
of J are retracts of maps of J ′. So suppose k < n. We will construct a commutative
diagram

Λk[n] −−−−→ (Λk[n]×∆[1]) qΛk [n]×{0} (∆[n]× {0}) −−−−→ Λk[n]
y

y
y

∆[n]
g

−−−−→ ∆[n]×∆[1]
rk−−−−→ ∆[n]

displaying a map of J as a retract of a map of J ′. Here g is induced by the inclusion
of ordered sets [n] −→ [n]× [1] that takes j to (j, 1). The map rk is induced by the
map of ordered sets [n] × [1] −→ [n] that takes (j, 1) to j and (j, 0) to j if j ≤ k
and to k if j > k. It is then clear that rkg is the identity, and we leave it to to the
reader to check that rk does indeed send Λk[n]×∆[1] and ∆[n]× {0} to Λk[n].

This particular retraction will not work when k = n. However, in this case
we can still construct a similar retraction, by letting g′ : ∆[n] −→ ∆[n] × ∆[1] be
induced by the map j 7→ (j, 0) of ordered sets, and letting r′ : ∆[n]×∆[1] −→ ∆[n]
be induced by the map of ordered sets (j, 0) 7→ j, (j, 1) 7→ n.

We can now prove Theorem 3.3.2, and hence Theorem 3.3.1.

Proof of Theorem 3.3.2. We must show that i�f is an anodyne extension
for all inclusions i and anodyne extensions f . We first verify that i � J ′ consists
of anodyne extensions. Indeed, we have i � J ′ = i � (J � g), where g is one of
the maps Λε[1] −→ ∆[1] for ε = 0 or 1. A beautiful property of the box product is
that it is associative (up to isomorphism), so we have i � (J � g) ∼= (i � J) � g.
This associativity is tedious, but elementary, to verify. We will return to it in the
next chapter. In any case, one can easily check that i � J consists of inclusions.
Proposition 3.3.4 then implies that (i� J) � g consists of anodyne extensions, and
hence that i� J ′ consists of anodyne extensions.

We now show that this implies that i � f is an anodyne extension for all
anodyne extensions f , by a similar argument to Proposition 3.3.4. Indeed, we have
just seen that the maps of i�J ′ have the left lifting property with respect to J-inj.
Adjointness implies that the maps of J ′ have the left lifting property with respect to
Map�(i, J-inj). But then the maps of J ′-cof must also have the left lifting property
with respect to Map�(i, J-inj). Applying adjointness again, we find that i� f has
the left lifting property with respect to J-inj, and is therefore an anodyne extension,
for all f ∈ J ′-cof. Since every anodyne extension is in J ′-cof by Proposition 3.3.5,
the proof is complete.

3.4. Homotopy groups

In this section, we use the results of the previous section to construct the
homotopy groups of a fibrant simplicial set. The main result of this section is that,
if X is a fibrant simplicial set with no nontrivial homotopy groups, then the map
X −→ ∆[0] has the right lifting property with respect to I . This is the prototype
for the goal result that a trivial fibration has the right lifting property with respect
to I . We also show that a fibration gives rise to a long exact sequence of homotopy
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groups. This result will be needed later, when we compare the homotopy groups of
a fibrant simplicial set and the homotopy groups of its geometric realization.

We begin by defining π0K for fibrant simplicial sets X .

Definition 3.4.1. Suppose X is a fibrant simplicial set, and x, y ∈ X0 are
0-simplices. Define x to be homotopic to y, written x ∼ y, if and only if there is a
1-simplex z ∈ X1 such that d1z = x and d0z = y.

Lemma 3.4.2. Suppose X is a fibrant simplicial set. Then homotopy of vertices
is an equivalence relation. We denote the set of equivalence classes by π0X.

Proof. Homotopy of vertices is obviously reflexive, since if x ∈ X0, we have
d1s0x = d0s0x = x. Now suppose x ∼ y, so we have a 1-simplex z such that
d1z = x and d0z = y. Then we get a map f : Λ0[2] −→ X which is s0x on d1i2 and
z on d2i2. It is easiest to see this pictorially. We think of ∆[2] as the following
picture.

0

1

2

d0i2

d1i2

d2i2 i2
�
�
�
���

�
�
�

�

�

�

Then we think of the map f as the following picture.

x

y

x
s0x

z

�
�
�
�

�

�

�

Because X is fibrant, there is an extension of f to a 2-simplex w of X2. Then d0w
is the required homotopy from y to x, as is clear from the picture.

Now suppose x ∼ y and y ∼ z, so that we have 1-simplices a and b such that
d1a = x, d0a = d1b = y, and d0b = z. Then a and b define a map f : Λ1[2] −→ X ,
as in the following picture.
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Since X is fibrant, there is an extension of f to 2-simplex c of X2. Then d1c is the
required homotopy from x to z.

The justification for calling the equivalence classes π0X is provided by the
following lemma.

Lemma 3.4.3. Suppose X is a fibrant simplicial set. Then there is a natural
isomorphism π0X ∼= π0|X |.

Proof. The natural map π0X −→ π0|X | takes a vertex v to the path compo-
nent of |X | containing |v|. Since |∆[n]| is path connected for n > 0, this map is
surjective, as every point of |X | is in the path component of a vertex. To prove the
converse, define, for α ∈ π0X , the sub-simplicial set Xα of X to consist of all sim-
plices x of X with a vertex in α (where a vertex is a 0-dimensional face). One can
easily see that Xα is indeed a sub-simplicial set of X , and that X =

∐
α∈π0X

Xα.
Since the geometric realization preserves coproducts, which are disjoint unions in
Top, the proof is complete.

In light of this lemma, we refer to elements of π0X as path components of
X . Note that π0 is a functor from fibrant simplicial sets to sets. If v is a vertex
of a fibrant simplicial set X , π0(X, v) is the pointed set π0X with basepoint the
equivalence class [v] of v.

Naturally we would like to extend this definition of homotopy of vertices to
homotopy of n-simplices.

Definition 3.4.4. SupposeX is a fibrant simplicial set, and v ∈ X0 is a vertex.

For any Y , let us denote the map Y −→ ∆[0]
v
−→ X by v as well, and refer to it as the

constant map at v. Let F denote the fiber over v of the fibration Map(∆[n], X) −→
Map(∂∆[n], X). This map is a fibration by Theorem 3.3.1. Then we define the nth
homotopy group πn(X, v) of X at v to be the pointed set π0(F, v).

Note that πn(X, v) is the set of equivalence classes [α] of n-simplices α : ∆[n] −→
X that send ∂∆[n] to v, under the equivalence relation defined by α ∼ β if there is a
homotopyH : ∆[n]×∆[1] −→ X such thatH is α on ∆[n]×{0}, β on ∆[n]×{1}, and
is the constant map v on ∂∆[n]×∆[1]. This is just a translation of the definition.
However, if we defined the homotopy groups this way, it would not be obvious that
the homotopy relation is in fact an equivalence relation.

It is not obvious at this point that the homotopy groups are in fact groups. We
do not need this for the proof that SSet forms a model category, so we will not prove
it directly. However, we will prove in Proposition 3.6.3 that πn(X, v) ∼= πn(|X |, |v|)
for a fibrant simplicial set X . Thus πn(X, v) is a group for n ≥ 1 which is abelian
for n ≥ 2.

Given a map f : X −→ Y and a vertex v of X , there is an induced map
f∗ : πn(X, v) −→ πn(Y, f(v)), making the homotopy groups functorial.

We have the following expected lemma giving an alternative characterization
of when an n-simplex is homotopic to the constant map.

Lemma 3.4.5. Suppose X is a fibrant simplicial set, v is a vertex of X, and
α : ∆[n] −→ X is an n-simplex of X such that diα = v for all i. Then [α] = [v] ∈
πn(X, v) if and only there is an n + 1-simplex x of X such that dn+1x = α and
dix = v for i ≤ n.
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Proof. Suppose first that [α] = [v]. Then there is a homotopy H : ∆[n] ×
∆[1] −→ X from α to v which is v on ∂∆[n] × ∆[1]. We can then define a map
G : ∂∆[n+1]×∆[1] −→ X by G◦ (di×1) = v for i < n+1 and G◦ (dn+1×1) = H .
Then G is just v on ∂∆[n+ 1]× {1}, so we have a commutative diagram

(∂∆[n+ 1]×∆[1])q∂∆[n+1]×{1} (∆[n+ 1]× {1})
Gqv
−−−−→ X

y
y

∆[n+ 1]×∆[1] −−−−→ ∆[0]

Since X is fibrant, there is a lift F : ∆[n + 1] × ∆[1] −→ X in this diagram. The
n+ 1-simplex F (∆[n+ 1]×{0}) is the desired x such that dn+1x = α and dix = v
for i ≤ n.

Conversely, suppose we have an n + 1-simplex x such that dn+1x = α and
dix = v for i ≤ n. We define a map

G : (Λn+1[n+ 1]×∆[1])qΛn+1[n+1]×∂∆[1] (∆[n+ 1]× ∂∆[1]) −→ X

by defining it to be v on Λn+1[n+ 1]×∆[1] and ∆[n+ 1]× {1}, and defining it to
be x on ∆[n + 1] × {0}. Then, since X is fibrant, there is an extension of G to a
map F : ∆[n + 1] × ∆[1] −→ X . Let H = F ◦ (dn+1 × 1). Then H is the desired
homotopy between α and v.

More generally, if f, g : K −→ X are any maps of simplicial sets, we refer to a
mapH : K×∆[1] −→ X such thatH is f onK×{0} and g on K×{1} as a homotopy
from f to g. The resulting homotopy relation is not always an equivalence relation,
but it will be when X is fibrant. Indeed, in that case, f and g are homotopic if and
only if they are homotopic as vertices of the fibrant simplicial sets Map(K,X).

An important example of a homotopy is provided by the following lemma.

Lemma 3.4.6. The vertex n is a deformation retract of ∆[n], in the sense that
there is a homotopy H : ∆[n]×∆[1] −→ ∆[n] from the identity map to the constant
map at n which sends n × ∆[1] to n. Furthermore, this homotopy restricts to a
deformation retraction of Λn[n] onto its vertex n.

Proof. As we saw in the proof of Lemma 3.1.8, a simplex of ∆[n] × ∆[1] is
a chain of the ordered set [n] × [1]. Hence a homotopy ∆[n] × ∆[1] −→ ∆[n] is
equivalent to a map of ordered sets [n] × [1] −→ [n]. An obvious such map is the
map which takes (k, 0) to k and (k, 1) to n. The homotopy corresponding to this
map is the desired deformation retraction.

Though we have just constructed a homotopy from the identity map of ∆[n]
to the constant map at n, there is no homotopy going the other direction. Indeed,
such a homotopy would have to be induced by a map of ordered sets that takes
(k, 0) to n and (k, 1) to k, and there is no such map. Thus, homotopy is not an
equivalence relation on self-maps of ∆[n], proving that ∆[n] is not fibrant.

We can now prove the main result of this section.

Proposition 3.4.7. Suppose X is a non-empty fibrant simplicial set with no
non-trivial homotopy groups. Then the map X −→ ∆[0] is in I-inj.

Proof. We must show that any map f : ∂∆[n] −→ X has an extension to ∆[n].
We can assume n > 0 since X is non-empty. We first point out that if f and g are
homotopic, and g has an extension g′ : ∆[n] −→ X , then f also extends to ∆[n].
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Indeed, g′ together with a homotopy H : ∂∆[n] ×∆[1] −→ X from f to g define a
map

(∂∆[n]×∆[1]) q∂∆[n]×{1} (∆[n]× {1}) −→ X

SinceX is fibrant, there is an extension of this map to a homotopyG : ∆[n]×∆[1] −→
X . Then G(∆[n]× {0}) is the desired extension of f .

Consider the composition H ′ : Λn[n] × ∆[1]
H
−→ Λn[n]

f
−→ X , where H is the

deformation retraction of Λn[n] onto n of Lemma 3.4.6 and f is really the restriction
of f . Then H ′ and f define a map

(Λn[n]×∆[1]) qΛn[n]×{0} (∂∆[n]× {0}) −→ X

Since X is fibrant, there is an extension G : ∂∆[n] × ∆[1] −→ X . The map G is
a homotopy from f to a map g such that g ◦ di = f(n) for i < n. In particular,
g ◦ dn represents a class in πn−1(X, f(n)). By assumption, then, [g ◦ dn] = [f(n)].
By Lemma 3.4.5, there is an n-simplex g′ such that dig

′ = f(n) for i < n and
dng

′ = g ◦ dn. Thus g′ is an extension of g. Hence f also has an extension, as
required.

For later use, we now construct the long exact sequence in homotopy of a
fibration. So suppose p : X −→ Y is a fibration of fibrant simplicial sets, and v is
a vertex of X . Let F denote the fiber of p over p(v). We will construct a map
∂ : πn(Y, p(v)) −→ πn−1(F, v) as follows. Given a class [α] ∈ πn(Y, p(v)), define
∂[α] = [dnγ], where γ is a lift in the diagram

Λn[n]
v

−−−−→ X
y p

y

∆[n]
α

−−−−→ Y

Since p is a fibration, such a lift γ exists. The commutativity of the diagram
implies that dnγ lies in F , and it is easy to see that didnγ = v for all i, so that
[dnγ] ∈ πn−1(F, v).

Lemma 3.4.8. The map ∂ is well-defined.

Proof. Suppose we have a possibly different representative β : ∆[n] −→ Y for
[α], and a lift δ : ∆[n] −→ X in the diagram

Λn[n]
v

−−−−→ X
y p

y

∆[n]
β

−−−−→ Y

We must show that dnγ and dnδ represent the same homotopy class. Since α and β
represent the same homotopy class of Y , there is a homotopy H : ∆[n]×∆[1] −→ Y
from α to β which is the constant map pv on ∂∆[n] × ∆[1]. Hence we have a
commutative diagram

(Λn[n]×∆[1])qΛn[n]×∂∆[1] (∆[n]× ∂∆[1])
f

−−−−→ X
y p

y

∆[n]×∆[1]
H

−−−−→ Y
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where f is the constant map v on Λn[n]×∆[1], f is the map γ on ∆[n]×{0}, and
f is the map δ on ∆[n]× {1}. Since the left vertical map is an anodyne extension
by Theorem 3.3.2, there is a lift G : ∆[n] ×∆[1] −→ X in this diagram. But then
the composite

∆[n− 1]×∆[1]
dn×1
−−−→ ∆[n]×∆[1]

G
−→ X

actually lands in the fiber F over pv and is the desired homotopy between dnγ and
dnδ.

It follows from Lemma 3.4.8 that the boundary map is also natural for maps
of fibrations. We leave the verification of this to the reader.

Lemma 3.4.9. Suppose p : X −→ Y is a fibration of fibrant simplicial sets, and
that v is a vertex of X. Let i : F −→ X denote the inclusion of the fiber of p over
p(v). Then the sequence of pointed sets

. . .
∂
−→ πn(F, v)

i∗−→ πn(X, v)
p∗
−→ πn(Y, p(v))

∂
−→ πn−1(F, v)

i∗−→ . . .
i∗−→ π0(X, v)

p∗
−→ π0(Y, p(v))

is exact, in the sense that the kernel (defined as the preimage of the basepoint) is
equal to the image at each spot.

Proof. The proof of this lemma is mostly straightforward using Lemma 3.4.5
and Lemma 3.4.8. We leave most of it to the reader. We will prove that the kernel of
∂ is contained in the image of p∗, however. Suppose ∂[α] = [v], where α : ∆[n] −→ Y
has diα = pv for all i. Let γ : ∆[n] −→ X be a lift in the commutative diagram

Λn[n]
v

−−−−→ X
y p

y

∆[n]
α

−−−−→ Y

Then there is a homotopy H : ∆[n− 1]×∆[1] −→ F from dnγ to v. We use H to
define a commutative diagram

(∂∆[n]×∆[1]) q∂∆[n]×{0} (∆[n]× {0})
f

−−−−→ X
y p

y

∆[n]×∆[1]
απ1−−−−→ Y

where π1 is the projection onto the first factor. Indeed, we define f to be γ on
∆[n]×{0}, to be iH on the face dnin× 1 of ∂∆[n]×∆[1], and to be v on the other
faces diin × 1 for i < n. The left vertical map is an anodyne extension, so there is
a lift G : ∆[n] × ∆[1] −→ X . The n-simplex β = G(∆[n] × {1}) defines a class in
πn(X, v) such that p∗[β] = [α], as required.

3.5. Minimal fibrations

We have seen in the last section that the map F −→ ∆[0] is in I-inj when F is a
fibrant simplicial set with no homotopy. In this section we first point out that this
implies a lifting result for some locally trivial fibrations. We then point out that
every fibration is locally fiberwise homotopy equivalent to a locally trivial fibration.
We thus try to determine what we need to know about a fibration to guarantee that
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this local fiberwise homotopy equivalence is actually an isomorphism. This leads us
to the notion of a minimal fibration. We show that minimal fibrations are locally
trivial, and that every fibration is closely approximated by a minimal fibration.

Reasoning by analogy with topological spaces, we would expect many fibrations
of simplicial sets to be locally trivial, in the following sense.

Definition 3.5.1. Suppose p : X −→ Y is a fibration of simplicial sets. We

say that p is locally trivial if, for every simplex ∆[n]
y
−→ Y of Y , the pullback

fibration y∗X = ∆[n]×Y X
y∗p
−−→ ∆[n] is isomorphic over ∆[n] to a product fibration

∆[n]× Fv
π1−→ ∆[n].

If p is locally trivial, then the simplicial set Fv in Definition 3.5.1 is of course
isomorphic to the fiber of p over a vertex v of the simplex y.

We then have the following corollary to Proposition 3.4.7.

Corollary 3.5.2. Suppose p : X −→ Y is a locally trivial fibration of simplicial
sets such that every fiber of p is non-empty and has no non-trivial homotopy groups.
Then p is in I-inj.

Proof. Suppose we have a commutative square

∂∆[n] −−−−→ X
y p

y

∆[n]
v

−−−−→ Y

A lift in this square is equivalent to a lift in the square

∂∆[n] −−−−→ v∗X
y v∗p

y

∆[n] ∆[n]

Since p is locally trivial, this is equivalent to a lift in a square of the form

∂∆[n]
f

−−−−→ ∆[n]× F
y π1

y

∆[n] ∆[n]

A lift in this square is equivalent to an extension of the map π2f : ∂∆[n] −→ F to
∆[n]. But since F is isomorphic to a fiber of p, F is a non-empty fibrant simplicial
set which has no nontrivial homotopy groups. Thus Proposition 3.4.7 completes
the proof.

It would be unreasonable to expect that every fibration of simplicial sets is
locally trivial. However, since ∆[n] is simplicially contractible onto its vertex n
(Lemma 3.4.6), we would expect any fibration over ∆[n] to be at least homotopy
equivalent to a product fibration. This is in fact the case, as we now prove.

Proposition 3.5.3. Suppose p : X −→ Y is a fibration of simplicial sets, and
suppose f, g : K −→ Y are maps such that there exists a homotopy from f to g. Then
the pullback fibrations f∗p : f∗X −→ K and g∗p : g∗X −→ K are fiber homotopy
equivalent. That is, there are maps θ∗ : f∗X −→ g∗X and ω∗ : g∗X −→ f∗X such
that g∗p ◦ θ∗ = f∗p and f∗p ◦ ω∗ = g∗p and there are homotopies from θ∗ω∗ to
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the identity of g∗X and from ω∗θ∗ to the identity of f∗X that cover the constant
homotopy of K.

Proof. Let h : K × ∆[1] −→ Y be a homotopy from f to g. Let us denote
the inclusion Z = Z × {0} −→ Z ×∆[1] by i0 (although it is actually 1× d1), and
the denote the other inclusion Z = Z × {1} −→ Z ×∆[1] by i1. Thus hi0 = f and
hi1 = g.

Then we have a pullback square

f∗X
rf

−−−−→ h∗X

f∗p

y h∗p

y

K
i0−−−−→ K ×∆[1]

and another pullback square

g∗X
rg

−−−−→ h∗X

g∗p

y h∗p

y

K
i1−−−−→ K ×∆[1]

Hence we have a commutative square

f∗X
rf

−−−−→ h∗X

i0

y h∗p

y

f∗X ×∆[1]
f∗p×1
−−−−→ K ×∆[1]

Since h∗p is a fibration, there is a lift to a homotopy θ : f ∗X×∆[1] −→ h∗X . Then
we have h∗p ◦ θi1 = (f∗p× 1) ◦ i1 = i1 ◦ f

∗p. Hence the pair θ ◦ i1 and f∗p define
a map θ∗ : f∗X −→ g∗X such that rgθ∗ = θ ◦ i1 and g∗pθ∗ = f∗p.

Similarly, we find a homotopy ω : g∗X×∆[1] −→ h∗X such that h∗p◦ω = g∗p×1
and ωi1 = rg . This induces a map ω∗ : g∗X −→ f∗X such that f∗p ◦ ω∗ = g∗p and
rfω∗ = ω ◦ i0.

We would like to find a homotopy from ω∗θ∗ to the identity of f∗X . Such a
homotopy would induce a homotopy from the map rfω∗θ∗ = ω(θ∗×1)i0 to the map
rf : f∗X −→ h∗X . We can construct such a homotopy by lifting in the diagram

f∗X × Λ2[2]
H

−−−−→ h∗X
y h∗p

y

f∗X ×∆[2]
f∗p×s0

−−−−−→ K ×∆[1]

Here H is the map θ on f∗X × d0∆[2] and is the map ω(θ∗ × 1) on f∗X × d2∆[2].
Since θi1 = ω(θ∗ × 1)i1 the map H makes sense. Since h∗p ◦ θ = f∗p × 1 =
h∗p ◦ ω(θ∗ × 1), this diagram commutes. Hence there is a lift G in this diagram.
Let γ denote G on f∗X × d2∆[2], so that γ is a homotopy from rfω∗θ∗ to rf
such that h∗p ◦ γ = f∗p × s0d2 = i0 ◦ f∗p ◦ π1. It follows that γ induces a map
γ∗ : f∗X ×∆[1] −→ f∗X such that rfγ∗ = γ and f∗p ◦ γ = f∗p ◦ i1. Thus γ∗ is the
required fiberwise homotopy from ω∗θ∗ to the identity map.

In a similar fashion we can construct a homotopy from θ∗ω∗ to the identity of
g∗X which covers the constant homotopy, as required.
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Corollary 3.5.4. Suppose p : X −→ Y is a fibration of simplicial sets, and let

∆[n]
y
−→ Y be a simplex of Y . Then the pullback y∗X −→ ∆[n] is fiber homotopy

equivalent to the product fibration ∆[n] × Fn
π1−→ ∆[n], where Fn is the fiber of p

over the vertex y(n).

Proof. The identity map of ∆[n] is homotopic to the constant map n, by
Lemma 3.4.6. Hence Proposition 3.5.3 completes the proof.

Now we want to put restrictions on the fibration p so that the fiber homotopy
equivalence of Corollary 3.5.4 must actually be an isomorphism. It suffices to
consider the following situation. Suppose we have two fibrations p : X −→ Y and
q : Z −→ Y over the same base, and two maps f, g : X −→ Z covering the identity
map of Y such that g is an isomorphism. Suppose as well that they are fiber
homotopic, so that there is a homotopy from f to g which convers the constant
homotopy. Given a fiber homotopy equivalence, we would take g to be the identity
map and f to be the composite of one of the maps with a homotopy inverse. We
would like to conclude that f is also an isomorphism.

Let us just try to prove that f is an isomorphism on vertices. Suppose z is
a vertex of Z. Then there is a vertex x of X such that gx = z since g is an
isomorphism. The homotopy gives us a path from fx to gx which covers the
constant path of qgx = qfx. Hence fx and gx are vertices of a fiber of q which are
in the same path component of that fiber. If we knew that every path component
of every fiber of q has only one vertex, we could conclude that fx = z. Similarly,
suppose fx = fy. Then the homotopy gives us a path from fx to gx, and from fy
to gy, in the fiber of q over qfx. Since the fiber is fibrant, this gives a path from
gx to gy in that fiber of q. Once again, if we knew that every path component of
every fiber of q had only one vertex, we could conclude that gx = gy, and so x = y.

If we wanted to extend this approach to n-simplices for positive n, we would
want to assume we had already proven that f is an isomorphism on lower dimen-
sional simplices. These considerations lead to the following definition.

Definition 3.5.5. A fibration p : X −→ Y in SSet is called a minimal fibration
if and only if for every n ≥ 0, every path component of every fiber of the fibration
Map�(i, p) : Map(∆[n], X) −→ Map(∂∆[n], X)×Map(∂∆[n],Y )Map(∆[n], Y ) has only
one vertex. More generally, we define two n-simplices x and y of X to be p-related if
they represent vertices in the same path component of the same fiber of Map�(i, p).
We write x ∼p y if x and y are p-related. Note that this relation is an equivalence
relation, by Lemma 3.4.2, and that p is a minimal fibration if and only if x ∼p y
implies x = y. Also note that x ∼p y if and only if p(x) = p(y), dix = diy for all i

such that 0 ≤ i ≤ n, and there is a homotopy ∆[n]×∆[1]
H
−→ X from X to Y such

that pH is the constant homotopy and H is constant on ∂∆[n].

As expected, we then have the following lemma.

Lemma 3.5.6. Suppose p : X −→ Y and q : Z −→ Y are fibrations of simplicial
sets, and that q is a minimal fibration. Suppose f, g : X −→ Z are two maps such
that qf = qg = p. Suppose H : X ×∆[1] −→ Z is a homotopy from f to g such that
qH = pπ1. Then if g is an isomorphism, so is f .

Proof. Naturally, we prove that f is an isomorphism on n-simplices by in-
duction on n. So suppose f is an isomorphism on k-simplices for all k < n. We
first show that f is surjective on n-simplices. Let z be an n-simplex of Z. For
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each i with 0 ≤ i ≤ n, there is a unique simplex xi of X such that fxi = diz.
The xi define a map x′ : ∂∆[n] −→ X such that fx′ = zi, where i is the inclusion
∂∆[n] −→ ∆[n]. We then have a commutative diagram

(∂∆[n]×∆[1]) q∂∆[n]×{0} (∆[n]× {0})
(H◦(x′×1))qz
−−−−−−−−−→ Z

y q

y

∆[n]×∆[1]
qzπ1
−−−−→ Y

Hence there is a lift G : ∆[n] × ∆[1] −→ Z in this diagram. Since g is surjective,
there is an n-simplex x of X such that gx = Gi1, the end of the homotopy G. Then
gdix = gxi, so since g is an isomorphism, the restriction of x to ∂∆[n] is x′.

The map G is a homotopy from z to gx. We want to find a homotopy from
fx to z. But H defines a homotopy from fx to gx, via the composite H ◦ (x× 1).
Hence we get a map K : ∆[n]×Λ2[2] which is G on ∆[n]× d0i2 and H ◦ (x× 1) on
∆[n]× d1i2. We then get the following commutative diagram.

(∆[n]× Λ2[2]) q∂∆[n]×Λ2[2] (∂∆[n]×∆[2])
Kq(H◦(x′×s0))
−−−−−−−−−−→ Z

y q

y

∆[n]×∆[2]
qzπ1
−−−−→ Y

A lift G′ : ∆[n] × ∆[2] −→ Z in this diagram exists. Then G′(∆[n] × d2i2) is a
fiberwise homotopy from fx to z which fixes the boundary. Since q is minimal, we
have fx = z and so f is surjective.

We now show that f is injective. Suppose x and y are n-simplices of X such
that fx = fy. By induction, we have dix = diy for all i. Let us denote the
restriction of x (or y) to ∂∆[n] by x′ : ∂∆[n] −→ X . Now H ◦ (x× 1) is a homotopy
from fx to gx, and H ◦ (y× 1) is a homotopy from fy = fx to gy. Hence we get a
map K : ∆[n]× Λ0[2] −→ Z which is H ◦ (x × 1) on ∆[n]× d2i2 and is H ◦ (y × 1)
on ∆[n]× d1i2. Thus we get a commutative diagram

(∆[n]× Λ0[2]) q∂∆[n]×Λ0[2] (∂∆[n]×∆[2])
Kq(H◦(x′×s1))
−−−−−−−−−−→ Z

y q

y

∆[n]×∆[2]
pxπ1
−−−−→ Y

using the fact that px = py. Let G : ∆[n] × ∆[2] −→ Z be a lift in this diagram.
Then G(∆[n]×d0i2) is a fiberwise homotopy from gx to gy that fixes the boundary.
Since q is minimal, we must have gx = gy, and so x = y as required.

Corollary 3.5.7. Suppose p : X −→ Y is a minimal fibration of simplicial
sets. Then p is locally trivial.

Proof. First note that the pullback of a minimal fibration is again a minimal
fibration. Indeed, the reader can check that a pullback square

X ′ −−−−→ X

p′

y p

y

Y ′ −−−−→ Y
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induces a pullback square

Map(∆[n], X ′) −−−−→ Map(∆[n], X)

Map�(i,p′)

y Map�(i,p)

y

P ′ −−−−→ P

where

P ′ = Map(∆[n], Y ′)×Map(∂∆[n],Y ′) Map(∂∆[n], X ′)

and

P = Map(∆[n], Y )×Map(∂∆[n],Y ) Map(∂∆[n], X)

Hence every fiber of Map(i, p′) is isomorphic to a fiber of Map(i, p). It follows
easily that p′ is minimal if p is. Corollary 3.5.4 and Lemma 3.5.6 then complete
the proof.

We now need to show that every fibration is close to a minimal fibration in
some sense. We begin with the following lemma, which says that every fibration
looks minimal on the degenerate simplices.

Lemma 3.5.8. Suppose p : X −→ Y is a fibration of simplicial sets, and suppose
x and y are degenerate n-simplices of X such that x ∼p y. Then x = y.

Proof. We will actually prove that if dix = diy for all i such that 0 ≤ i ≤ n,
then x = y. Since x and y are degenerate, we have x = sidix and y = sjdjy for
some i and j. We claim that we can assume that i = j, where the conclusion is
obvious. Indeed, if i 6= j, we can assume i < j. Then we have

x = sidiy = sidisjdjy = sisj−1didjy = sjsididjy.

Hence we have

sjdjx = sjdjsjsididjy = sjsididjy = x

and so we can assume i = j. Thus x = y.

We now show that every fibration is close to a minimal one.

Theorem 3.5.9. Suppose p : X −→ Y is an arbitrary fibration of simplicial sets.

Then we can factor p as X
r
−→ X ′ p′

−→ Y , where p′ is a minimal fibration and r is
a retraction onto a subsimplicial set X ′ of X such that r ∈ I-inj.

Proof. Let T be a set of simplices of X containing one simplex from each p-
equivalence class. By Lemma 3.5.8, every degenerate simplex is in T . Let S denote
the set of all subsimplicial sets of X all of whose simplices lie in T . Partially order
S by inclusion. Then Zorn’s lemma obviously applies, so we can chose a maximal
element X ′ of S. Note that if x ∈ T is an n-simplex such that dix ∈ X ′ for all
i, then x ∈ X ′. Indeed, otherwise the subsimplicial set generated by X ′ and x,
all of whose simplices are either in X ′, equal to x, or degenerate, contradicts the
maximality of X ′.

If the restriction p′ : X ′ −→ Y is a fibration, it is obviously minimal. We will
show that p′ is a retract of p, hence a fibration. To do so, we again use Zorn’s
lemma, this time applied to pairs (Z,H), where Z is a sub-simplicial set of X
containing X ′, and H : Z ×∆[1] −→ X is a homotopy such that H is the inclusion
on Z × {0}, maps Z × {1} into X ′, is constant on X ′ ×∆[1], and such that pH is
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the constant homotopy of p restricted to Z. Let (Z,H) be a maximal such pair.
We must show that Z = X . If not, consider a simplex x : ∆[n] −→ X of minimal
dimension which does not belong to Z. Then we have a pushout square

∂∆[n] −−−−→ Z
y

y

∆[n]
x

−−−−→ Z ′

where Z ′ is the sub-simplicial set of X generated by Z and x. We want to extend

H to Z ′. Such an extension is equivalent to a map ∆[n] × ∆[1]
H′

−→ X such that
H ′ is x on ∆[n] × {0}, pH ′ is the constant homotopy at px, H ′ extends H on
∂∆[n]×∆[1], and H ′ of ∆[n]×{1} is a simplex of X ′. Equivalently, we are looking
for a 1-simplex w of the fiber of Map�(i, p) over the point defined by px and H ,
such that d1w is x and d0w is in X ′. Certainly x is in some path component of this
fiber, so we can find such a 1-simplex w with d0w in T . But then did0w is in X ′ for
all i, so w must itself be in X ′, as pointed out above. Hence we can extend H to
Z ′, contradicting the maximality of (Z,H). We must therefore have had Z = X .
It follows that p′ is a retract of p, and hence a minimal fibration.

Let H : X ×∆[1] −→ X denote the homotopy we have just constructed. Let j

denote the inclusion X ′ −→ X . Let r be the composite X ∼= X×{1} −→ X×∆[1]
H
−→

X ′, so that r is a retraction of X onto X ′, and H is a homotopy between the
identity and jr which is constant on X ′ and such that pH is constant. We must
still show that r has the right lifting property with respect to I . Suppose we have
a commutative diagram

∂∆[n]
u

−−−−→ X

i

y r

y

∆[n]
v

−−−−→ X ′

Then we have a commutative diagram

(∂∆[n]×∆[1]) q∂∆[n]×{1} (∆[n]× {1})
(H◦(u×1))q(j◦v)
−−−−−−−−−−−→ X

y p

y

∆[n]×∆[1]
p′◦v◦π1
−−−−−→ Y

as we leave to the reader to check. Let G : ∆[n] × ∆[1] −→ X be a lift in this
diagram, and let v1 be the n-simplex of X defined by G on ∆[n] × {0}. Then
v1i = u.

We must show that rv1 = v. Now G is a homotopy from v1 to jv, so rG is a
homotopy from rv1 to rjv = v. This homotopy may not leave the boundary fixed,
however. But rH(v1 × 1) is a homotopy from rv1 to itself which is just what we
need to make a fiberwise homotopy from rv1 to v. Indeed, these two homotopies

together define a map ∆[n] × Λ0[2]
K
−→ X ′ so that K(∆[n] × d1i2) = rG and
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K(∆[n]× d2i2) = rH(v1 × 1). We then get a commutative diagram

(∂∆[n]×∆[2]) q∂∆[n]×Λ0[2] (∆[n]× Λ0[2])
(r◦H◦(u×s1))qK
−−−−−−−−−−−→ X ′

y p′

y

∆[n]×∆[2]
p′vπ1
−−−−→ Y

There is a lift G′ : ∆[n]×∆[2] −→ X ′ in this diagram, and the map G′(∆[n]× d0i2)
is a fiberwise homotopy from rv1 to v that fixes the boundary. Since p′ is minimal,
it follows that rv1 = v, as required.

Corollary 3.5.10. Suppose p is a fibration of simplicial sets such that every
fiber of p is non-empty and has no non-trivial homotopy groups. Then p is in I-inj.

Proof. We write p = p′r as in Theorem 3.5.9, where r has the right lifting
property with respect to I and p′ is minimal. Since p′ is a retract of p, the fibers of p′

are retracts of the fibers of p. Hence every fiber of p′ is non-empty and has no non-
trivial homotopy groups. Since p′ is minimal, it is locally trivial by Corollary 3.5.7.
Hence Corollary 3.5.2 shows that p′ also has the right lifting property with respect
to I . Thus p does as well.

Note that Corollary 3.5.10 does not imply that every trivial fibration has the
right lifting property with respect to I , because we do not at the moment know
anything about the relationship between homotopy of fibrant simplicial sets and
weak equivalences. We will remedy this deficiency in the next section.

3.6. Fibrations and geometric realization

In this section we complete the proof that simplicial sets form a model category.
We show that the geometric realization preserves fibrations and use this to show
that the homotopy groups of a fibrant simplicial set are isomorphic to the homotopy
groups of its geometric realization. We also show that the geometric realization is
part of a Quillen equivalence from simplicial sets to topological spaces.

We begin by showing that the geometric realization of a locally trivial fibration
is a fibration.

Proposition 3.6.1. Suppose p : X −→ Y is a locally trivial fibration of simpli-
cial sets. Then |p| is a fibration.

Proof. We must show that we have lifting in any commutative diagram of
the form

Dn −−−−→ |X |
y |p|

y

Dn × I
f

−−−−→ |Y |

Write ∅ −→ Y as a transfinite composition of pushouts of maps of I . Taking the
geometric realization and applying Lemma 2.4.7, we find that the image of f inter-
sects the interior of only finitely many simplices, so that the image of f is contained
in |Y ′| for some finite sub-simplicial set Y ′ of Y . A lifting in the diagram above is
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equivalent to a lifting in the diagram

Dn −−−−→ |Y ′| ×|Y | |X | ∼= |Y
′ ×Y X |y

y

Dn × I
f

−−−−→ |Y ′|

We can therefore assume that Y ′ is a finite simplicial set, since the fibration Y ′×Y
X −→ Y ′ is locally trivial. This allows us to use [Spa81, Theorem 2.7.13], which
says that any locally trivial map over a paracompact Hausdorff space is a Hurewicz
fibration, and hence a Serre fibration.

We are thus reduced to showing that the geometric realization of a locally
trivial fibration over a finite base is a locally trivial map. By induction on the
non-degenerate simplices, we are reduced to the following situation. Suppose we
have a locally trivial fibration p : X −→ Y and a pushout square

∂∆[n]
f

−−−−→ Z
y g

y

∆[n]
h

−−−−→ Y

such that |Z ×Y X −→ Z| is locally trivial. We must show that |p| is locally trivial.
The idea of the proof is simple: we have a trivialization over |∆[n]| of |p| since
p is locally trivial. By induction, we have trivializations over sufficiently small
neighborhoods in Z. To get trivializations over sufficently small neighborhoods in
Y , we must make these two trivializations compatible, which we can do because
|∂∆[n]| is a deformation retract of |∆[n]|.

In more detail, since p is locally trivial, we have an isomorphism ∆[n] × F −→
∆[n] ×Y X over ∆[n]. Since the geometric realization preserves finite limits, this

induces a homeomorphism |∆[n]| × |F |
ψ
−→ |∆[n]| ×|Y | |X | over |∆[n]|. In partic-

ular, |p| is locally trivial over points in the image of the interior of |∆[n]|. Any
other point z in |Y | is also in |Z|, so, by induction, there is a neighborhood U in

|Z| and a homeomorphism U × F ′ ϕ
−→ U ×|Y | |X | over U . Let U ′ = |f |−1U . By

pulling back, we get a homeomorphism U ′ × F ′ ϕ′

−→ U ′ ×|Y | |X | over U ′. If U ′

is empty, then U is also open in |Y |, so we are done. Otherwise, thicken U ′ to
get an open set V in |∆[n]| containing U ′ such that U ′ is a deformation retract
of V . Then V ′ = V qU ′ U is a neighborhood of z in Y , so we must exhibit a
trivialization of |p| over V ′. We do so by modifying the trivialization ψ over V
so it agrees with the trivialization ϕ on U ′. First note that F and F ′ are homeo-
morphic, since they are both homeomorphic to the fiber of p over a point (in the

image) of U ′. Hence we can assume ψ is a homeomorphism V × F ′ ψ
−→ V ×|Y | |X |

over V . Now ψ−1ϕ′ is a homeomorphism U ′ × F ′ −→ U ′ × F ′ over U ′, so can
be written ψ−1ϕ′(u, f) = (u, α(u, f)). Similarly, (ϕ′)−1ψ(u, f) = (u, β(u, f)) on
U ′ × F ′, so we have α(u, β(u, f)) = f = β(u, α(u, f)). Let r : V −→ U ′ denote
the retraction. Then we have a map r∗(ψ−1ϕ′) : V × F ′ −→ V × F ′ over V de-
fined by r∗(ψ−1ϕ′)(v, f) = (v, α(rv, f)). Then r∗(ψ−1ϕ′) is an extension of ψ−1ϕ′

and a homeomorphism whose inverse takes (v, f) to (v, β(rv, f)). Thus we get a

trivialization V × F ′ ρ=ψ◦r∗(ψ−1ϕ′)
−−−−−−−−−−→ V ×|Y | |X | over V whose restriction to U ′ is
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ϕ′. Hence ρ and ϕ patch together to define a trivialization of |p| over V qU ′ U , as
required.

We can now prove Quillen’s result [Qui68] that the geometric realization pre-
serves fibrations.

Corollary 3.6.2. Suppose p is a fibration of simplicial sets. Then |p| is a
(Serre) fibration of compactly generated topological spaces.

Proof. Write p = p′r as in Theorem 3.5.9. Then p′ is minimal, and hence
locally trivial, so |p′| is a fibration by Proposition 3.6.1. On the other hand, r has
the right lifting property with respect to I , so is a fibration by Lemma 3.2.5. Thus
p is a fibration as well.

We now prove that the definition of homotopy groups we gave for fibrant sim-
plicial sets does match the homotopy of the geometric realization.

Proposition 3.6.3. Suppose X is a fibrant simplicial set, and v is a vertex of
X. Then there is a natural isomorphism πn(X, v) ∼= πn(|X |, |v|).

Proof. The idea of the proof is to use induction on n, as we have already seen
that π0 works well in Lemma 3.4.3. For this, we need a way to relate the (n+ 1)st
homotopy group to the nth homotopy group. This is provided by the path space
fibration.

Given a fibrant simplicial set X and a vertex v of X , consider the following
commutative diagram.

PX −−−−→ Map(∆[1], X)

q

y Map(i,X)

y

X
(v,1)
−−−−→ X ×X ∼= Map(∂∆[1], X)

y π1

y

∆[0] −−−−→ X

Here the top square is a pullback square, so this defines the path space PX , and the
bottom square is also a pullback square. Hence q : PX −→ X is a fibration. Note as
well that the outer square must be a pullback square. But the vertical composite
Map(∆[1], X) −→ X is isomorphic to Map(d1, X). Since d1 : ∆[0] −→ ∆[1] is an
anodyne extension, it follows from adjointness and Theorem 3.3.2 that Map(d1, X)
has the right lifting property with respect to I . Hence PX −→ ∆[0] also has the
right lifting property with respect to I .

It follows easily from this that πn(PX, v) is trivial, where v is the constant
path at v. Indeed, given an α : ∆[n] −→ PX such that diα = v for all i, we can
find an n + 1-simplex x such that dn+1x = α and dix = v for i < n + 1, since
PX −→ ∆[0] has the right lifting property with respect to I . Lemma 3.4.5 then
implies that α ∼ v. Let us denote the fiber of q : PX −→ X over v by ΩX , the loop
space. Applying the long exact sequence of the fibration q, we find an isomorphism

πn+1(X, v)
∂
−→
∼=
πn(ΩX, v). This isomorphism is natural in the pair (X, v), since the

boundary map is and the path fibration is.
Applying the geometric realization, we get a fibration |PX | −→ |X | with fiber

|ΩX | by Corollary 3.6.2. The map PX −→ ∆[0] is a weak equivalence by Lemma 3.2.6.
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Hence |PX | −→ |∆[0]| is a weak equivalence, so |PX | has no non-trivial homotopy
groups. Thus we get a natural isomorphism πn+1(|X |, |v|) ∼= πn(|ΩX |, |v|). Since
we have a natural isomorphism πn(ΩX, v) ∼= πn(|ΩX |, |v|) by induction, this com-
pletes the proof.

It is useful to give an explicit construction of the isomorphism πn(X, v) −→
πn(|X |, |v|) for fibrant simplicial sets X . A class of πn(X, v) is represented by a
map ∆[n] −→ X that sends the boundary to v. Applying the geometric realization
and some homeomorphisms gives a mapDn −→ |X | that sends Sn−1 to |v|. This map
then defines a map Sn ∼= Dn/Sn−1 −→ |X | which defines an element of πn(|X |, |v|).
We leave it to the reader to check that this map is well-defined and compatible with
the isomorphism πn+1(X, v) ∼= πn(ΩX, v).

We will also need to know later that the group structure on π1(X, v) given by
the isomorphism π1(X, v) ∼= π1(|X |, |v|) can be defined simplicially, for a fibrant
simplicial set X . Indeed, an element of π1(X, v) is represented by a 1-simplex α
of X such that d0α = d1α = v. Given another such 1-simplex β, we get a map
Λ1[2] −→ X which is α on d2i2 and β on d0i2. Since X is fibrant, there is an
extension to a 2-simplex γ, and we define α ∗ β = d1γ. We could verify explicitly
that the homotopy class of α ∗β depends only on the homotopy classes of α and β,
and that this defines a group structure on π1(X, v). However, it is clear that |α∗β|
represents the same element of π1(|X |, |v|) as |α|∗ |β|, where we use the usual group
structure in π1(|X |, |v|). Thus this definition must induce the group structure on
π1(X, v).

We can now complete the proof that simplicial sets form a model category.

Theorem 3.6.4. Suppose p is a trivial fibration of simplicial sets. Then p has
the right lifting property with respect to I.

Proof. It suffices to show that the fibers of p are non-empty and have no non-
trivial homotopy groups, by Corollary 3.5.10. Let F be a fiber of p over a vertex
v. Then |F | is the fiber of the fibration |p| over |v| by Corollary 3.6.2. Since |p| is
a weak equivalence, |F | has no non-trivial homotopy groups and is non-empty. It
follows from Proposition 3.6.3 that F has no non-trivial homotopy groups (and is
non-empty), as required.

Theorem 3.6.4 and the results of Section 3.2 are what we need to apply the
recognition theorem 2.1.19.

Theorem 3.6.5. The category of simplicial sets is a finitely generated model
category with generating cofibrations I, generating trivial cofibrations J , and weak
equivalences the maps whose geometric realization is a weak equivalence.

Proposition 1.1.8 and Lemma 2.1.21 imply the following corollary.

Corollary 3.6.6. The category SSet∗ of pointed simplicial sets is a finitely
generated model category, where a map is a cofibration, fibration, or weak equiva-
lence if and only if it is so in SSet.

Theorem 3.6.7. The geometric realization and singular complex define a Quil-
len equivalence SSet −→ K, and a Quillen equivalence SSet∗ −→ K∗.

Proof. The second statement follows from the first and Proposition 1.3.17.
For the first statement, it is clear that the geometric realization preserves cofi-
brations and trivial cofibrations, since it preserves the generating cofibrations and
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trivial cofibrations. Also, the geometric realization reflects weak equivalences by
definition. Thus, by Corollary 1.3.16, it suffices to show that the map | SingX | −→ X
is a weak equivalence for all k-spaces X . For this, it suffices to show that the map
πi(| SingX |, v) −→ πi(X, v) is an isomorphism for every point v of X , since such
points are in one-to-one correspondence with vertices of SingX , and every point
of | SingX | is in the same path component as a vertex. Since SingX is fibrant,

we have an isomorphism πi(SingX, v)
∼=
−→ πi(| SingX |, v). The composite map

πi(SingX, v) −→ πi(X, v) is the map induced by the adjunction; an element of
πi(SingX, v) is represented by a map ∆[i] −→ SingX sending ∂∆[i] to v. This map
is adjoint to a map Di ∼= |∆[i]| −→ X sending Si−1 to v, and so to a map Si −→ X
sending the basepoint to v. This represents an element of πi(X, v). We can also
run this adjunction backwards, and we can apply it to homotopies as well. Thus
the map πi(SingX, v) −→ πi(X, v) is an isomorphism, as required.

The model category SSet is extremely important, and we will use it often
during the rest of this book. One very useful property of SSet is the following.

Proposition 3.6.8. Suppose C is a model category, and F : SSet −→ C is a
functor which preserves colimits and cofibrations. Then F preserves trivial cofibra-
tions (and hence weak equivalences) if and only if F (∆[n]) −→ F (∆[0]) is a weak
equivalence for all n ≥ 0.

Proof. The only if part is straightforward. For the if part, note that the
hypotheses implies that F (∆[k]) −→ F (∆[n]) is a weak equivalence for any map
∆[k] −→ ∆[n]. It suffices to prove that F (Λr[n]) −→ F (∆[n]) is a weak equivalence
for all n > 0 and 0 ≤ r ≤ n. We will actually prove that, if L is a subcomplex of
Λr[n] generated by a nontrivial collection of the (n−1)-dimensional faces, then the
map F (∆[n − 1]) −→ F (L) induced by the inclusion of one of the faces into L is a
weak equivalence. This implies the desired result, since in particular F (∆[n−1]) −→
F (Λr[n]) is a weak equivalence, and so F (Λr[n]) −→ F (∆[n]) must also be a weak
equivalence by the two-out-of-three axiom.

The base case n = 1 is simple, since Λr[1] = ∆[0]. So suppose n > 1 and our
induction hypothesis holds for n−1. Suppose L is a subcomplex of Λr[n] generated
by a nontrivial collection of top-dimensional faces. Attaching these faces one at a
time we get a sequence

L0 = ∆[n− 1] −→ L1 −→ . . . −→ Lk = L

Each of the maps Li −→ Li+1 fits into a pushout square

Ki −−−−→ ∆[n− 1]
y

y

Li −−−−→ Li+1

where Ki is the intersection of the new face with the faces already added. Then Ki

is a subcomplex of Λs[n−1] for some s (there may be some reindexing necessary that
prevents us from taking s = r). Since Ki is generated by a nontrivial collection of
top-dimensional faces, the induction hypothesis guarantees that F (Ki) −→ F (∆[n−
1]) is a weak equivalence. Since all the maps involved are cofibrations and F
preserves cofibrations and pushouts, we find that F (Li) −→ F (Li+1) is a trivial
cofibration. Thus F (∆[n − 1]) −→ F (L) is a trivial cofibration as well, completing
the induction step.
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Corollary 3.6.9. Suppose C is a model category, and F : SSet∗ −→ C is a
functor which preserves colimits and cofibrations. Then F preserves trivial cofibra-
tions if and only if F (∆[n]+) −→ F (∆[0]+) is a weak equivalence for all n ≥ 0.

Proof. The only if part is straightforward. For the if part, let F ′ denote the
composite of F with the operation of attaching a disjoint basepoint. Then Proposi-
tion 3.6.8 implies that F ′ preserves trivial cofibrations. In particular, F (Λr[n]+) −→
F (∆[n]+) is a trivial cofibration for all n > 0 and 0 ≤ r ≤ n. Since these are the
generating trivial cofibrations for SSet∗ and F preserves colimits, F preserves all
trivial cofibrations.



CHAPTER 4

Monoidal model categories

This chapter is devoted to the analogues of rings and modules in the theory
of model categories. The analogue of a ring is called a monoidal model category ;
the analogue of a module over a monoidal model category C is called a C-model
category. Most of the examples we have considered so far are monoidal model cat-
egories. Simplicial sets, pointed simplicial sets, chain complexes of modules over
a commutative ring, and chain complexes of comodules over a commutative Hopf
algebra all form monoidal model categories. Topological spaces do not; however
k-spaces and compactly generated topological spaces do form monoidal model cat-
egories.

Given a homotopy category C, the major reason one would like to find a mo-
noidal model category D and an equivalence Ho D ∼= C is so that one can consider
model categories of monoids and modules over them. In stable homotopy theory,
the monoids in question are often known as A∞-ring spectra. We do not consider
model categories of monoids and modules in this book; however, the reader should
be well equipped to read the papers [SS97] and [Hov98a].

Before we can talk about monoidal model categories and modules over them,
we need to discuss rings and modules in the 2-category of categories. These are
called monoidal categories and categories with an action of a monoidal category,
respectively. However, the 2-category of model categories is based on the 2-category
of categories and adjunctions, rather than the 2-category of categories and functors.
We therefore need to discuss closed monoidal categories and categories with a closed
action of a closed monoidal category. We do this in Section 4.1.

In Section 4.2 we define monoidal model categories and modules over them.
The model category SSet of simplicial sets is a monoidal model category, and
an SSet-model category is just a simplicial model category, first introduced by
Quillen [Qui67]. The definition of monoidal model category given here is original,
as far as the author is aware. The definition one would expect, based on Quillen’s
SM7 axiom, is not quite sufficient in case the unit is not cofibrant.

The last section of the chapter, Section 4.3, is devoted to proving that the
homotopy pseudo-2-functor is compatible with these definitions. So, for example,
the homotopy category of a monoidal model category is naturally a closed monoidal
category.

The material in this chapter does not seem to have appeared in the literature
before, though none of it will be a surprise to model category theorists.

4.1. Closed monoidal categories and closed modules

In this section, we remind the reader of the definitions of closed monoidal cate-
gories and modules over them, and define the associated 2-categories. This material
is probably standard, but the author knows of no other source for all of it. This
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section is of necessity extremely abstract, though also simple. It is organized as
follows. First we define all of the structures we need in the 2-category of cate-
gories, then extend them to the 2-category of categories and adjunctions. For each
structure, we first define the structure then define the 2-category of such struc-
tures. If we were working in algebra, our progression would be rings, commutative
rings, modules over a ring, algebras over a ring, and finally central and commuta-
tive algebras over a commutative ring. In the world of categories, these are called,
respectively, monoidal categories, symmetric monoidal categories, modules over a
monoidal category, algebras over a monoidal category, and finally central and sym-
metric algebras over a symmetric monoidal category. In the world of categories and
adjunctions we simply add the word “closed” to each of these terms.

We begin with monoidal categories.

Definition 4.1.1. A monoidal structure on a category C is a tensor product

bifunctor C × C
⊗
−→ C, a unit object S ∈ C, a natural associativity isomorphism

a : (X ⊗ Y )⊗ Z −→ X ⊗ (Y ⊗Z), a natural left unit isomorphism ` : S ⊗X −→ X ,
and a natural right unit isomorphism r : X ⊗ S −→ X such that three coherence
diagrams commute. These coherence diagrams can be found in any reference on
category theory, such as [ML71]. There is one for four-fold associativity, one
equating the two different ways to get from (X ⊗ S) ⊗ Y to X ⊗ Y using the
associativity and unit isomorphisms, and one saying that ` and r agree on S ⊗ S.
A monoidal category is a category together with a monoidal structure on it.

The simplest example of a monoidal category is the category of sets under the
Cartesian product. Other examples include the category of topological spaces un-
der the product, the category of simplicial set under the product, the category of
modules over a commutative ring under the tensor product, and the category of co-
modules over a Hopf algebra under the tensor product. A slightly more complicated
example is the category of bimodules over a ring, where the monoidal structure is
given by the tensor product of bimodules.

In order to define a 2-category of monoidal categories, we need to know what
a functor of monoidal categories is.

Definition 4.1.2. Given monoidal categories C and D, a monoidal functor
from C to D is a triple (F,m, α) satisfying certain properties, where F is a func-
tor from C to D, m is a natural isomorphism m : FX ⊗ FY −→ F (X ⊗ Y ), and
α : FS −→ S is an isomorphism. In order for (F,m, α) to be a monoidal functor,
three coherence diagrams must commute. One of these equates the two obvious
ways to get from (FX⊗FY )⊗FZ to F (X⊗ (Y ⊗Z)), one equates the two obvious
ways to get from FS ⊗ FX to FX , and one equates the two obvious ways to get
from FX ⊗ FS to FX .

We leave it to the reader to define composition of monoidal functors and verify
that it is associative and unital. We often abuse notation and refer to a monoidal
functor F , leaving the isomorphisms m and α implicit.

A typical example of a monoidal functor is the free R-module functor that takes
a set X to the free R-module R{X}, where R is a commutative ring. Another
example is the geometric realization functor | | : SSet −→ K. We will discuss this
example further below.

Finally, we define a monoidal natural transformation.
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Definition 4.1.3. Given two monoidal functors F, F ′ : C −→ D of monoidal
categories, a monoidal natural transformation from F to F ′ is a natural transforma-
tion τ : F −→ F ′ which is compatible with m and α. That is, α′ ◦τS = α : FS −→ S,
and the diagram

FX ⊗ FY
m

−−−−→ F (X ⊗ Y )

τ⊗τ

y τ

y

F ′X ⊗ F ′Y
m′

−−−−→ F ′(X ⊗ Y )

commutes.

We leave it to the reader to verify that vertical and horizontal compositions
of monoidal natural transformations are again monoidal natural transformations.
It is then easy to check that we get a 2-category of monoidal categories, monoidal
functors, and monoidal natural transformations.

We now move on to commutative rings.

Definition 4.1.4. A symmetric monoidal structure on a category C is a mo-
noidal structure and a commutativity isomorphism T : X ⊗ Y −→ Y ⊗X satisfying
four additional coherence diagrams. One of these says that T is the identity on
S⊗S, one that T 2 = 1, one that r = T`, and one equates the two different ways of
getting from (X ⊗ Y )⊗Z to Y ⊗ (Z ⊗X) using the associativity and commutativ-
ity isomorphism. A category with a symmetric monoidal structure is a symmetric
monoidal category.

Note that the right unit isomorphism in a symmetric monoidal category is
redundant, and so we usually drop it from the structure. All of the monoidal
categories mentioned above are symmetric monoidal, with the exception of the
category of bimodules over a ring.

Definition 4.1.5. Given symmetric monoidal categories C and D, a symmetric
monoidal functor from C to D is a monoidal functor (F,m, α) such that the diagram

FX ⊗ FY
m

−−−−→ F (X ⊗ Y )

T

y F (T )

y

FY ⊗ FX
m

−−−−→ F (Y ⊗X)

is commutative.

The free R-module functor discussed above is a symmetric monoidal functor
from the category of sets to the category of R-modules, when R is commutative.
For an example of a monoidal functor that is not symmetric monoidal, consider the
category of Z-graded vector spaces over a field of characteristic different from 2. We
give this category the usual monoidal structure using the graded tensor product.
There are two different symmetric monoidal structures we can put on this monoidal
category. We can define T (x⊗ y) = y⊗x for homogeneous elements x and y, or we
can define T (x⊗y) = (−1)|x ||y |(y⊗x). Then the identity functor of this monoidal
category, thought of as a functor from one symmetric monoidal structure to the
other, is a monoidal functor that is not symmetric monoidal.

The composition of symmetric monoidal functors is the same as the composition
of monoidal functors. We leave it to the reader to check that we get a 2-category of
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symmetric monoidal categories, symmetric monoidal functors, and monoidal natu-
ral transformations. The forgetful 2-functor from symmetric monoidal categories to
monoidal categories is faithful on 1-morphisms and full and faithful on 2-morphisms.

We now discuss modules.

Definition 4.1.6. Suppose C is a monoidal category. A right C-module struc-
ture on a category D is a triple (⊗, a, r), where ⊗ : D× C −→ D is a functor, a is a
natural isomorphism (X ⊗K)⊗L −→ X⊗ (K⊗L), and r is a natural isomorphism
X ⊗ S −→ X making three coherence diagrams commute. One of these is four-fold
associativity, one is the unit diagram equating the two ways to get from X⊗(S⊗K)
to X ⊗K, and one is a compatibility diagram between the unit isomorphisms, re-
lating the two ways to get from X ⊗ (K ⊗ S) to X ⊗ K. A right C-module is a
category equipped with a right C-module structure.

One could also define left modules, of course. We will often drop the word
“right” and just refer to C-modules. Every category with all coproducts is a module
over the monoidal category of sets, where A ⊗ X is just a colimit of the functor
X −→ C which takes every element of x to A; i.e. A⊗X is the coproduct of A with
itself |X | times.

Definition 4.1.7. Suppose C is a monoidal category, and D and E are C-
modules. A C-module functor from D to E is a functor F : D −→ E and a natural
isomorphismm : FX⊗K −→ F (X⊗K) such that two coherence diagrams commute.
One of these equates the two ways of getting from (FX⊗K)⊗L to F (X⊗(K⊗L)),
and the other equates the two ways to get from FX⊗S to FX . As usual, we often
refer to a C-module functor F , abusing notation. Given two C-module functors F
and F ′ from D to E, C-module natural transformation from F to F ′ is a natural
transformation τ : F −→ F ′ such that the diagram

FX ⊗K
m

−−−−→ F (X ⊗K)

τ⊗1

y τ

y

F ′X ⊗K
m

−−−−→ F ′(X ⊗K)

commutes.

As above, a category C with all coproducts can be made into a Set-module.
Given two such categories C and D, a functor F : C −→ D is a Set-module functor
if and only F preserves coproducts. Any natural transformation is a Set-module
natural transformation.

As usual, we leave it to the reader to check that we get a 2-category of C-
modules, C-module functors, and C-module natural transformations.

From modules, we go to algebras.

Definition 4.1.8. Given a monoidal category C, a C-algebra structure on a
category D is a monoidal structure on D together with a monoidal functor i : C −→
D. A C-algebra is a category equipped with C-algebra structure. A C-algebra functor
is a monoidal functor F : D −→ E together with a monoidal natural isomorphism
ρ : F ◦ iD −→ iE. A C-algebra natural transformation from F to F ′ is a monoidal
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natural transformation τ : F −→ F ′ such that the diagram

F (i(K))
ρ

−−−−→ i(K)

τ◦i

y
∥∥∥

F ′(i(K))
ρ′

−−−−→ i(K)

commutes.

For example, let C be the category of left R-modules for a commutative ring R,
and suppose we have a map of R-algebras S −→ T . Then we get a C-algebra functor
F from the category of left S-modules to the category of left T -modules, which
takes the S-module M to T ⊗SM . Note that in this case, F does not preserve the
map i on the nose, since Fi(M) = T ⊗S (S⊗RM), which is canonically isomorphic,
but not equal, to T ⊗RM .

As usual, we leave it to the reader to check that we get a 2-category of C-
algebras, C-algebra functors, and C-algebra natural transformations. Note that
there is a forgetful 2-functor from C-algebras to C-modules. Indeed, given a C-
algebra D, we put a C-module structure on it by defining X ⊗K = X ⊗ iK, where
K ∈ C. We leave it to the reader to show that this idea can be extended to define
the forgetful 2-functor.

Now we consider the case where the underlying monoidal category C is sym-
metric monoidal.

Definition 4.1.9. Suppose C is a symmetric monoidal category. Then a sym-
metric C-algebra structure on a category D is a symmetric monoidal structure on D

together with a symmetric monoidal functor i : C −→ D. A symmetric C-algebra is
a category equipped with a symmetric C-algebra structure. A symmetric C-algebra
functor of symmetric C-algebras is a symmetric monoidal functor which is also a
C-algebra functor.

As usual, we get a 2-category of symmetric C-algebras, symmetric C-algebra
functors, and C-algebra natural transformations. There is of course a forgetful 2-
functor from the 2-category of symmetric C-algebras to the 2-category of C-algebras.

It is more interesting to consider central C-algebras.

Definition 4.1.10. Suppose C is a symmetric monoidal category. Then a cen-
tral C-algebra structure on a category D is a C-algebra structure together with a
natural transformation t : iX ⊗ Y −→ Y ⊗ iX satisfying four coherence diagrams.
The first such coherence diagram says that t2 is the identity, the second equates
the two obvious ways of getting from iX⊗ iY to i(Y ⊗X) using the commutativity
isomorphism T of C on one path and t on the other, the third equates the two
obvious ways of getting from iS ⊗X to X , using t and r on one path and ` on the
other, and the fourth equates the two obvious ways of getting from (iX ⊗ Y ) ⊗ Z
to Y ⊗ (Z ⊗ iX) using t and a. A central C-algebra is a category equipped with a
central C-algebra structure.

A typical example of a central C-algebra is the category of modules over a
commutative Hopf algebra (over a field) as an algebra over the category of vector
spaces. This will always be central, but will only be symmetric when the Hopf
algebra is cocommutative.
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Definition 4.1.11. Suppose C is a symmetric monoidal category. Given two
central C-algebras D and E, a central C-algebra functor is a C-algebra functor F
such that the diagram

F (iX)⊗ FY
m

−−−−→ F (iX ⊗ Y )
Ft

−−−−→ F (Y ⊗ iX)

ρ⊗1

y m

x

iX ⊗ FY
t

−−−−→ FY ⊗ iX
1⊗ρ−1

−−−−→ FY ⊗ F (iX)

commutes.

We then get a 2-category of central C-algebras, central C-algebra functors, and
C-algebra natural transformations. There is a forgetful 2-functor from symmet-
ric C-algebras to central C-algebras defined by letting t be the restriction of the
commutativity isomorphism of D.

This completes our tour of the algebra of categories. We now indicate how these
definitions must be changed to work in the 2-category of categories and adjunctions.

Definition 4.1.12. Suppose C, D, and E are categories. An adjunction of two
variables from C×D to E is a quintuple (⊗,Homr,Hom`, ϕr, ϕ`), where⊗ : C×D −→
E, Homr : Dop×E −→ C, and Hom` : Cop×E −→ D are functors, and ϕr and ϕ` are
natural isomorphisms

C(C,Homr(D,E))
ϕ−1

r−−→
∼=

E(C ⊗D,E)
ϕ`−→
∼=

D(D,Hom`(C,E)).

We often abuse notation by referring to (⊗,Homr,Hom`), or even ⊗ alone, as an
adjunction of two variables, leaving the adjointness isomorphisms implicit.

Now we simply change all the definitions above so that every bifunctor in sight
is an adjunction of two variables, and every functor in sight is an adjunction. The
first such definition is the following.

Definition 4.1.13. A closed monoidal structure on a category C is an octuple

(⊗, a, `, r,Homr,Hom`, ϕr, ϕ`)

where (⊗, a, `, r) is a monoidal structure on C and (⊗,Homr,Hom`, ϕr, ϕ`) : C×C −→
C is an adjunction of two variables. A closed monoidal category is a category
equipped with a closed structure.

One could think of the definition of a closed monoidal category as the pullback
of the definition of a monoidal category and the definition of an adjunction of two
variables over the bifunctor ⊗. Virtually every standard example of a monoidal
category is in a fact a closed monoidal category. Sets, for example, form a closed
monoidal category, where Homr(X,Y ) = Hom`(X,Y ) = Y X . Similarly, modules
over a commutative ring R form a closed monoidal category, where Homr = Hom` =
HomR. Even bimodules over a ring form a closed monoidal category, though in this
case Homr and Hom` are different. It requires some care to get the definitions
correct in this case. However, the category of topological spaces is a symmetric
monoidal category which is not closed. The categories of k-spaces and compactly
generated spaces are closed symmetric monoidal categories (see Definition 2.4.21).

Definition 4.1.14. A closed monoidal functor between closed monoidal cat-
egories is a quintuple (F,m, α, U, ϕ), where (F,m, α) is a monoidal functor and
(F,U, ϕ) is an adjunction.
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Most monoidal functors of closed monoidal categories are in fact closed mo-
noidal functors. For example, the monoidal functor from R-modules to S-modules
induced by a map of rings R −→ S is actually a closed monoidal functor, where the
adjoint is given by the forgetful functor from S-modules to R-modules.

We then get a 2-category of closed monoidal categories, closed monoidal func-
tors, and monoidal natural transformations. In a similar fashion, we get 2-categories
of closed symmetric monoidal categories, closed modules and closed algebras over
a given closed monoidal category, and symmetric and central closed algebras over a
given closed symmetric monoidal category. In the case of a closed module or closed
algebra D over C, we usually write XK ∈ D instead of Homr(K,X) for K ∈ C and
X ∈ D. We then often write Hom(X,Y ) or Map(X,Y ) ∈ C instead of Hom`(X,Y )
for X,Y ∈ D. Only two other new things happen, so we discuss those and leave
the rest of the details to the reader.

Firstly, in the case of closed symmetric monoidal categories, the commutativity
isomorphism defines a natural isomorphism between Hom`(X,Y ) and Homr(X,Y ),
so it is usual to drop the subscript.

Secondly, there is a duality 2-functor on the 2-category of closed C-modules,
where C is a closed symmetric monoidal category. Indeed, given a closed module
D, we define DD to be Dop, where the C-action is given by (X,K) 7→ Homr(K,X),
and the closed structure is given by the functors (X,K) 7→ X ⊗K and (X,Y ) 7→
Hom`(Y,X). The adjointness isomorphisms are easily defined. The associativity
isomorphism on DD corresponds to a map Hom(L,Homr(K,X)) −→ Homr(K ⊗
L,X) in D which can be defined by adjointness, although it requires the commuta-
tivity isomorphism of C. The unit isomorphism is similar. The dual of a morphism
(F,U, ϕ,m) from D to E is the morphism (U, F, ϕ−1, (Dm)−1). Here Dm is the
natural isomorphism Dm : U(Homr(K,X)) −→ Homr(K,UX) in D which is dual
to m. The dual of a 2-morphism is defined in the same way as it is in Catad. We
leave it to the reader to verify that D is a contravariant 2-functor whose square is
the identity, as usual.

4.2. Monoidal model categories and modules over them

In the last section, we defined the 2-categories of closed categories, symmetric
closed categories, closed modules and closed algebras over a given closed category,
and symmetric and central closed algebras over a symmetric closed category. We
now want to construct analogous 2-categories of model categories. These notions
have been around implicitly for a long time, but so far as the author knows, have
never been written down before.

All we had to do to get from monoidal categories to closed categories was to
define what an adjunction of two variables is. Similarly, the crucial step (but not
the only step) needed to define monoidal model categories is to define a Quillen
adjunction of two variables. The following definition is based on Quillen’s SM7
axiom [Qui67], and is also found in [DHK]. See also Theorem 3.3.2. The author
may have first heard it from Jeff Smith.

Definition 4.2.1. Given model categories C,D and E, an adjunction of two
variables (⊗,Homr,Hom`, ϕr, ϕ`) : C×D −→ E is called a Quillen adjunction of two
variables, if, given a cofibration f : U −→ V in C and a cofibration g : W −→ X in
D, the induced map

f � g : P (f, g) = (V ⊗W )qU⊗W (U ⊗X) −→ V ⊗X
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is a cofibration in E which is trivial if either f or g is. We refer to the left adjoint
F of a Quillen adjunction of two variables as a Quillen bifunctor, and often abuse
notation by using the term “Quillen bifunctor ⊗” when we really mean “Quillen
adjunction of two variables (⊗,Homr,Hom`, ϕr, ϕ`).”

The map f � g occuring in Definition 4.2.1 is sometimes called the pushout
product of f and g.

The following lemma is then an exercise in adjointness, using the fact that co-
fibrations, trivial cofibrations, fibrations, and trivial fibrations are all characterized
by lifting properties. We have seen it before for simplicial sets in 3.3.2.

Lemma 4.2.2. Suppose C, D, and E are model categories and

(⊗,Homr,Hom`, ϕr, ϕ`)

is an adjunction of two variables C×D −→ E. Then the following are equivalent :

1. ⊗ is a Quillen bifunctor.
2. Given a cofibration g : W −→ X in D and a fibration p : Y −→ Z in E, the

induced map

Homr,�(g, p) : Homr(X,Y ) −→ Homr(X,Z)×Homr(W,Z) Homr(W,Y )

is a fibration in C which is trivial if either g or p is.
3. Given a cofibration f : U −→ V in C and a fibration p : Y −→ Z in E, the

induced map

Hom`,�(f, g) : Hom`(V, Y ) −→ Hom`(V, Z)×Hom`(U,Z) Hom`(U, Y )

is a fibration in D which is trivial if either f or p is.

Remark 4.2.3. Suppose ⊗ : C × D −→ E is a Quillen bifunctor. Then, if C
is cofibrant, the functor C ⊗ − : D −→ E is a Quillen functor with right adjoint
Hom`(C,−). Similarly, if D is cofibrant, the functor −⊗D is a Quillen functor with
right adjoint Homr(D,−). Also, if E is fibrant, the functor Homr(−, E) : D −→ Cop

is a Quillen functor. Its right adjoint is the functor Hom`(−, E) : Cop −→ D. Here
we are giving Cop the opposite model category structure, as usual.

Just as was the case for Quillen functors (Lemma 2.1.20), it is easier to test
whether a given adjunction of two variables is a Quillen bifunctor when the domain
model categories are cofibrantly generated.

Lemma 4.2.4. Suppose ⊗ : C×D −→ E is an adjunction of two variables, I is
a set of maps in C, I ′ is a set of maps in D, and K is a set of maps in E. Suppose
as well that I � I ′ ⊆ K. Then (I-cof) � (I ′-cof) ⊆ K-cof.

Proof. We first show that (I-cof) � I ′ ⊆ K-cof. Indeed, since I � I ′ ⊆
K ⊆ K-cof, adjointness implies that the maps of I have the left lifting property
with respect to Homr,�(I ′,K-inj). It follows that every map of I-cof has the left
lifting property with respect to Homr,�(I ′,K-inj). Applying adjointness again, we
find that the maps of (I-cof) � I ′ have the left lifting property with respect to
K-inj. Hence (I-cof) � I ′ ⊆ K-cof. A similar argument using Hom` shows that
(I-cof) � (I ′-cof) ⊆ K-cof.

Corollary 4.2.5. Suppose ⊗ : C × D −→ E is an adjunction of two variables
between model categories. Suppose as well that C and D are cofibrantly generated,
with generating cofibrations I and I ′ respectively, and generating trivial cofibrations
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J and J ′ respectively. Then ⊗ is a Quillen bifunctor if and only if I � I ′ consists
of cofibrations and both I � J ′ and J � I ′ consist of trivial cofibrations.

We now define our notion of a monoidal model category.

Definition 4.2.6. A monoidal model category is a closed category C with a
model structure making C into a model category, such that the following conditions
hold.

1. The monoidal structure ⊗ : C× C −→ C is a Quillen bifunctor.

2. Let QS
q
−→ S be the cofibrant replacement for the unit S, obtained by using

the functorial factorizations to factor 0 −→ S into a cofibration followed by

a trivial fibration. Then the natural map QS ⊗ X
q⊗1
−−→ S ⊗ X is a weak

equivalence for all cofibrant X . Similarly, the natural map X ⊗ QS
1⊗q
−−→

X ⊗ S is a weak equivalence for all cofibrant X .

Note that this second condition is automatic if S is cofibrant.

We have a similar definition of a symmetric monoidal model category. In this
case, we only need one side of the second condition.

As Jeff Smith pointed out to the author, when C is a monoidal category, the
pushout product defines a monoidal structure on the category Map C of arrows
of C: the identity is the identity map of the unit object S, and the associativity
isomorphism is constructed from the associativity isomorphism of C by commuting
⊗ with pushouts. When C is closed monoidal, so is Map C: the adjoints are given
by Homr,� and Hom`,�.

The second condition in Definition 4.2.6 is easy to forget, but is essential when
the unit is not cofibrant. The following lemma, suggested to the athor by Stefan
Schwede, gives an alternative characterization of this condition.

Lemma 4.2.7. Suppose C is a closed monoidal category that is also a model
category. Then the following are equivalent.

(a) The map QS ⊗X −→ X is a weak equivalence for all cofibrant X.
(b) The map X −→ Homr(QS,X) is a weak equivalence for all fibrant X.

Similarly, the following are equivalent.

(a’) The map X ⊗QS −→ X is a weak equivalence for all cofibrant X.
(b’) The map X −→ Hom`(QS,X) is a weak equivalence for all fibrant X.

Proof. The map q : QS −→ S induces a natural transformation between the
Quillen functor QS ⊗ − and the identity functor. The result then follows from
Corollary 1.4.4, part (b).

We now give some examples of monoidal model categories.

Proposition 4.2.8. The model category SSet of simplicial sets forms a sym-
metric monoidal model category.

Proof. The symmetric monoidal structure on SSet is of course the product.
The adjoint is given by the function complex Map(X,Y ), defined in Section 3.1. It
is clear that SSet is a closed symmetric monoidal category.

The cofibrations in SSet are just the monomorphisms. The unit ∗ is thus
cofibrant, so it suffices to verify that the product is a Quillen bifunctor. The
pushout product of any two monomorphisms is easily seen to be a monomorphism.
The trivial cofibrations in SSet are the anodyne extensions, studied in Section 3.3.
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Thus Theorem 3.3.2 says that the pushout product of a trivial cofibration with a
cofibration is a trivial cofibration, as required.

It will follow from this theorem that pointed simplicial sets also form a sym-
metric monoidal model category. In fact, something more general is true.

Proposition 4.2.9. Suppose C is a monoidal model category whose unit is
the terminal object ∗, and that ∗ is cofibrant. Then C∗ is also a monoidal model
category, which is symmetric if C is.

See Proposition 1.1.8 for a discussion of the model structure on C∗.

Proof. We define (X, v) ∧ (Y,w) to be the pushout in the diagram

X q Y
(X⊗w)q(v⊗Y )
−−−−−−−−−−→ X ⊗ Y

y
y

∗ −−−−→ X ∧ Y

The reader can readily verify that this is a monoidal structure, with unit (∗)+ =
∗q∗. To construct the associativity isomorphism, use the fact that X⊗− commutes
with colimits to write X ∧ (Y ∧Z) as the quotient of X⊗ (Y ⊗Z) by the coproduct
of Y ⊗Z, X⊗Z and X⊗Y , and similarly for (X∧Y )∧Z. This monoidal structure
is symmetric if and only if ⊗ is so.

We define the adjoint Homr,∗(X,Y ) as the pullback in the diagram

Homr,∗(X,Y ) −−−−→ Homr(X,Y )
y

yHomr(v,Y )

∗ −−−−−−−→
Homr(∗,w)

Homr(∗, Y )

The basepoint of Homr,∗(X,Y ) is the zero map X −→ ∗
w
−→ Y . We define the other

adjoint Hom`,∗(X,Y ) in similar fashion. We leave it to the reader to verify the
required adjunctions.

Since ∗ is cofibrant in C, the unit ∗+ is cofibrant in C∗. Hence to complete
the proof we need only verify that ∧ is a Quillen bifunctor. Note that X+ ∧ Y+ is
naturally isomorphic to (X ⊗ Y )+, so that the disjoint basepoint functor C −→ C∗

is a closed monoidal functor. This implies that f+ � g+ ∼= (f � g)+. Let I denote
the cofibrations in C and let I ′ denote the cofibrations in C∗. Then, because C is
monoidal, I+�I+ ⊆ I+ ⊆ I

′. It follows from Lemma 4.2.4 that (I+-cof)�(I+-cof) ⊆
I ′. But we claim that I+-cof = I ′. Indeed, one can easily verify using adjointness
that I+-inj is the class of trivial fibrations in C∗. It follows that I+-cof = I ′, so that
I ′ � I ′ ⊆ I ′. A similar argument shows that f � g is a trivial cofibration if both f
and g are cofibrations in C∗ and one of them is trivial.

It is essential that C be a closed monoidal category in order to ensure that C∗

is a monoidal category. Indeed, the smash product on Top∗ fails to be associative.

Corollary 4.2.10. The model category SSet∗ of pointed simplicial sets is a
symmetric monoidal model category.

The model category Top of topological spaces is not a monoidal model category,
because it is not a closed monoidal category
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Proposition 4.2.11. The model categories K and T of k-spaces and compactly
generated spaces are symmetric monoidal model categories.

Proof. We leave to the reader the easy proof that K and T are symmetric
monoidal categories under the k-space product. It follows from part 5 of Proposi-
tion 2.4.22 that K and T are in fact closed symmetric monoidal categories. The
unit ∗ of the product is cofibrant, so it suffices to show that the product is a Quil-
len bifunctor. One can verify this directly, using the generators and Lemma 4.2.4.
However, it also follows from the facts that SSet is a monoidal model category,
and that the geometric realization is a monoidal functor. Indeed, let I denote the
generating cofibrations of SSet. Then |I | � |I | ∼= |I � I | because the geometric
realization is monoidal. Since I � I ⊆ I-cof since SSet is a monoidal model cat-
egory, we have |I | � |I | ⊆ |I |-cof. But the set |I | is homeomorphic to the set of
generating cofibrations of K (or T). Lemma 4.2.4 completes the proof in this case,
and a similar argument works when one of the cofibrations is trivial.

Corollary 4.2.12. The model categories K∗ and T∗ are symmetric monoidal
model categories.

Proposition 4.2.13. Let R be a commutative ring. Then Ch(R), the category
of unbounded chain complexes of R-modules, given the model structure of Defini-
tion 2.3.3, is a symmetric monoidal model category.

Proof. First we recall that Ch(R) is indeed a closed symmetric monoidal
category. Given chain complexes X and Y , we define

(X ⊗ Y )n =
⊕

k

Xk ⊗R Yn−k

where d(x⊗y) = dx⊗y+(−1)|x |x⊗dy. The unit is the complex S0 consisting ofR in
degree 0. The commutativity isomorphism is defined by T (x⊗y) = (−1)|x ||y |y⊗x
for homogeneous elements x and y. We leave it to the reader to construct the
required natural associativity and unit isomorphisms, and to verify that the coher-
ence diagrams commute, making Ch(R) into a symmetric monoidal category. To
see that Ch(R) is in fact a closed symmetric monoidal category, we define

Hom(X,Y )n =
∏

k

HomR(Xk, Yn+k)

with (df)(x) = df(x)+(−1)n+1f(dx) for f ∈ HomR(Xk, Yn+k). It is easy to make a
mistake with the signs above. One way to check that the signs are right is to verify
that {fk} ∈

∏
k HomR(Xk, Yk) is a cycle if and only if it is a chain map, which is

true with our sign convention. Another way is to check the required adjointness,
which we leave to the reader.

As the unit S0 is cofibrant, it suffices to verify that the tensor product is a Quil-
len bifunctor. Recall that the generating cofibrations are the maps Sn−1 −→ Dn,
and the generating trivial cofibrations are the maps 0 −→ Dn. The pushout product
of two generating cofibrations is an injection with bounded below dimensionwise
projective cokernel. Hence by Lemma 2.3.6, the cokernel is cofibrant. Proposi-
tion 2.3.9 then implies that the pushout product of two generating cofibrations is a
cofibration. Lemma 4.2.4 implies that the pushout product of any two cofibrations
is a cofibration.

To complete the proof, we must verify that the pushout product of a generating
cofibration with a generating trivial cofibration is a weak equivalence. The pushout
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product of Sn−1 −→ Dn and 0 −→ Dm is the map Dm+n−1 −→ Dm ⊗Dn, which is a
weak equivalence as required.

Note that the injective model structure (Definition 2.3.12) does not make Ch(R)
into a monoidal model category, in general. Indeed, let R = Z, and consider the
pushout product of the injective cofibration Z −→ Q (concentrated in degree 0) with
the injective cofibration 0 −→ Z/2Z. This pushout product is the map Z/2Z −→ 0,
which is certainly not an injective cofibration.

Even if R is not commutative, there is a tensor product pairing Ch(Rop) ×
Ch(R) −→ Ch(Z). This is always a Quillen bifunctor, by the same argument used
to prove Proposition 4.2.13.

Recall the model category Ch(B) of chain complexes of comodules over a com-
mutative Hopf algebra B over a field k from Section 2.5.

Proposition 4.2.14. The model category Ch(B) is a symmetric monoidal model
category.

Proof. Recall from Section 2.5 that the category of B-comodules is a closed
symmetric monodal category. The monoidal structure is given by the tensor product
M ⊗k N over the ground field k, using the coalgebra structure of B. The adjoint
is given by the largest comodule contained in Homk(M,N). As remarked at the
beginnning of Section 2.5.2, the tensor product extends to the category Ch(B) of
chain complexes of B-comodules, just as in the proof of Proposition 4.2.13. The
commutativity isomorphism again takes x ⊗ y to (−1)|x || y |y ⊗ x, and the unit is
the trivial comodule k concentrated in degree 0. Similarly, the Hom functor also
extends to Ch(B), just as in the proof of Proposition 4.2.13. We leave it to the
reader to check that with these definitions Ch(B) is a closed symmetric monoidal
category.

Recall that the cofibrations in Ch(B) the monomorphisms. Thus, the unit
k is cofibrant, and, since tensoring over k is exact, the pushout product of two
cofibrations is a cofibration. The generating trivial cofibrations are the maps
Dni : DnM −→ DnN , where i is an inclusion of finite-dimensional comodules.
The generating cofibrations are these plus the maps Sn−1M −→ DnM for simple
comodules M . In either case, one can check easily that the pushout product f�g of
a generating cofibration f with a generating trivial cofibration g is a monomorphism
with bounded acyclic cokernel C. Applying Lemma 2.5.19, we find that C has no
homotopy. The long exact sequence in homotopy (Lemma 2.5.11) then implies that
f � g is a homotopy isomorphism, so a weak equivalence as required.

Finally, we consider the stable category of modules over a Frobenius ring. In
this case, we will have to assume R is a Hopf algebra over a field k in order to
obtain a monoidal structure.

Proposition 4.2.15. Suppose R is a Frobenius ring which is also a finite-
dimensional Hopf algebra over a field k. Then the category R-mod is a monoidal
model category when given the model structure of Definition 2.2.5. It is symmetric
if and only if R is cocommutative.

Proof. The monoidal structure on R-mod is given by M ⊗k N , where R
acts via its diagonal R −→ R ⊗k R. That is, if we write ∆r =

∑
r′ ⊗ r′′, then

r(m ⊗ n) =
∑
r′m ⊗ r′′n. The adjoints Homr(M,N) and Hom`(M,N) are both

isomorphic to Homk(M,N) as vector spaces. The R-action on Homr(M,N) is
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defined by rg(m) =
∑
r′g(χ(r′′)n), and the R-action on Hom`(M,N) is defined

by rg(m) =
∑
χ(r′)g(r′′n). We leave it to the reader to verify that this makes

R-mod into a closed monoidal category, which is symmetric if and only if R is
cocommutative.

Since everything is cofibrant in R-mod, to verify that R-mod is a monoidal
model category, we need only check that ⊗ is a Quillen bifunctor. Recall that the
cofibrations are simply the injections. Since we are tensoring over a field, if f and
g are injections, so is f � g. If f is one of the generating cofibrations a −→ R
and g is the generating trivial cofibration 0 −→ R, then f � g is the injection
a⊗kR −→ R⊗k R. To show that this is a weak equivalence, we must show that the
cokernel R/a⊗k R is a projective R-module. To do this, we must check that, given
a surjection f : M −→ N , any map g : R/a⊗k R −→ N lifts to M . But adjointness
implies that is suffices to lift the adjoint R −→ Hom`(R/a, N) of g to Hom`(R/a,M).
Since Homk is exact and R is projective, we can find such a lift. A similar proof
shows that g � f is a weak equivalence.

In all of these examples, the unit is cofibrant. The reader may therefore wonder
if the unit condition in Definition 4.2.6 is really necessary. We will see below that
the role this condition plays is to make sure that the unit isomorphism descends to
the homotopy category. In practice, the unit is usually cofibrant, but the category of
S-modules introduced in [EKMM97] is an example of a monoidal model category
where the unit is not cofibrant.

We now define the 2-category of monoidal model categories.

Definition 4.2.16. Given monoidal model categories C and D, a monoidal
Quillen adjunction from C to D is a Quillen adjunction (F,U, ϕ) such that F is a
monoidal functor and such that the map Fq : F (QS) −→ FS is a weak equivalence.
This last condition is redundant if S is cofibrant, but is necessary in general to
make sure the unit isomorphism α passes to the homotopy category. We usually
refer to a monoidal Quillen adjunction by its left adjoint F , whch we refer to as a
monoidal Quillen functor.

We claim that monoidal model categories, monoidal Quillen functors, and mo-
noidal natural transformations form a 2-category. As usual, we leave most of this
to the reader. One must check, among other things, that if G and F are monoidal
Quillen functors, the map GFq : GFQS −→ GFS is still a weak equivalence. To
see this consider the diagram

GQFQS
GQFqS
−−−−−→ GQFS

GQα
−−−−→ GQS

GqF QS

y GqF S

y GqS

y

GFQS
GFqS
−−−−→ GFS

Gα
−−−−→ GS

where α is the unit isomorphism of the monoidal functor F . This diagram commutes
because q is natural. The map GqS is a weak equivalence since G is a monoidal
Quillen functor, and the maps GQα and Gα are isomorphisms. Hence the map
GqFS is a weak equivalence. The map GQFqS is a weak equivalence since F is a
monoidal Quillen functor and GQ preserves weak equivalences. The map GqFQS is
a weak equivalence since G preserves weak equivalences between cofibrant objects.
Hence the only other map in the diagram, GFqS , must also be a weak equivalence.
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There is an analogous 2-category of symmetric monoidal model categories,
where the morphisms are symmetric monoidal Quillen adjunctions.

The simplest example of a symmetric monoidal Quillen functor is probably
the disjoint basepoint functor SSet −→ SSet∗, whose right adjoint is the forgetful
functor. Similarly, the disjoint basepoint functors K −→ K∗ and T −→ T∗ are
symmetric monoidal Quillen functors. Also, if f : R −→ S is a homomorphism
of commutative rings, the induced Quillen adjunction Ch(R) −→ Ch(S) (whose
left adjoint tensors with S and whose right adjoint is restriction of scalars) is a
symmetric monoidal Quillen functor.

Another example is the geometric realization.

Proposition 4.2.17. The geometric realization is a symmetric monoidal Quil-
len functor | | : SSet −→ K, and extends to a symmetric monoidal Quillen functor
| | : SSet∗ −→ K∗.

Proof. We have already seen in Theorem 3.6.7 that the geometric realization
is a Quillen equivalence. In Lemma 3.1.8 we saw that the geometric realization
preserves products as well. One then just has to check that the coherence diagrams
commute, which we leave to the reader.

The reader might be tempted to think that we can construct a monoidal Quillen
functor SSet −→ Ch(R) by tensoring with R to get a simplicial R-module, and then
normalizing to get a chain complex by, for example, taking the alternating sum of
the di. This is what the Eilenberg-Zilber theorem is about: so far as the author
knows there is no monoidal Quillen functor SSet −→ Ch(R), though there is a
Quillen functor which preserves products up to weak equivalence.

We also have the notion of a module over a monoidal model category.

Definition 4.2.18. Given a monoidal model category C, a C-model category is
a C-module D with a model structure making D into a model category such that
the following conditions hold.

1. The action map ⊗ : D× C −→ D is a Quillen bifunctor.

2. IfQS
q
−→ S is the cofibrant replacement for S in C, then the mapX⊗QS

1⊗q
−−→

X ⊗ S is a weak equivalence for all cofibrant X ∈ D.

Again, this second condition is automatic when S is cofibrant in C. An SSet-model
category is called a simplicial model category. A C-Quillen functor from the C-
model category D to the C-model category E is a Quillen functor which is also a
C-module functor.

Simplicial model categories were introduced by Quillen in [Qui67] and have
been studied by many other authors since. Our definition is slightly different from
Quillen’s, as he only required an action by finite simplicial sets. This means that
under our definition Top is not a simplicial model category, though it is under
Quillen’s. The categories SSet, SSet∗, K, K∗, T and T∗ are all simplicial model
categories, using the monoidal Quillen functors discussed above to define the action,
but Ch(R) and Ch(B) for a ring R and a Hopf algebra B are not. On the other
hand, for any ring R, Ch(R) is a Ch(Z)-model category.

We leave it to the reader to verify that, given a monoidal model category
C, we get a 2-category of C-model categories, C-Quillen functors, and C-module
natural transformations. Furthermore, a monoidal Quillen functor C −→ D induces
a forgetful 2-functor from D-model categories to C-model categories.
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Note that, if C is pointed, then every C-model category D is pointed as well.
Indeed, the map S −→ ∗ in C induces a map X ∼= X ⊗ S −→ X ⊗ ∗ in D for any
X ∈ D. But the functor X ⊗− is a left adjoint, so we must have X ⊗ ∗ = 0, the
initial object of D. Taking X to be the terminal object 1 of D, we get a map 1 −→ 0,
which must be an isomorphism.

Proposition 4.2.19. Suppose C is a monoidal model category whose unit is
the terminal object ∗, and suppose ∗ is cofibrant. If D is a C-model category, then
D∗ is naturally a C∗-model category. There is an equivalence of categories between
pointed C-model categories and C∗-model categories.

Proof. We have seen in Proposition 4.2.9 that C∗ is a monoidal model cate-
gory, and that the disjoint basepoint functor C −→ C∗ is a monoidal Quillen functor.
Any C∗-model category is automatically pointed, as we have seen above, and there-
fore we get a forgetful functor from C∗-model categories to pointed C-model cate-
gories. The same argument used in Proposition 4.2.9 shows that D∗ is a C∗-model
category in a natural way. If D is already pointed, then D∗ is naturally isomor-
phic to D, giving the desired equivalence between pointed C-model categories and
C∗-model categories.

So, for example, a pointed simplicial model category is the same thing as a
SSet∗-model category.

There is a duality 2-functor on the 2-category of C-model categories, which is
defined just as it is in the category C-modules except that we also reverse the model
structure. We leave the details to the reader.

Given a monoidal model category C, we can form the 2-category of algebras
over it as well.

Definition 4.2.20. Suppose C is a monoidal model category. A monoidal C-
model category is a monoidal model category D together with a monoidal Quillen
functor C −→ D. A monoidal C-Quillen functor is a monoidal Quillen functor which
respects C, so is a C-algebra functor.

We leave it to the reader to verify that we get a 2-category of monoidal C-model
categories, monoidal C-Quillen functors,, and C-algebra natural transformations.

We have analogous 2-categories of symmetric and central monoidal C-model
categories. We leave the details to the reader. The examples above of symmetric
monoidal Quillen functors also furnish examples of symmetric monoidal C-model
categories. For example, K is a symmetric monoidal SSet-model category.

4.3. The homotopy category of a monoidal model category

In this section, we prove the expected result that the homotopy category of
a monoidal model category is a closed monoidal category. Of course, we actually
prove that the homotopy pseudo-2-functor Mod −→ Catad extends to a pseudo-
2-functor from monoidal model categories to closed monoidal categories. We have
similar results for the five other sorts of categories we have considered.

We first show that a Quillen bifunctor induces a bifunctor on the homotopy
category.

Proposition 4.3.1. Suppose C,D and E are model categories, and

(⊗,Homr,Hom`, ϕr, ϕ`) : C×D −→ E
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is a Quillen adjunction of two variables. Then the total derived functors define
an adjunction of two variables (⊗L, RHomr, RHom`, Rϕr, Rϕ`) : HoC×Ho D −→
HoE.

Proof. We use Remark 4.2.3 throughout this proof, so the reader might wish
to review it. First note that 0 ∼= C ⊗ 0 ∼= 0⊗D, where 0 denotes the initial object,
since ⊗ is a left adjoint in each variable. Similarly, Homr(0, E) ∼= 1 ∼= Homr(D, 1),
where 1 denotes the terminal object, and Hom`(0, E) ∼= 1 ∼= Hom`(C, 1). It follows
that ⊗ preserves cofibrant objects, since the map 0 −→ A⊗B is isomorphic to the
map A ⊗ 0 −→ A ⊗ B. Similarly, Homr and Hom` preserve fibrant objects, giving
the first variable the opposite model category structure as usual.

We show that the total left derived functor ⊗L exists by showing that ⊗ pre-
serves trivial cofibrations between cofibrant objects. Indeed, if f : C −→ C ′ and
g : D −→ D′ are trivial cofibrations of cofibrant objects, then, by Remark 4.2.3,

both C⊗C ′ C⊗g
−−−→ C⊗D′ and C⊗D′ f⊗D′

−−−→ C ′⊗D′ are trivial cofibrations. Hence
their composite f ⊗ g is also a trivial cofibration. Similarly, Homr and Hom` pre-
serve trivial fibrations between fibrant objects, so have total right derived functors.

To define Rϕr, note first that ϕr defines a natural isomorphism

ϕ̃r : [C ⊗D,E]
∼=
−→ [C,Homr(D,E)]

of functors from (Cop × Dop × E)f to sets, where the superscript denotes the full
subcategory of fibrant objects. To see this, we must show that ϕr is compatible with
the homotopy relation. To do so, we use the Quillen bifunctor property to show
that, if C × I is a cylinder object on a cofibrant object C, and D is cofibrant, then
(C × I)⊗D is a cylinder object on the cofibrant object C ⊗D. There is a similar
statement in the second variable. There are also similar statements for Homr (and
Hom`), which we summarize by saying that Homr preserves path objects in either
variable when thought of as a functor (Dop × E)f −→ Cf . It follows easily from this
that ϕ̃r exists and is a natural isomorphism.

Since ϕ̃r is a natural isomorphism between functors which preserve weak equiv-
alences, it induces a natural isomorphism

Ho ϕ̃r : [C ⊗D,E]
∼=
−→ [C,Homr(D,E)]

of functors from Ho(Cop×Dop×E)f to sets. We then define Rϕr as the composite

[C ⊗L D,E] = [QC ⊗QD,E]
∼=
−→ [QC ⊗QD,RE]

Ho ϕ̃r
−−−→

∼=
[QC,Homr(QD,RE)]

∼=
−→ [C,Homr(QD,RE)] = [C, (RHomr)(D,E)]

where the first and third arrows are induced by the isomorphisms (in the homotopy
category) E −→ RE and QC −→ C.

We have a similar construction for Rϕ`.

It follows easily from Proposition 4.3.1 that a natural transformation of Quillen
bifunctors induces a functorial derived natural transformation between the total left
derived functors of the Quillen bifunctors.

Theorem 4.3.2. Suppose C is a (symmetric) monoidal model category. Then
HoC can be given the structure of a closed (symmetric) monoidal category. The ad-
junction of two variables (⊗L, RHomr, RHom`) which is part of the closed structure
on Ho C is the total derived adjunction of (⊗,Homr,Hom`). The associativity and
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unit isomorphisms (and the commutativity isomorphism in case C is symmetric)
on Ho C are derived from the corresponding isomorphisms of C.

Proof. Proposition 4.3.1 implies that the adjunction (⊗L, RHomr, RHom`)
exists. We must construct the associativity, unit, and commutativity isomorphisms
(if applicable) and show the required coherence diagrams commute.

Consider first the associativity isomorphism

a : (X ⊗L Y )⊗L Z −→ X ⊗L (Y ⊗L Z).

Recall that, by definition,

(X ⊗L Y )⊗L Z = Q(QX ⊗QY )⊗QZ

and

X ⊗L (Y ⊗L Z) = QX ⊗Q(QY ⊗QZ).

We can then define a to be the composite

Q(QX ⊗QY )⊗QZ
q⊗1
−−→

∼=
(QX ⊗QY )⊗QZ

a
−→
∼=
QX ⊗ (QY ⊗QZ)

1⊗q−1

−−−−→
∼=

QX ⊗Q(QY ⊗QZ)

Here we are using the fact that a : (QX ⊗ QY ) ⊗ QZ −→ QX ⊗ (QY ⊗ QZ) is
actually natural in the homotopy category, not just the actual category. To see
this, use the argument in the proof of Proposition 4.3.1 that Ho ϕ̃r exists.

One can also define this more formally by noting that the derived natural
transformation of a : ⊗◦(⊗×1) −→ ⊗◦ (1×⊗) is a natural isomorphism L(⊗◦ (⊗×
1)) −→ L(⊗ ◦ (1 × ⊗)), and constructing natural isomorphisms ⊗L ◦ (⊗L × 1) −→
L(⊗ ◦ (⊗× 1)) and ⊗L ◦ (1×⊗L) −→ L(⊗ ◦ (1×⊗)).

The commutativity isomorphism is easier, as we define T : X ⊗L Y −→ Y ⊗LX
as the derived natural transformation of T : X ⊗ Y −→ Y ⊗X . That is, T is just
T : QX ⊗QY −→ QY ⊗QX . This assumes C is symmetric, of course.

The left unit isomorphism is the composite QS ⊗ QX
q⊗1
−−→ S ⊗ QX

`
−→ QX .

It is an isomorphism since q⊗ 1 is a weak equivalence when X is cofibrant. This is
the reason for this condition in the definition of a monoidal model category. The
construction of the right unit isomorphism is similar.

We leave the reader to check that the necessary coherence diagrams commute,
which is straightforward since we have explicit descriptions of the maps involved.
One can use the functoriality of the derived natural transformation to do some of
the work.

Naturally we want this correspondence between monoidal model categories and
closed monoidal categories to be functorial.

Theorem 4.3.3. The homotopy pseudo-2-functor of Theorem 1.4.3 lifts to a
pseudo-2-functor from monoidal model categories to closed monoidal categories,
and further lifts to a pseudo-2-functor from symmetric monoidal model categories
to closed symmetric monoidal categories.

Proof. Suppose (F,U, ϕ,m, α) is a monoidal Quillen adjunction from C to D.
We then get an adjunction (LF,RU,Rϕ) : HoC −→ HoD. We must construct natu-
ral isomorphisms αLF : (LF )S −→ S andmLF : (LF )X⊗L(LF )Y −→ (LF )(X⊗LY )
and show that the required coherence diagrams commute.
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We define αLF to be the composite

(LF )S = F (QS)
Fq
−−→ FS

αF−−→ S

which is an isomorphism, since by hypothesis Fq is a weak equivalence in C. This
is in fact the reason for making this assumption on F .

There are two different methods one could use to definem. What we are looking
for is a natural isomorphism between composites of total derived functors, so we
can use the derived natural isomorphism between the total derived functors of the
composites and the isomorphism commuting “composites” and “total derived” past
one another. Or we can just define m concretely, as the composite

(LF )X ⊗L (LF )Y = QFQX ⊗QFQY
qF QX⊗qF QY
−−−−−−−−→ FQX ⊗ FQY

mF−−→ F (QX ⊗QY )
Fq−1

QX⊗QY
−−−−−−−→ FQ(QX ⊗QY ) = (LF )(X ⊗L Y )

Herem is an isomorphism because both the tensor product and F preserve cofibrant
objects and weak equivalences between cofibrant objects. The same reasoning shows
that mF is actually natural on the homotopy category level, not just the model
category level.

We will leave it to the reader to verify that with these definitions, the ap-
propriate coherence diagrams commute, making (LF,RU,Rϕ,m, α) into a closed
monoidal functor, which is a closed symmetric monoidal functor if (F,U, ϕ,m, α) is
so.

If τ is a monoidal natural transformation of monoidal Quillen functors, then
one can easily check that Lτ is compatible with the multiplication and unit isomor-
phisms just defined, so is a monoidal natural transformation. We leave it to the
reader to check that compositions behave correctly, so that we do get a pseudo-2-
functor as required.

The following theorem is proved in the same way.

Theorem 4.3.4. Suppose C is a monoidal model category. Then the homotopy
pseudo-2-functor of Theorem 1.4.3 lifts to define:

1. A pseudo-2-functor from C-model categories to closed Ho C-modules which is
compatible with duality ;

2. A pseudo-2-functor from monoidal C-model categories to closed HoC-algebras ;
3. If C is a symmetric monoidal model category, a pseudo-2-functor from sym-

metric (resp. central) monoidal C-model categories to closed symmetric
(resp. central) HoC-algebras.

In particular, the geometric realization defines an equivalence of closed sym-
metric monoidal categories HoSSet −→ HoK and HoSSet∗ −→ HoK∗.



CHAPTER 5

Framings

In the last chapter we saw, among other things, that the homotopy category of
a simplicial model category is naturally a closed HoSSet-module. The main goal
of this chapter is to show that in fact the homotopy category of any model category
is naturally a closed HoSSet-module. This seems to be saying that simplicial sets
play almost the same role in model category theory as the integers do in ring theory,
and explains why there are so many results about simplicial model categories in the
literature. Almost all of those results will in fact hold for general model categories
using the techniques in this section.

The author is very pleased with this result, and so must take great pains to point
out that its essentials are not due to him, but rather to Dwyer and Kan [DK80].
We have used the formulation of the results of Dwyer and Kan that appears in an
early draft of [DHK]. In this chapter, most of the results that do not contain one
of the phrases “homotopy category”, “2-category”, or “pseudo-2-functor” are taken
from [DHK].

The outline of this chapter is as follows. In order to construct the closed
HoSSet-module structure on the homotopy category of a model category, we need
simplicial and cosimplicial resolutions of objects in a model category C. A cosim-
plicial resolution will be an object in the functor category C∆, where ∆ is, as usual,
the category of finite totally ordered sets. To be able to work with such functors,
we will need a model structure on C∆. We begin in Section 5.1 by putting a model
structure on CB, where B is a direct or inverse category. The category ∆ is nether
a direct nor an inverse category, but is instead what is known as a Reedy category.
We examine diagrams over Reedy categories in Section 5.2. We also define fram-
ings and construct the framing associated to a model category there. A framing
induces bifunctors analogous to the functors that define a simplicial model cate-
gory. Before we investigate these functors, we take a brief detour in Section 5.3 to
prove a lemma about bisimplicial sets. In Section 5.4, we study how the functors
induced by a framing interact with the model structure. In particular, we show
that the framing on a model category C gives rise to an adjunction of two variables
HoC × HoSSet −→ HoC. In Section 5.5, we show that this adjunction is actually
part of a closed HoSSet-module structure. Finally, in Section 5.6, we show that we
get the promised pseudo-2-functor. We also show here that the homotopy category
of a monoidal model category is naturally a closed HoSSet-algebra. We would
like to say that the homotopy category of a monoidal model category is naturally
a central closed HoSSet algebra, and that the homotopy category of a symmetric
monoidal model category is naturally a symmetric closed HoSSet-algebra, but we
are unable to prove this.

119
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5.1. Diagram categories

Before we can introduce framings, we need to consider diagrams in a model
category, and show that we sometimes get a model category of diagrams. The
results in this section are mostly taken from [DHK].

Recall that an ordinal is defined inductively to be the totally ordered set of all
smaller ordinals. If λ is an ordinal, we often think of λ as a category where there
is one map from α to β if and only if α ≤ β.

Definition 5.1.1. Suppose B is a small category and λ is an ordinal.

1. A functor f : B −→ λ is called a linear extension if the image of a nonidentity
map is a nonidentity map. We then refer to f(i) as the degree of i. Note
that all nonidentity maps raise the degree.

2. B is a direct category if there is a linear extension B −→ λ for some ordinal
λ.

3. Dually, B is an inverse category if there is a linear extension Bop −→ λ for
some ordinal λ.

Note that the dual of a direct category is an inverse category, and vice versa.
In a direct category or inverse category, there is a kind of induction procedure,

controlled by the latching or matching space functors that we now define.

Definition 5.1.2. Suppose C is a category with all small colimits, B is a direct
category, and i is an object of B. We define the latching space functor Li : CB −→ C

as follows. Let Bi be the category of all non-identity maps with codomain i in B,
and define Li to be the composite

Li : CB −→ CBi
colim
−−−→ C

where the first arrow is restriction. Note that we have a natural transformation
LiX −→ Xi. Similarly, if B is an inverse category and C has all small limits, we
define the matching space functor to be the composite

Mi : CB −→ CB
i lim
−−→ C

where Bi is the category of all non-identity maps with domain i in B, and the first
arrow is restriction. We have a natural transformation Xi −→MiX .

We can use the latching space functors to define a model category structure on
CB for a direct category B and a model category C.

Theorem 5.1.3. Given a model category C and a direct category B, there is a
model structure on CB, where a map τ : X −→ Y is a weak equivalence or a fibration
if and only if the map τi : Xi −→ Yi is so for all i. Furthermore, τ : X −→ Y is a
(trivial) cofibration if and only if the induced map XiqLiX LiY −→ Yi is a (trivial)
cofibration for all i. Dually, if B is an inverse category, then we have a model
structure on CB where the weak equivalences and cofibrations are the objectwise
ones, and a map τ : X −→ Y is a (trivial) fibration if and only if the induced map
Xi −→ Yi ×MiY MiX is a (trivial) fibration for all i.

To prove Theorem 5.1.3, we first prove that the lifting axiom holds. We con-
centrate on the direct category case, as the inverse category case is dual.
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Proposition 5.1.4. Suppose B is a direct category, and C is a model category.
Suppose we have a commutative square in CB

A −−−−→ X

f

y p

y

B −−−−→ Y

where p is an objectwise fibration and where the map gi : Ai qLiA LiB −→ Bi is a
cofibration for all i ∈ B. Then, if either pi is a trivial fibration for all i or gi is a
trivial cofibration for all i, there is a lift B −→ X.

Proof. We will only prove the case when gi is a trivial cofibration, as the other
case is similar. We will show the required lift exists using transfinite induction.
There is a linear extension d : B −→ λ for some ordinal λ, and for β ≤ λ, we define
B<β to be the full subcategory of B consisting of all i such that d(i) < β. Similarly,
for Z ∈ CB, we let Z<β be the restriction of Z to B<β . We will construct by
transfinite induction on β, a lift h<β in the diagram

A<β −−−−→ X<βy
y

B<β −−−−→ Y<β

such that, for all α < β, the restriction of h<β to B<α is h<α. The case β = 0 is
trivial. If β is a limit ordinal and we have constructed h<α for all α < β, then we
define h<β on B<β as the map induced by the h<α for α < β. That is, given an
i ∈ B with di < β, there is an α < β such that di < α, so we define h<β on Xi to
be h<α on Xi.

For the successor ordinal case, suppose we have defined h<β . Then, for each
element i of degree β, we have a commutative square

Ai qLiA LiB −−−−→ Xi

gi

y pi

y

Bi −−−−→ Yi

where the map LiB −→ Xi is defined using h<β. Since gi is a trivial cofibration, we
can find a lift in this diagram. Putting these together for the different i of degree
β defines an extension h<β+1 of h<β , as required.

Corollary 5.1.5. Suppose B is a direct category and C is a model category.

If f : A −→ B is a map in CB such that the map Ai qLiA LiB
gi
−→ Bi is a (triv-

ial) cofibration for all i, then the map colim f : colimA −→ colimB is a (trivial)
cofibration.

Given Theorem 5.1.3, Corollary 5.1.5 is just saying that the colimit is a left
Quillen functor.

The dual of this corollary holds when B is an inverse category, as usual.

Proof. Again, we concentrate on the case where gi is a trivial cofibration for
all i, as the other case is similar. Given a fibration p : X −→ Y in C, we must show
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that we can find a lift in any commutative square

colimA −−−−→ X
y p

y

colimB −−−−→ Y

But finding a lift in this square is equivalent to finding a lift in the commutative
square

A −−−−→ c∗X
y

y

B −−−−→ c∗Y

where c∗Z denotes the constant diagram on Z. Now Proposition 5.1.4 implies that
we can find such a lift.

We can now prove Theorem 5.1.3.

Proof of Theorem 5.1.3. It suffices to prove the case when B is direct,
since the isomorphism CB

op ∼= (Cop)B converts the latching space to the matching
space. The category CB has all small colimits and limits, taken objectwise. The
two-out-of-three axiom is clear.

For the moment, let us refer to a map A −→ B in CB which has the property
that the map Ai qLiA LiB −→ Bi is a trivial cofibration for all i as a good trivial
cofibration. A good trivial cofibration is certainly a cofibration, and we claim that
it is also a weak equivalence. Indeed, by Corollary 5.1.5, the map LiA −→ LiB
is a trivial cofibration for all i. It follows that the map Ai −→ Ai qLiA LiB is
also a trivial cofibration. Hence the map Ai −→ Bi is a composition of two trivial
cofibrations, hence is also a trivial cofibration. Thus every good trivial cofibration
is a trivial cofibration. Later in the proof, we will show that the converse is also
true.

Now, we leave it to the reader to check that weak equivalences, fibrations,
cofibrations, and good trivial cofibrations are all closed under retracts. Propo-
sition 5.1.4 shows that cofibrations have the left lifting property with respect to
trivial fibrations, and that good trivial cofibrations have the left lifting property
with respect to fibrations.

Now we construct the functorial factorizations of maps A −→ B. For con-
creteness, we will do the factorization into a good trivial cofibration followed by
a fibration. The construction of the other factorization is similar. Recall that we
have a degree function d : B −→ λ. We construct compatible functorial factoriza-
tions on CB<β by transfinite induction on β ≤ λ, where B<β is the full subcategory
of all i such that d(i) < β. The base case of the induction is β = 1. Here we
use the functorial factorization in C to factor Ai −→ Bi for all i of degree 0. Now
suppose we have constructed a functorial factorization on CB<β . We extend this to
a functorial factorization on CB<β+1 as follows. Given a map A −→ B of diagrams,
we have the functorial factorization A<β −→ Z<β −→ B<β. Given an i of degree β,
we then have a map Ai qLiA LiZ −→ Bi. We use the functorial factorization in C

to factor this into a trivial cofibration Ai qLiA LiZ −→ Zi followed by a fibration
Zi −→ Bi. Combining these for the different i of degree β, we get the required
functorial factorization on CB<β+1 . To complete the induction, we need to consider
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limit ordinals β. Suppose we have defined compatible functorial factorizations on
CB<γ for all γ < β. Then they clearly combine to define a functorial factorization
on CB<β , as required.

To complete the proof, we must show that every trivial cofibration is a good
trivial cofibration. So suppose f : X −→ Y is any trivial cofibration. Then we can

factor it as X
g
−→ Z

p
−→ Y , where g is a good trivial cofibration and p is a (necessarily

trivial) fibration. By lifting in the diagram

X
g

−−−−→ Z

f

y p

y

Y Y
we see that f is a retract of g. This implies that f is also a good trivial cofibration.

The following corollary is the immediate from Theorem 5.1.3 and Corollary 5.1.5.

Corollary 5.1.6. Suppose C is a model category and B is a direct category.
Then the colimit functor colim: CB −→ C is a left Quillen functor, left adjoint to
the functor c that takes an object to the constant diagram at that object. Dually, if
B is an inverse category, the limit functor lim: CB −→ C is a right Quillen functor,
right adjoint to c.

Remark 5.1.7. Suppose B is a direct category and C is a model category. Then
a cofibration in CB is in particular an objectwise cofibration. Indeed, it follows from
Corollary 5.1.5 that, if f : X −→ Y is a cofibration, then the map LiX −→ LiY is a
cofibration for all i. Hence the map Xi −→ Xi qLiX LiY is also a cofibration for all
i. The map Xi −→ Yi is then the composition of two cofibrations, so is a cofibration.
Similarly, if B is an inverse category, a fibration in CB is in particular an objectwise
fibration.

Remark 5.1.8. In case C is cofibrantly generated and B is a direct category, the
model structure of Theorem 5.1.3 on CB is cofibrantly generated. To see this, one
first constructs, for all i ∈ B, a left adjoint Fi to the evaluation functor Evi : CB −→
C. Then, if I is the set of generating cofibrations of C, FI =

⋃
i∈B

FiI is a set of

generating cofibrations for CB, and similarly for the generating trivial cofibrations.
The domains of the maps of FI are small relative to the cofibrations of CB by
adjointness, using the fact that the cofibrations on CB are in particular objectwise
cofibrations.

We do not know if the model structure on CB is cofibrantly generated when C

is so and B is an inverse category.

5.2. Diagrams over Reedy categories and framings

In this section we define the notion of a left and right framing on a model
category and prove that such framings always exist. A framing is a functorial choice
of simplicial and cosimplicial resolutions for each object A in a model category C.
Hence to define and study framings, we need to consider diagrams over the simplicial
category ∆ and analogous categories known as Reedy categories. The material in
this section is taken from [DHK].

Recall from Section 3.1 that the simplicial category ∆ has two obvious subcat-
egories: the category ∆+ of injective order-preserving maps, and the category ∆−
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of surjective order-preserving maps. The subcategory ∆+ is a direct category, and
the subcategory ∆− is an inverse category. Furthermore, every morphism in ∆ can
be factored uniquely into a morphism in ∆− followed by a morphism in ∆+. It is
this property of ∆ which we abstract, following [DHK], to define the notion of a
Reedy category.

Definition 5.2.1. A Reedy category is a triple (B,B+,B−) consisting of a
small category B and two subcategories B+, and B−, such that there exists a
functor d : B −→ λ, called a degree function, for some ordinal λ, such that every
nonidentity map in B+ raises the degree, every nonidentity map in B− lowers the
degree, and every map f ∈ B can be factored uniquely as f = gh, where h ∈ B−

and g ∈ B+. In particular, B+ is a direct category and B− is an inverse category.
By abuse of notation, we often say B is a Reedy category, leaving the subcategories
implicit.

Hence ∆ is a Reedy category, as is ∆op. Indeed, given any Reedy category B,
the category Bop is also a Reedy category, where (Bop)− = (B+)op and (Bop)+ =
(B−)op. Also, if B and B′ are both Reedy categories, so is their product, in the
obvious way. Another example of a Reedy category is the category of simplices ∆K
of a simplicial set K (see Section 3.1).

In any Reedy category, we can define both latching and matching space func-
tors.

Definition 5.2.2. Suppose C is a category with all small colimits and limits,
and B is a Reedy category. For each object i of B, we define the latching space

functor Li as the composite CB −→ CB+
Li−→ C, where the latter functor is the

latching space functor defined for direct categories in Definition 5.1.2. Similarly,

we define the matching space functor Mi as the composite CB −→ CB−
Mi−−→ C,

where the latter functor is the matching space functor defined for inverse categories
in Definition 5.1.2. Note that we have natural transformations LiA −→ Ai −→MiA
defined for A ∈ CB.

For example, if B is the simplicial category ∆, then L1A = A0 q A0 and
M1A = A0. Of course L0A is the initial object and M0A is the terminal object.
Dually, if B is ∆op, then L1A = A0 and M1A = A0 ×A0.

The beauty of the latching and matching space functors is that they allow us
to define diagrams and maps of diagrams inductively.

Remark 5.2.3. Let C be a category with all small colimits and limits. Suppose
B is a Reedy category, with degree function d : B −→ λ. Define B<β, for an ordinal
β ≤ λ, to be the full subcategory consisting of all i with d(i) < β. Suppose we have
a functorX : B<β −→ C. For any i with d(i) = β, we then have a map LiX −→MiX .
Then an extension of X to a functor X ′ : B<β+1 −→ C is equivalent to factorizations
LiX −→ X ′

i −→ MiX for all i such that d(i) = β. Indeed, given a nonidentity map

i −→ j, where d(i) and d(j) are both ≤ β, there is a unique factorization i
r
−→ k

s
−→ j,

where r ∈ B+ and s ∈ B−. It is then clear how to define the map X ′
i −→ X ′

j , as the
composite

X ′
i −→MiX −→ Xk −→ LjX −→ X ′

j
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Similarly, an extension of a natural transformation τ : X −→ Y : B<β −→ C is
equivalent to maps X ′

i −→ Y ′
i for d(i) = β such that the diagrams

LiX −−−−→ X ′
i −−−−→ MiX

Liτ

y
y Miτ

y

LiY −−−−→ Y ′
i −−−−→ MiY

are commutative. The situation is even simpler with regard to limit ordinals. If β
is a limit ordinal, a functor X : B<β −→ C is equivalent to a collection of compatible
functors Xγ : B<γ −→ C for all γ < β, and a natural transformation X −→ Y is
equivalent to a collection of compatible natural transformations Xγ −→ Yγ for all
γ < β.

Example 5.2.4. As an example of the procedure discussed in Remark 5.2.3,
let B = ∆. We typically write an object X ∈ C∆ as X•, with nth term X•[n].
Suppose we start with an object A ∈ C, and think of this as X•[0]. There are two
obvious inductive choices of X•[n]: we can take X•[n] to be either LnX

• or MnX
•.

In the first case, we are led to the cosimplicial object `•A whose nth space is the
n+ 1-fold coproduct of A. In the second case, we are led to the cosimplicial object
r•A, whose nth space is A itself. We leave it to the reader to verify that the functor
`• : C −→ C∆ is a left adjoint to the functor Ev0 : C∆ −→ C which takes X• to X•[0],
and that r• is a right adjoint to Ev0. Similarly, in the simplicial case, where we
use the obvious dual notation, there is a left adjoint `• and a right adjoint r• to
Ev0 : C∆op

−→ C. We have `•A[n] = A and r•A[n] equal to the n + 1-fold product
of A.

We can use these latching and matching space functors to define a model cat-
egory structure on Reedy diagrams in a model category.

Theorem 5.2.5. Suppose C is a model category and B is a Reedy category.
Then there is a model structure on CB defined as follows. A map f : X −→ Y is a
weak equivalence if and only if fi is a weak equivalence for all i ∈ B. The map f
is a (trivial) cofibration if and only if the map Xi qLiX LiY −→ Yi is a (trivial)
cofibration for all i ∈ B. The map f is a (trivial) fibration if and only if the map
Xi −→ Yi ×MiY MiX is a (trivial) fibration for all i ∈ B.

Proof. Certainly the category CB has all small limits and colimits, taken
objectwise. By definition, a map is a cofibration or weak equivalence if and only if
it is so in the model category CB+ of Theorem 5.1.3. The two-out-of-three axiom
and the retract axiom for cofibrations and weak equivalences follow immediately,
as does the characterization of trivial cofibrations. Similarly, a map is a fibration
or weak equivalence if and only if it is so in CB− . The retract axiom for fibrations
and the characterization of trivial fibrations follow immediately.

Now suppose we have a commutative square

A
f

−−−−→ X

i

y p

y

B
g

−−−−→ Y

where i is a cofibration, p is a fibration, and one of them is trivial. We must
construct a lift. We do this by transfinite induction, combining the proof of Propo-
sition 5.1.4 with Remark 5.2.3. We leave most of the details to the reader. The
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key point is that an extension of a partial lift defined on B<β (in the terminology
of Remark 5.2.3) to B<β+1 is equivalent to a lift in the diagram

Ai qLiA LiB −−−−→ Xiy
y

Bi −−−−→ Yi ×MiY MiX

for each i of degree β. We can always find such a lift since the left vertical map
is a cofibration, the right vertical map is a fibration, and one of them is a weak
equivalence.

The proof of the functorial factorization axiom is similar to the direct category
case, proved in Theorem 5.1.3. We use transfinite induction. Given a map X −→ Y ,
we first use the functorial factorization in C to define Xi −→ Zi −→ Yi for all i
of degree 0. The limit ordinal case of the induction is easy, as pointed out in
Remark 5.2.3. For the successor ordinal case, suppose we have defined a partial
functorial factorization Xi −→ Zi −→ Yi for all i of degree < β. An extension of this
is equivalent to a functorial factorization of the map

Xi qLiX LiZ −→ Yi ×MiY MiZ

for all i of degree β, which we construct using the functorial factorization in C.

The model structure on CB of Theorem 5.2.5 is called the Reedy model structure
in [DHK]. Note that, if C is a model category and B is a Reedy category, the Reedy
model structure on CB

op

is the same, under the obvious isomorphism, as the Reedy
model structure on (Cop)B. Similarly, if B1 and B2 are both Reedy categories, the
Reedy model structure on CB1×B2 is the same, under the obvious isomorphisms,
as the Reedy model structure on (CB1)B2 and on (CB2)B1 . This can be seen by
commuting the latching space colimits with each other and the matching space
limits with each other. We leave the proof to the reader.

One might expect the colimit to be a left Quillen functor when B is a Reedy
category. This is false in general, but there are important examples where it is true,
such as in the following useful lemma. We learned this lemma from [DHK].

Lemma 5.2.6 (The cube lemma). Suppose C is a model category, and we have
pushout squares Xi

Pi
fi

−−−−→ Qiy
y

Ri −−−−→ Si

for i = 0, 1 such that f0 and f1 are cofibrations and all objects are cofibrant. Suppose
we have a map X0 −→ X1 of pushout squares such that each of the maps P0 −→ P1,
Q0 −→ Q1, and R0 −→ R1 is a weak equivalence. Then the induced map S0 −→ S1 is
a weak equivalence.

Proof. Let B be the category with three objects a, b, and c and two non-
identity morphisms a −→ b and a −→ c. We make B into a Reedy category in a
non-standard way, by letting the map a −→ b raise degree, but letting the map
a −→ c lower the degree. Then a cofibrant object of CB with the Reedy model

structure is precisely a diagram C ←− A
f
−→ B of cofibrant objects where f is a
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cofibration. So we just need to prove that the colimit functor from CB to C is a left
Quillen functor. To do so, we show that the constant functor C −→ CB preserves
fibrations (it obviously preserves weak equivalences). But a map from the diagram
C ←− A −→ B into the diagram C ′ ←− A′ −→ B′ is a fibration if and only if the maps
B −→ B′, C −→ C ′, and A −→ A′ ×C′ C are fibrations. It follows easily from this
characterization that the constant functor preserves fibrations, as required.

The Reedy model structure now allows us to define framings. Recall from
Example 5.2.4 the two functors `•, r• : C −→ C∆ which are left and right adjoints
respectively to Ev0. Note that there is a natural transformation `• −→ r• which is
the identity in degree 0 (and the fold map in higher degrees).

Definition 5.2.7. Suppose C is a model category, and A is an object of C.

1. A cosimplicial frame on A is a factorization `•A −→ A∗ −→ r•A of the
canonical map `•A −→ r•A into a cofibration in C∆ followed by a weak
equivalence, which is an isomorphism in degree 0. Given two cosimplicial
frames A∗ and A∗ on A, a map of cosimplicial frames over A is a map
A∗ −→ A∗ in C∆ making the evident diagram commute. We also refer to a
map A∗ −→ B∗ in C∆ as a map of cosimplicial frames if A∗ is a cosimplicial
frame for A and B∗ is a cosimplicial frame for B.

2. A left framing on C is a functor C −→ C∆, written A 7→ A∗, together with a
natural isomorphism A ∼= A∗[0], such that A∗ is a cosimplicial frame on A
when A is cofibrant.

3. Dually, a simplicial frame on A is a factorization `•A −→ A∗ −→ r•A of the
canonical map `•A −→ r•A into a weak equivalence followed by a fibration,
which is an isomorphism in degree 0. A map of simplicial frames over A is
a map of simplicial objects making the evident diagram commute.

4. A right framing on C is a functor C −→ C∆op

, written A 7→ A∗, together with
a natural isomorphism A ∼= A∗[0], such that A∗ is a simplicial frame on A
when A is fibrant.

5. A framing on C is a left framing together with a right framing.

Note that a map `•A
f
−→ A∗ is equivalent to a map A

f0
−→ A∗[0], and f is

a cofibration if and only f0 is a cofibration and the map LnA
∗ −→ A∗[n] is a

cofibration for all positive n. Similarly, a map A∗ g
−→ r•A is equivalent to a map

g0 : A∗[0] −→ A. Hence a cosimplicial frame on A is a cosimplicial object A∗ together
with an isomorphism A ∼= A∗[0] such that the induced map A∗[n] −→ A is a weak
equivalence for all n and the map LnA

∗ −→ A∗[n] is a cofibration for all positive n.
In particular, A∗[1] is a cylinder object on A for any cosimplicial frame A∗ on A.
A map of cosimplicial frames over A is just a map of cosimplicial objects which is
compatible with the isomorphism in degree 0. The dual remarks hold for simplicial
frames.

Note that a right framing on C is equivalent to a left framing on DC = Cop.
Hence to prove a result about framings, it typically suffices to prove only the left
half of it. Also note that Ev0 is both a left and right Quillen functor, thought of as
a functor from either C∆ or C∆op

to C. Hence the functors `• and `• are left Quillen
functors, and the functors r• and r• are right Quillen functors. In particular, a
cosimplicial frame A∗ on a cofibrant object A is cofibrant in C∆, and a simplicial
frame A∗ on a fibrant object A is fibrant in C∆op

.
We now show that framings always exist.
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Theorem 5.2.8. If C is a model category, then the functorial factorization on
C induces a framing on C. We reserve the notation A◦ and A◦ for the images of A
under the left and right framings so constructed. Then A◦ is a cosimplicial frame
on A for all A (not just cofibrant A), and A◦ is a simplicial frame on A for all A
(not just fibrant A). Furthermore, the maps A◦ −→ r•A are trivial fibrations in C∆,
and the maps `•A −→ A◦ are trivial cofibrations in C∆op

.

Proof. It suffices to construct the left framing, by duality. We apply the
method used to construct the functorial factorization in C∆ in Theorem 5.2.5. We
cannot apply the functorial factorization directly, since the result will not be an iso-
morphism in degree 0. So instead we let A◦[0] = A, and then proceed by induction,
using the functorial factorization in C to factor the map

LnA
◦ qLn`•A `

•A[n] = LnA
◦ −→MnA

◦ = MnA
◦ ×Mnr•A r

•A[n]

into a cofibration LnA
◦ −→ A◦[n] followed by a trivial fibration A◦[n] −→MnA

◦.

Note that the framing of Theorem 5.2.8 is canonically attached to the model
category C, in the sense that no choices are involved, as the functorial factorization
is part of the structure of a model category. However, we still need to consider
other simplicial and cosimplicial frames, because Quillen functors will not preserve
the canonical frames in general, just as they do not preserve the functorial factor-
izations.

Remark 5.2.9. Proposition 3.1.5 implies that a cosimplicial frame A∗ in a
model category C induces adjoint functors A∗⊗− : SSet −→ C and C(A∗,−) : C −→
SSet. Dually, a simplicial frame Y∗ induces functors Hom(−, Y∗) : SSetop −→ C and
C(−, Y∗) : Cop −→ SSet. Remark 3.1.7 implies that the framing of Theorem 5.2.8
induces adjoint bifunctors C×SSet −→ C, which we denote by (A,K) 7→ A⊗K, and
Cop×C −→ SSet, which we denote by (A, Y ) 7→ Map`(A, Y ) and refer to as the left
function complex. Dually, the framing also induces adjoint bifunctors SSetop×C −→
C, which we denote by (K,Y ) 7→ Hom(K,Y ) or Y K , and Cop × C −→ SSet, which
we denote (A, Y ) 7→ Mapr(A, Y ) and refer to as the right function complex. Note
that the functor A⊗− is a left adjoint, but the functor −⊗K need not be.

Remark 5.2.10. If C is a simplicial model category (see Definition 4.2.18),
then the functor A 7→ A ⊗ ∆[−] defines a left framing on C. Indeed, the map
Ln(A⊗∆[−]) −→ A⊗∆[n] is the map A⊗∂∆[n] −→ A⊗∆[n], which is a cofibration
when A is cofibrant. Note that A ⊗ ∆[−] need not be a cosimplicial frame on A
unless A is cofibrant. Similarly, the functor A 7→ A∆[−] defines a right framing on
C, and A∆[−] need not be a simplicial frame on A unless A is fibrant. In particular,
this framing is not the same as the canonical framing constructed in Theorem 5.2.8.

5.3. A lemma about bisimplicial sets

Our next goal is to investigate the homotopy properties of the left and right
function complexes induced by the framing of Theorem 5.2.8. Before we can do so,
though, we need a technical lemma about bisimplicial sets. Essentially, this lemma
says that the diagonal is a Quillen functor. This short section is devoted to proving
this lemma.

We have an obvious diagonal functor ∆ −→ ∆×∆ that takes [n] to ([n], [n]). This

functor induces a functor diag: SSet∆op

−→ SSet from the category of bisimplicial
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sets SSet∆op

to the category of simplicial sets SSet by restriction. An n-simplex
of diagX• is an n-simplex of X•[n].

The diagonal functor is left adjoint to the functor which takes a simplicial
set K to the bisimplicial set Map(∆[−],K). Here we are thinking of ∆[−] as a
functor ∆ −→ SSet, or a cosimplicial simplicial set. To see this adjunction is
rather tricky, so we provide some details. First suppose C is a category with all
small colimits and limits, and consider the functor Evn : C∆op

−→ C which takes
X to X [n]. This functor has a left adjoint Fn, where FnK = K × ∆[n]. That
is, (FnK)m =

∐
∆[n]m

K, and the simplicial structure is given by the simplicial

structure of ∆[n]. Furthermore any simplicial object X is the coequalizer in a
diagram of the form

∐

[k]−→[m]

FkXm ⇒
∐

n

FnXn −→ X

Here the top map takes FkXm to FkXk and is induced by the structure map
Xm −→ Xk ofX . The bottom map takes FkXm = Xm×∆[k] to FmXm = Xm×∆[m]
and is induced by the map ∆[k] −→ ∆[m]. Therefore, a functor that commutes with
colimits, such as the diagonal functor, is completely determined by its effect on the
FnK. One can easily check that diagFnK = K ×∆[n], where the product is now
a product of simplicial sets. This implies that diag is left adjoint to the functor
K 7→ Map(∆[−],K), as required.

Lemma 5.3.1. Suppose X• ∈ SSet∆op

is a bisimplicial set such that, for all
maps [k] −→ [n] in ∆, the induced map X•[n] −→ X•[k] is a weak equivalence of
simplicial sets. Then the map X•[0] −→ diagX• is also a weak equivalence.

Proof. Note that the hypothesis immediately implies that the map `•X•[0] −→
X• is a weak equivalence in the Reedy model structure, where `•K is the constant
bisimplicial set on the simplicial set K. Since diag `•K = K, it suffices to show
that the diagonal functor preserves weak equivalences.

We claim that the diagonal functor is a left Quillen functor. Indeed, to prove
this it suffices to show that the functor K 7→ Map(∆[−],K) preserves fibrations
and trivial fibrations. But we have MnMap(∆[−],K) = Map(∂∆[n],K), as one
can easily verify using the description of ∂∆[n] as the colimit of its nondegenerate
simplices. Hence, given a (trivial) fibration K −→ L, we must show that the induced
map

Map(∆[n],K) −→ Map(∆[n], L)×Map(∂∆[n],L) Map(∂∆[n],K)

is a (trivial) fibration. But this follows immediately from the fact that simplicial
sets form a monoidal model category.

Hence the diagonal functor preserves weak equivalences between Reedy cofi-
brant bisimplicial sets. However, every bisimplicial set is Reedy cofibrant, because
the simplicial identities force the map LnX• −→ X•[n] to be injective. This com-
pletes the proof.

5.4. Function complexes

We have seen that the framing on a model category gives rise to left and right
function complexes, as well as functors corresponding to tensoring with a simplicial
set and mapping out of a simplicial set. In this section, we examine the homotopy
properties of these functors. They are not Quillen bifunctors in general, but they
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preserve enough of the model structure to have total derived functors. Furthermore,
the total right derived functors of the left and right function complexes coincide,
giving us an adjunction of two variables Ho C×HoSSet −→ Ho C. We show in the
next section that this is part of a closed HoSSet-module structure on Ho C.

Proposition 5.4.1. Let C be a model category. Suppose f : A• −→ B• is a
cofibration in C∆ with respect to the Reedy model structure, and g : K −→ L is a
cofibration of simplicial sets. Then the induced map f � g : (A• ⊗L)qA•⊗K (B• ⊗
K) −→ B•⊗L is a cofibration in C, which is trivial if f is. Dually, if p : Y• −→ Z• is
a fibration in C∆op

, the map Hom�(g, p) : Hom(L, Y•) −→ Hom(K,Y•) ×Hom(K,Z•)

Hom(L,Z•) is a fibration which is trivial if p is.

Proof. In the cofibration case, we can assume that g is one of the generating
cofibrations ∂∆[n] −→ ∆[n], using the method of Lemma 4.2.4 and the fact that
A• ⊗ − has a right adjoint. We claim that the map A• ⊗ ∂∆[n] −→ A• ⊗ ∆[n]
is isomorphic to the map LnA

• −→ A•[n]. Indeed, recall from Lemma 3.1.4 that
∂∆[n] is the colimit of the functor X : B −→ SSet, where B is the direct category
whose objects are all nonidentity injective order-preserving maps [k] −→ [n] and
whose morphisms are injective order-preserving maps [k] −→ [m] making the obvious
triangle commute. The functor X just takes [k] −→ [n] to ∆[k]. Since the functor
A• ⊗ − commutes with colimits, it follows that A• ⊗ ∂∆[k] = colimX ′, where
X ′ : B −→ C takes [k] −→ [n] to A•⊗∆[k] = A•[k]. But this colimit is the definition
of the latching space LnA

•, and our claim follows. Under this isomorphism, the map
f � g corresponds to the map A•[n] qLnA• LnB

• −→ B•[n], which is a cofibration
since f is.

Now, if f is a trivial cofibration, the same argument shows that f � g is a
trivial cofibration when g is the map ∂∆[n] −→ ∆[n]. Hence f � g will be a trivial
cofibration for any cofibration g. The statements about simplicial frames follow by
duality.

Corollary 5.4.2. Suppose C is a model category and K is a simplicial set.
The functor C∆ −→ C that takes A• to A• ⊗ K preserves cofibrations and trivial
cofibrations.

Notice that we do not prove that f � g is a trivial cofibration if it is only
assumed that g is a trivial cofibration. We think this is not true in general, though
we do have the following result.

Proposition 5.4.3. Suppose C is a model category, and f : A∗ −→ B∗ is a
cofibration of cosimplicial frames of A and B respectively. Suppose in addition A,
and hence B, are cofibrant. Then, if g : K −→ L is a trivial cofibration of simplicial
sets, the induced map f � g : Q = (A∗ ⊗L)qA∗⊗K (B∗ ⊗K) −→ B∗⊗L is a trivial
cofibration. Dually, if p : Y∗ −→ Z∗ is a fibration of simplicial frames on fibrant
objects, then Hom�(g, p) : Hom(L, Y∗) −→ Hom(K,Y∗)×Hom(K,Z∗) Hom(L,Z∗) is a
trivial fibration.

Proof. Since A is cofibrant, so is A∗. Hence the functor A∗ ⊗− : SSet −→ C

preserves cofibrations, by Proposition 5.4.1. This functor also preserves colimits,
and of course the map A∗ ⊗∆[n] −→ A∗ ⊗∆[0] = A is a weak equivalence. Hence
Proposition 3.6.8 applies to show that A∗ ⊗ − preserves trivial cofibrations. In
particular, the map A∗ ⊗K −→ A∗ ⊗ L is a trivial cofibration. It follows that the
map B∗ ⊗K −→ Q is also a trivial cofibration. Since B∗ is also cofibrant, the map
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B∗⊗K −→ B∗⊗L is a trivial cofibration. The two-out-of-three axiom then implies
that f�g is a weak equivalence, as required. The statement about simplicial frames
follows by duality.

We then have the following corollary.

Corollary 5.4.4. Suppose C is a model category.

1. Suppose A is a cofibrant object of C, and A∗ is a cosimplicial frame on
A. Then the functor A∗ ⊗ − : SSet −→ C preserves cofibrations and trivial
cofibrations and its right adjoint C(A∗,−) : C −→ SSet preserves fibrations
and trivial fibrations. In particular, the adjunction (A ⊗−,Map`(A,−), ϕ)
induced by the framing of Theorem 5.2.8 is a Quillen adjunction.

2. Suppose Y is a fibrant object of C, and Y∗ is a simplicial frame on Y . Then
the functor Hom(−, Y∗) : SSet −→ Cop preserves cofibrations and trivial co-
fibrations and its right adjoint C(−, Y∗) : Cop −→ SSet preserves fibrations
and trivial fibrations, where we use the dual model structure on Cop. In par-
ticular, the adjunction (Hom(−, Y ),Mapr(−, Y ), ϕ) induced by the framing
of Theorem 5.2.8 is a Quillen adjunction.

Corollary 5.4.4 implies that, if A is cofibrant, the functor A⊗− preserves weak
equivalences between cofibrant objects. We also need the functor −⊗K to preserve
weak equivalences between cofibrant objects, for a simplicial set K. To se this, note
that Corollary 5.4.2 implies the following proposition.

Proposition 5.4.5. Suppose C is a model category, A and B are cofibrant
objects, A∗ is a cosimplicial frame on A, and B∗ is a cosimplicial frame on B. If
f : A∗ −→ B∗ is a map of cosimplicial objects which is a weak equivalence in degree
0, then f induces a natural weak equivalence A∗ ⊗K −→ B∗ ⊗K for all simplicial
sets K. Dually, if X∗ and Y∗ are simplicial frames on fibrant objects X and Y ,
and g : X∗ −→ Y∗ is a simplicial map which is a weak equivalence in degree 0, then
g induces a natural weak equivalence Hom(K,X∗) −→ Hom(K,Y∗) for all simplicial
sets K.

Proof. As usual, it suffices to prove the cosimplicial case. The map A∗ −→
B∗ is a weak equivalence of cofibrant objects of C∆, so the proposition follows
immediately from Corollary 5.4.2 and Ken Brown’s lemma 1.1.12.

Corollary 5.4.6. Suppose C is a model category, given the framing of Theo-
rem 5.2.8, and K is a simplicial set. Then the functor − ⊗K : C −→ C preserves
weak equivalences between cofibrant objects. Dually, the functor Hom(K,−) pre-
serves weak equivalences between fibrant objects.

We would like to conclude that Map`(−, Y ) preserves weak equivalences be-
tween cofibrant objects when Y is fibrant, and that Mapr(A,−) preserves weak
equivalences between fibrant objects when A is cofibrant, but we do not have the
adjointness necessary to conclude this. However, if C is a simplicial model category,
the two mapping spaces Map`(A, Y ) and Mapr(A, Y ) are equal, so it is not unrea-
sonable to expect them to be weakly equivalent in general. This is in fact the case,
at least when A is cofibrant and Y is fibrant.

Proposition 5.4.7. Suppose C is a model category, A∗ is a cosimplicial frame
on a cofibrant object A, and Y∗ is a simplicial frame on a fibrant object Y . Then
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there are weak equivalences

C(A∗, Y ) −→ diag C(A∗, Y∗)←− C(A, Y∗).

Proof. First consider C(A∗, Y∗) as a bisimplicial set X•, where

X•[n] = C(A∗, Y∗[n])

Each of the structure maps Y∗[k] −→ Y∗[n] is a weak equivalence of fibrant objects,
since Y is fibrant. Thus Corollary 5.4.4 and Ken Brown’s lemma 1.1.12 imply that
each of the structure maps of X• is a weak equivalence. Lemma 5.3.1 then implies
that the induced map C(A∗, Y ) −→ diag C(A∗, Y∗) is a weak equivalence. The other
case is proved similarly, using the other order of indexing.

The following corollary then follows from Proposition 5.4.7 and Corollary 5.4.4.

Corollary 5.4.8. Suppose C is a model category, given the framing of The-
orem 5.2.8. If Y is a fibrant object of C, the functor Map`(−.Y ) preserves weak
equivalences between cofibrant objects of C. If A is a cofibrant object of C, then the
functor Mapr(A,−) preserves weak equivalences between fibrant objects of C.

We summarize the results of this section in the following theorem.

Theorem 5.4.9. Suppose C is a model category, given the framing of Theo-
rem 5.2.8. Then the total left derived functors of − ⊗ − : C × SSet −→ C and
Hom(−,−) : SSet × Cop −→ Cop exist. We denote them by (X,K) 7→ X ⊗L K
and (K,X) 7→ RHom(K,X) respectively. The total right derived functors of
Map`(−,−) and Mapr(−,−) exist and are naturally isomorphic. We denote them
by RMap`(−,−) and RMapr(−,−) respectively. There are natural isomophisms

[X ⊗L K,Y ]
∼=
−→ [K,RMap`(X,Y )]

∼=
−→ [K,RMapr(X,Y )]

∼=
−→ [X,RHom(K,Y )]

so we have an adjunction of two variables HoC × HoSSet −→ Ho C. There is also
a natural isomorphism X ⊗L ∆[0] ∼= X.

Proof. Corollaries 5.4.4 and 5.4.6 imply that the functors−⊗− and Hom(−,−)
preserve weak equivalences between cofibrant objects, where we think of the latter
as a functor Hom(−,−) : SSet× Cop −→ Cop and use the dual model structure on
Cop. Hence their total left derived functors exist. Corollaries 5.4.4 and 5.4.8 imply
that the functors Map`(−,−) and Mapr(−,−), thought of as functors from Cop×C

to SSet, preserve weak equivalences between fibrant objects, and hence their to-
tal right derived functors exist. Proposition 5.4.7 implies that RMap`(X,Y ) is
naturally isomorphic to RMapr(X,Y ). Indeed, we have

RMap`(X,Y ) = C((QX)◦, RY )
∼=
−→ diag C((QX)◦, (RY )◦)

∼=
−→ C(QX, (RY )◦) = RMapr(X,Y )

where the equalities are true by definition, and the arrows are natural isomorphisms
in HoSSet.

Now, since QX is cofibrant, the functor QX⊗− is a left Quillen functor, adjoint
to Map`(QX,−), by Corollary 5.4.4. Hence we get an isomorphism, natural in K
and Y ,

[X ⊗L K,Y ] = [QX ⊗QK,Y ] ∼= [K,Map`(QX,RY )] = [K,RMap`(X,Y )]

where the equalities are by definition. The isomorphism is natural in X as well,
since a map X −→ X ′ induces a natural transformation QX ⊗− −→ QX ′ ⊗−. The
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dual argument constructs the other natural isomorphism we need to complete the
proof.

5.5. Associativity

In this section, we show that the adjunction of two variables HoC×HoSSet −→
HoSSet of Theorem 5.4.9 is part of a closed HoSSet-module structure on HoC.
The only real difficulty is associativity.

We begin by studying the uniqueness of cosimplicial frames. The first thing to
notice is that any two cosimplicial frames on the same object are weakly equivalent.

Lemma 5.5.1. Suppose C is a model category and A
f
−→ B is a map of C.

For any cosimplicial frame A∗ of A, there is a map A∗ −→ B◦ of cosimplicial
frames, which is the map f in degree 0. Here B◦ is the cosimplicial frame on B
constructed in Theorem 5.2.8. Dually, for any simplicial frame B∗ of B, there is a
map A◦ −→ B∗ of simplicial frames which is f in degree 0.

Proof. Consider the diagram

`•A −−−−→ B◦

y
y

A∗ −−−−→ r•B

The top horizontal map is the composite `•A −→ `•B −→ B◦, and the bottom
horizontal map is the composite A∗ −→ r•A −→ r•B. In particular, the square is
commutative. The left vertical map is a cofibration in the Reedy model structure
on C∆ by the definition of a cosimplicial frame, and the right vertical map is a
trivial fibration. Hence we can find a lift A∗ −→ B◦ as required.

A map of cosimplicial frames A∗ −→ B∗ induces a natural transformation A∗ ⊗
− −→ B∗ ⊗ −, and if A and B are cofibrant, a derived natural transformation
A∗ ⊗L − −→ B∗ ⊗L −. We now show that this derived natural transformation
depends only on the map A −→ B.

Lemma 5.5.2. Suppose C is a model category, and A∗ (resp. B∗) is a cosim-
plicial frame on a cofibrant object A (resp. B). Suppose f, g : A∗ −→ B∗ are maps
of cosimplicial frames which agree in degree 0. Then the derived natural transfor-
mations τf , τg : A∗ ⊗LK −→ B∗ ⊗L K are equal.

Proof. Let γ denote the functor from a model category to its homotopy cat-
egory. Then we have γf = γg. Indeed, because f and g agree in degree 0, they
become equal upon composing with the weak equivalence B∗ −→ r•B. For now,
let F : C∆ −→ C denote the functor that takes X• to X• ⊗K. Then F preserves
cofibrations and trivial cofibrations, by Corollary 5.4.2, and hence has a total left
derived functor LF . Of course (LF )γf = (LF )γg, since γf = γg. By definition,
this means that γF (Qf) = γF (Qg), where Q denotes the cofibrant replacement
functor in C∆. Since A∗ and B∗ are already cofibrant and F preserves weak equiv-
alences between cofibrant objects, it follows that γFf = γFg, as we wanted to
prove.

Theorem 5.5.3. Suppose C is a model category. Then the framing of Theo-
rem 5.2.8 makes Ho C into a closed HoSSet-module.
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Proof. The functors, adjointness isomorphisms, and unit isomorphism that
make up most of the closed action were constructed in Theorem 5.4.9. We need

to construct the associativity isomorphism (X ⊗L K) ⊗L L
a
−→ X ⊗L (K × L).

Here we have used the symbol K ×L to denote both the product in SSet and the
derived product in HoSSet, though they are not equal. Since every object of SSet

is cofibrant, however, they are isomorphic, so this should cause no confusion. It
turns out to be slightly more convenient to construct the inverse of the associativity
isomorphism, so we do so, without changing notation.

To construct the associativity isomorphism, suppose A is cofibrant, and con-
sider the cosimplicial object A⊗ (K ×∆[−]). Since A⊗− is a left Quillen functor,
the map

A⊗ (K ×∆[n]) −→ A⊗ (K ×∆[0]) ∼= A⊗K

is a weak equivalence. Furthermore, since K × ∂∆[n] −→ K ×∆[n] is a cofibration
of simplicial sets, the map

Ln(A⊗ (K ×∆[−])) = A⊗ (K × ∂∆[n]) −→ A⊗ (K ×∆[n])

is a cofibration. Thus A⊗ (K ×∆[−]) is a cosimplicial frame on A⊗K.
Hence there is a map of cosimplicial frames A ⊗ (K ×∆[−]) −→ (A ⊗K)◦, by

Lemma 5.5.1. This map induces a natural (in L) weak equivalence

A⊗ (K ×∆[−])⊗ L −→ (A⊗K)⊗ L

by Proposition 5.4.5. But since A ⊗ (K × −) commutes with colimits, we have a
natural isomorphism

A⊗ (K ×∆[−])⊗ L ∼= A⊗ (K × L).

Altogether then, we have a weak equivalence, natural in L,

a : A⊗ (K × L) −→ (A⊗K)⊗ L.

We then define the associativity isomorphism a : A⊗L(K×L) −→ (A⊗LK)⊗LL
to be the composite

QA⊗Q(QK ×QL)
QA⊗q
−−−−→ QA⊗ (QK ×QL)

a
−→ (QA⊗QK)⊗QL

(q⊗QL)−1

−−−−−−→ Q(QA⊗QK)⊗QL

A priori, this is natural only in L. We must show that a is natural in both A and
K as well, and that the appropriate coherence diagrams commute.

We first show that a is natural in K. Given a map K −→ K ′ and a cofibrant A,
we have a (non-commutative) square of cosimplicial frames

A⊗ (K ×∆[−]) −−−−→ (A⊗K)◦
y

y

A⊗ (K ′ ×∆[−]) −−−−→ (A⊗K ′)◦

This square is non-commutative, but it does commute in degree 0. It follows from
Lemma 5.5.2 that the square

A⊗ (K × L)
a

−−−−→ (A⊗K)⊗ L
y

y

A⊗ (K ′ × L)
a

−−−−→ (A⊗K ′)⊗ L
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is commutative in the homotopy category, so a is natural in K.
A similar argument shows that a is natural in A. The coherence diagrams are

all proved similarly. The trickiest one is the four-fold associativity diagram, so we
prove that it commutes and leave the other two coherence diagrams to the reader.
Recall that the four-fold associativity diagram looks like this:

A⊗L (K × (L×M))
a

−−−−→ (A⊗L K)⊗L (L×M)

1⊗a

y a

y

A⊗L ((K × L)⊗LM) ((A⊗L K)⊗L L)⊗LM

a

y
∥∥∥

(A⊗L (K × L))⊗LM
a⊗1
−−−−→ ((A⊗L K)⊗L L)⊗LM

Now consider the cosimplicial object A⊗ (K× (L×∆[−])), for A a cofibrant object
of C. One can check that this is a cosimplicial frame on A ⊗ (K × L). We will
show that both composites in the four-fold associativity diagram are induced by
maps of cosimplicial frames A⊗ (K × (L×∆[−])) −→ ((A⊗K)⊗L)◦ which are the
associativity weak equivalence in degree 0. It will follow that their derived natural
transformations are equal by Lemma 5.5.2, so the four-fold associativity diagram
commutes.

The counterclockwise composite is induced by a map of cosimplicial frames
which is the composite

A⊗ (K × (L×∆[−])) ∼= A⊗ ((K × L)×∆[−]) −→ (A⊗ (K × L))◦

a◦

−→ ((A ⊗K)⊗ L)◦

Here the second map is any map of cosimplicial frames over A⊗ (K × L).
We now show that the first map in the clockwise composite in the four-fold

associativity diagram is induced by a map of cosimplicial frames covering the as-
sociativity weak equivalence. The cosimplicial object (A ⊗ K) ⊗ (L × ∆[−]) is a
cosimplicial frame on (A⊗K)⊗ L, and so there is a map

A⊗ (K × (L×∆[−])) −→ (A⊗K)⊗ (L×∆[−])

which is the associativity isomorphism in degree 0. This map induces a weak
equivalence

A⊗ (K × (L×M)) −→ (A⊗K)⊗ (L×M)

and hence an isomorphism of the total derived functors, which we claim is the
isomorphism obtained from the associativity weak equivalence

A⊗ (K × (L×M))
aA,K,L×M
−−−−−−→ (A⊗K)⊗ (L×M).

To see this, note that the associativity weak equivalence is natural in the last
variable, and therefore commutes with colimits. Hence aA,K,L×M is the colimit of
the maps

A⊗ (K × (L×∆[n])) −→ (A⊗K)⊗ (L×∆[n])

for ∆[n] −→ M running though the simplices of M . It follows that aA,K,L×M is
induced by some map of cosimplicial frames

A⊗ (K × (L×∆[−])) −→ (A⊗K)⊗ (L×∆[−])
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covering the associativity isomorphism, and then Lemma 5.5.2 implies that it
doesn’t matter which one we pick.

Then the map (A⊗LK)⊗L (L×M) −→ ((A⊗LK)⊗L L)⊗LM is induced by
a map of cosimplicial frames (A⊗K)⊗ (L×∆[−]) −→ ((A⊗K)⊗L)◦ which is the
identity in degree 0. Hence the clockwise composite in the four-fold associativity
diagram is induced by a map of cosimplicial frames covering the associativity weak
equivalence, as claimed.

If C is actually a simplicial model category, then we already have an action
of HoSSet on Ho C induced by the simplicial structure. We will see in the next
section that these two actions are naturally isomorphic. The point is that, if A ∈
C is cofibrant, then A ⊗ ∆[−] is a cosimplicial frame on A and, if A is fibrant,
Homr(∆[−], A) is a simplicial frame on A.

5.6. Naturality

In this section, we show that the closed action of HoSSet defined in the last
few sections on Ho C for any model category C is in fact preserved by Quillen
adjunctions. This means that the homotopy pseudo-2-functor can be lifted to a
pseudo-2-functor from the 2-category of model categories to the 2-category of closed
HoSSet-modules. We also show that there is a similar pseudo-2 functor from
monoidal model categories to closed HoSSet-algebras. We would like to assert
that the homotopy category of a monoidal model category is in fact a central closed
HoSSet-algebra, but we have been unable to prove that in general. This does hold
in every example we know of, however. This section is rather technical, especially
near the end.

Lemma 5.6.1. Suppose (F,U, ϕ) : C −→ D is a Quillen adjunction of model
categories, A is a cofibrant object of C, A∗ is a cosimplicial frame on A, Y is a
fibrant object of D, and Y∗ is a simplicial frame on Y . Then FA∗ is a cosimplicial
frame on FA and UY∗ is a simplicial frame on UY .

Proof. Since F commutes with colimits, we have Ln(FA
∗) ∼= F (LnA

∗). Since
F preserves cofibrations, it follows that the map Ln(FA

∗) −→ FA∗[n] is a cofibration
for positive n. It is also a cofibration for n = 0 since A, and hence FA, is cofibrant.
The map FA∗[n] −→ FA is a weak equivalence since F preserves weak equivalences
between cofibrant objects, by Ken Brown’s lemma 1.1.12. The simplicial case is
dual.

Theorem 5.6.2. The homotopy pseudo-2-functor of Theorem 1.4.3 can be lifted
to a pseudo-2-functor Ho : Mod −→ HoSSet-Mod which commutes with the duality
2-functor. The resulting pseudo-2-functor from simplicial model categories to closed
HoSSet-modules is naturally isomorphic to the pseudo-2-functor of Theorem 4.3.4.

Implicit in the statement of Theorem 5.6.2 is a notion of natural isomorphism of
pseudo-2-functors. A natural isomorphism of pseudo-2-functors is the same thing as
a natural isomorphism of functors, except it must also preserve 2-morphisms. That

is, given pseudo-2-functors F and G, we need a natural isomorphism FX
τX−−→ GX

such that, given a 2-morphism α : f −→ g of morphisms from X to Y , we have
1τY
∗ Fα = Gα ∗ τX . Here ∗ denotes the horizontal composition of 2-morphisms,

as in Section 1.4.
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Proof. Suppose (F,U, ϕ) : C −→ D is a Quillen adjunction of model categories.
We first show that (LF,RU,Rϕ) is a morphism of closed HoSSet-modules. To do

this, we need to construct a coherent natural isomorphism m : (LF )(A ⊗L K)
∼=
−→

(LF )A⊗L K.
Suppose A is a cofibrant object of C. Then F (A◦) is a cosimplicial frame on

FA, so by Lemma 5.5.1, there is a map of cosimplicial frames F (A◦) −→ (FA)◦ over
FA. This map induces a weak equivalence, natural in K,

F (A⊗K)
m
−→
'
F (A◦)⊗K −→ FA⊗K.

Here we are using the fact that F commutes with colimits. We therefore get an
isomorphism, natural in K, (LF )(A ⊗L K) −→ (LF )A ⊗L K in the homotopy
category. To be precise, this isomorphism is the composite

FQ(QA⊗QK)
Fq
−−→
∼=

F (QA⊗QK)
m
−→
∼=
FQA⊗QK

q−1⊗1
−−−−→

∼=
QFQA⊗QK

We must show that this isomorphism in natural in A and makes the necessary
coherence diagrams commute. Suppose we have a map A −→ B. Then we get a
possibly non-commutative square

F (A◦) −−−−→ (FA)◦
y

y

F (B◦) −−−−→ (FB)◦

This square does commute in degree 0, however. It follows from Lemma 5.5.2 that
m is natural in A as well as K.

The unit coherence diagram follows from the fact that the map F (A◦) −→ (FA)◦

is the identity in degree 0. The associativity coherence diagram is the following.

(LF )(A⊗L (K × L))
m

−−−−→ (LF )A⊗L (K × L)
a

−−−−→ ((LF )A⊗L K)⊗L L

Fa

y
∥∥∥

(LF )((A ⊗LK)⊗L L)
m

−−−−→ (LF )(A⊗L K)⊗L L
m⊗1
−−−−→ ((LF )A⊗L K)⊗L L

Similarly to the proof of Theorem 5.5.3, we claim that each of these composites is
induced by a map of cosimplicial frames F (A ⊗ (K × ∆[−])) −→ (FA ⊗K)◦ over
the weak equivalence m : F (A⊗K) −→ FA⊗K (for cofibrant A, of course). It will
then follow from Lemma 5.5.2 that the associativity coherence diagram commutes.

The counterclockwise composite is induced by the composite

F (A⊗ (K ×∆[−])) −→ F ((A⊗K)◦) −→ (F (A⊗K))◦
m◦

−−→ (FA⊗K)◦

which is a map of cosimplicial frames covering m. The clockwise composite is
induced by the composite

F (A⊗ (K ×∆[−]))
m
−→ FA⊗ (K ×∆[−]) −→ (FA⊗K)◦

which is another map of cosimplicial frames covering m, as required.
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We have now shown that (LF,RU,Rϕ) is a morphism of closed HoSSet-
modules. We must still show that this multiplication isomorphism m is pseudo-
functorial. That is, we must show that the following diagram commutes.

LG(LF (A⊗L K))
LG(mF )
−−−−−→ LG(LFA⊗L K)

mG−−−−→ LG(LFA)⊗L K

∼=

y ∼=

y

L(GF )(A⊗L K)
mGF−−−−→ L(GF )A⊗L K L(GF )A⊗L K

where G and F are two composable left Quillen functors. The counterclockwise
composite in this diagram is induced by a map of cosimplicial frames GF (A◦) −→
(GFA)◦ overGFA. The clockwise composite is induced byGF (A◦) −→ G((FA)◦) −→
(GFA)◦, which is also a map of cosimplicial frames over GFA. It follows from
Lemma 5.5.2 that this diagram commutes.

We must now show that if τ : F −→ F ′ is a natural transformation of Quillen ad-
junctions (F,U, ϕ) and (F ′, U ′, ϕ′) from C to D, then Lτ preserves the isomorphism
m. That is, we must show the diagram

LF (A⊗L K)
m

−−−−→ LFA⊗L K

τ

y τ⊗1

y

LF ′(A⊗L K)
m

−−−−→ LF ′A⊗LK

commutes. But, as usual, each of these composites is induced by maps of cosimpli-
cial frames F (A◦) −→ (F ′A)◦ covering τ , so the diagram commutes by Lemma 5.5.2.
The claim about duality just follows from the fact that a cosimplicial frame on an
object of C is the same thing as a simplicial frame of that object of Cop.

Finally, suppose C is already a simplicial model category. We claim that the
identity map of Ho C is a natural isomorphism between the pseudo-2-functor of
Theorem 4.3.4 and the pseudo-2-functor just constructed. We must then define a
natural isomorphism A⊗LK −→ A◦⊗LK, where A◦⊗LK denotes the action coming
from the framing. We may as well assume that A is cofibrant. By Lemma 5.5.1,
there is a map of cosimplicial frames A×∆[−] −→ A◦ covering the identity. This map
induces our required isomorphism, and Lemma 5.5.2 guarantees that this makes
the identity functor into a closed HoSSet-module isomorphism. We must still
show that it is natural for simplicial Quillen adjunctions (F,U, ϕ). Certainly the
underlying functor LF is the same whether we think of C as a simplicial model
category or not, but we must show that the diagram

FA⊗L K −−−−→ (FA)◦ ⊗L K

m

y m

y

F (A⊗L K) −−−−→ F (A◦ ⊗L K)

is commutative. Now, we have a diagram of cosimplicial frames

F (A⊗∆[−]) −−−−→ F (A◦)
y

y

FA⊗∆[−] −−−−→ (FA)◦

using Lemma 5.5.1. This diagram does not commute, but it does commute in
degree 0. Hence Lemma 5.5.2 guarantees that the first diagram commutes. Thus
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the identity functor is a natural isomorphism of closed HoSSet-modules. It remains
to show that this natural isomorphism is compatible with 2-morphisms. But this is
automatic, since a 2-morphism of HoSSet-modules is just a natural transformation
of functors which happens to preserve the structure. Since the natural isomorphism
in question is the identity, the underlying 2-morphisms will be the same.

If C is a model category, we have just seen that HoC is naturally a closed
HoSSet-module. This means that we have functors LX : HoSSet −→ Ho C and
RK : HoC −→ Ho C for any object X of C and any simplicial set K. These func-
tors realize left and right “multiplication”. However, we do not understand these
functors equally well. Indeed, LX is the total derived functor of the Quillen func-
tor QX ⊗−, so must be a HoSSet-module functor. The associated isomorphism
LX(K) ⊗L L −→ LX(K × L) is nothing more than the associativity isomorphism.
On the other hand, RK is not the total derived functor of a Quillen functor in
general, so a priori we do not know if RK is a HoSSet-module functor.

Lemma 5.6.3. Suppose C is a model category and K is a simplicial set. Let
RK : Ho C −→ Ho C. denote the functor RK(X) = X ⊗L K. Define a natural
isomorphism m : RKX ⊗L L −→ RK(X ⊗L L) as the composite

(X ⊗L K)⊗L L
a
−→ X ⊗L (K × L)

1⊗T
−−−→ X ⊗L (L×K)

a−1

−−→ (X ⊗L L)⊗L K

Then RK is a HoSSet-module functor with this structure.

Proof. It suffices to check that the appropriate coherence diagrams commute.
This is a long diagram chase which we leave to the reader. It involves the naturality
of a, the four-fold associativity diagram, and the coherence of commutativity and
associativity in HoSSet.

Remark 5.6.4. Suppose C is a simplicial model category, and K is a simplicial
set. Then any map of cosimplicial frames A ⊗ ∆[−] −→ A◦ covering the identity
gives a natural isomorphism A⊗LK −→ A◦ ⊗LK = RK(A). Thus RK is the total
left derived functor of a Quillen functor, so it is a HoSSet-module functor with
a possibly different structure map m′. We claim that m′ and m are equal. The
proof of this claim is another argument with cosimplicial frames. Indeed, m′ is
induced by any map of cosimplicial frames (A ⊗∆[−])⊗K −→ (A ⊗K)◦ covering
the identity. Associating and twisting as in the definition of m above each give
maps of cosimplicial frames covering the identity, so m and m′ are equal.

Now, we can think of the associativity isomorphism as a natural transformation
LX⊗K −→ LX ◦ LK . The four-fold associativity coherence diagram merely states
that this natural transformation is a HoSSet-module natural transformation of
HoSSet-module functors.

One can prove by long diagram chases that the associativity isomorphism is also
a HoSSet-module natural transformation when thought of as a natural transfor-
mation RL◦LX(K) −→ LX ◦RL(K) or when thought of as a natural transformation
RL ◦ RK(X) −→ RK×L(X). We leave these diagram chases to the reader. These
diagram chases and Lemma 5.6.3 go a long way towards putting LX and RK on an
equal footing, but they do not go far enough, as we will soon see.

Now suppose C is a monoidal model category. Then HoC is a closed monoidal
category, and also a closed module over HoSSet. Clearly these operations must be
compatible in an appropriate sense. We have the following theorem.
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Theorem 5.6.5. The restriction of the homotopy pseudo-2-functor to the 2-
category of monoidal model categories lifts to a pseudo-2-functor to the 2-category
of closed HoSSet-algebras. The resulting pseudo-2-functor from monoidal SSet-
model categories to closed HoSSet-algebras is naturally isomorphic to the pseudo-
2-functor of Theorem 4.3.4.

Proof. This theorem is a purely formal consequence of the results we have
already proven. Indeed, given a monoidal model category C, we know already that
HoC is a closed monoidal category and a closed HoSSet-module. There is then a
functor i : HoSSet −→ Ho C defined by i(K) = S ⊗L K. It is clear that i is a left
adjoint, since its right adjoint is the functor RMap`(S,−). We must show that i is
monoidal. The map α : i(S) −→ S is the map rS , where r is the unit isomorphism
of the HoSSet-module structure.

To construct the multiplicativity isomorphism µ : iK ⊗L iL −→ i(K × L), we
must do a little work. The functor L′

X : Ho C −→ Ho C defined by L′
X(Y ) = X⊗LY

is the total left derived functor of a left Quillen functor. Hence it respects the
HoSSet-module structure. That is, there is a coherent natural isomorphism

m`
X,Y,K : (X ⊗L Y )⊗L K −→ X ⊗L (Y ⊗LK).

Here coherence means a four-fold associativity diagram involving X , Y , K, and L,
and the associativity isomorphism a of the HoSSet-module structure, commutes.
It also means a simpler diagram involving the unit isomorphism r commutes. Sim-
ilarly, there is a coherent natural isomorphism

mr
X,Y,K : (X ⊗L Y )⊗LK −→ (X ⊗L K)⊗L Y

using the functor R′
Y .

We now define µ : iK ⊗L iL −→ i(K × L) as the composite

(S ⊗LK)⊗L (S ⊗L L)
(m`

S⊗K,S,L)−1

−−−−−−−−−→ ((S ⊗L K)⊗L S)⊗L L

r′S⊗K⊗1
−−−−−→ (S ⊗LK)⊗L L

a
−→ S ⊗L (K × L)

Here r′ is the right unit isomorphism of the closed category Ho C. We must now
check that the required coherence diagrams commute, making i into a monoidal
functor.

The left unit isomorphism ` of the closed category Ho C is a HoSSet-module
natural transformation L′

S(X) −→ X , since it is the derived natural transformation
of a natural transformation of left Quillen functors. This gives a coherence diagram
that says `X⊗K ◦m`

S,X,K = `X . Similarly, we have r′X⊗K ◦m
r
X,S,K = r′X , where r′

is the right unit isomorphism of Ho C.
The associativity isomorphism A of the closed category Ho C can be thought of

as a natural transformation L′
X⊗Y (Z) −→ L′

XL
′
Y (Z), as a natural transformation

R′
ZL

′
X(Y ) −→ L′

XR
′
Z(Y ), or as a natural transformation R′

ZR
′
Y (X) −→ R′

Y⊗Z(X).
In any of these cases, it is the total derived natural transformation of a natural
transformation of Quillen functors. It is therefore a HoSSet-module natural trans-
formation. This gives us three large associativity coherence diagrams, which we
leave to the reader to write down.

Using these coherence diagrams, it is not difficult, though it is long, to check
that i is a monoidal functor. We leave this check to the reader. We also leave to
the reader the check that the closed HoSSet-module structure on HoC induced by
i is naturally isomorphic to the one we started with.
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Now, suppose (F,U, ϕ) : C −→ D is a monoidal Quillen functor. We must show
that (LF,RU,Rϕ) is a closed HoSSet-algebra map. We know already that LF is
a closed monoidal functor and a HoSSet-module functor. It suffices to construct
a natural isomorphism ρ : (LF )iCK −→ iDK of monoidal functors. The natural
transformation ρ is the composite

(LF )(S ⊗L K)
m−1

−−−→ (LF )(S)⊗L K
α⊗1
−−−→ S ⊗L K

where m is the isomorphism realizing LF as a HoSSet-module functor, and α is
the unit isomorphism of the closed functor LF . We leave it to the reader to verify
that ρ is compatible with the multiplicativity isomorphisms.

Now suppose we have a natural transformation τ : F −→ F ′ between monoidal
Quillen functors. Then Lτ is a natural transformation of monoidal functors and
a HoSSet-module natural transformation. Hence Lτ is compatible with both m
and α, so will be compatible with ρ as well. Thus Lτ is a HoSSet-algebra natural
transformation, as required.

As usual we leave it to the reader to check that we do get a pseudo-2-functor
with these definitions. We also leave to the reader the check that, if C is a monoidal
SSet-model category, the identity functor gives a natural isomorphism from the
pseudo-2-functor of Theorem 4.3.4 to the one just constructed.

We now come back to the functor RK considered in Lemma 5.6.3. When C is
a monoidal model category, there is a natural isomorphism RiK −→ RK , given by
the composite

X ⊗L (S ⊗LK)
(m`

X,S,K)−1

−−−−−−−−→ (X ⊗L S)⊗L K
r′X⊗1
−−−→ X ⊗L K

This composite is induced by a map of cosimplicial frames QX ⊗ (QS)◦ −→ (QX)◦

covering the weak equivalence QX ⊗QS
1⊗q
−−→ QX ⊗ S

r
−→ QX .

The functor RiK is the total derived functor of a Quillen functor, so is a
HoSSet-module functor. The functor RK is also a HoSSet-module functor, as
we have seen in Lemma 5.6.3. We make the following conjecture.

Conjecture 5.6.6. Suppose C is a monoidal model category and K is a sim-
plicial set. The natural isomorphism RiK −→ RK defined above is an isomorphism
of HoSSet-module functors.

This conjecture is certainly technical, but it is also important, as we will see
below.

Proposition 5.6.7. Suppose C is a monoidal model category, T is a cofibrant
replacement for the unit S, and T ∗ is a cosimplicial frame on T equipped with a
natural transformation T ∗[m]⊗T ∗[n] −→ T ∗⊗ (∆[m]×∆[n]) extending the obvious
isomorphism when m or n is 0. Then C satisfies Conjecture 5.6.6.

Proof. Define a left framing on C by X 7→ X∗ = X ⊗ T ∗. Note that X∗ is a
cosimplicial frame on X when X is cofibrant, but may not be in general. Note also
that this framing commutes with colimits. Define X ∗K = (X⊗T ∗)⊗K. Then, as
a functor of X , X ∗K commutes with colimits and preserves cofibrations and trivial
cofibrations. Indeed, to see that − ∗K commutes with colimits, simply commute
colimits past one another. To see that − ∗ K preserves cofibrations and trivial
cofibrations, note that if X −→ Y is a (trivial) cofibration, then X⊗T ∗ −→ Y ⊗T ∗ is
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a (trivial) Reedy cofibration. Now use Proposition 5.4.1. It follows that −∗K has
a total derived functor −∗LK, and that this functor is a HoSSet-module functor.

In fact, −∗LK is naturally isomorphic to −⊗L (S⊗LK) by a HoSSet-module
natural isomorphism. The corresponding natural isomorphism X ∗LK −→ X ⊗LK
is induced by a map of cosimplicial frames QX ⊗ T ∗ −→ (QX)◦ covering the weak
equivalence QX ⊗ T −→ QX . We must check that this natural isomorphism is a
HoSSet-module natural isomorphism. That is, we must check that the diagram

(X ⊗L L) ∗L K −−−−→ (X ∗L K)⊗L L −−−−→ (X ⊗L K)⊗L L
y

x

(X ⊗L L)⊗LK ←−−−− X ⊗L (K × L) −−−−→ X ⊗L (L×K)

is commutative. We have drawn the isomorphisms in this diagram in the direction
corresponding to the maps of cosimplicial frames which induce them. It is the
fact that these directions do not match up well that prevents us from proving this
diagram commutes in general. However, it clearly suffices to prove this diagram
commutes when we replace the upper left corner by (X ∗L L) ∗L K. By taking
colimits, the map T ∗[m]⊗T ∗[n] −→ T ∗(∆[m]×∆[n]) induces a map of cosimplicial
frames (X⊗T ∗)∗K −→ X∗L(K×∆[−]), and so a natural isomorphism (X∗L)∗LK −→
X ∗L (K × L). Using this isomorphism, we find that we only need check that the
following diagram commutes.

(X ∗ L) ∗K −−−−→ (X ⊗ L) ∗K −−−−→ (X ∗K)⊗ L (X ∗K)⊗ L
y

y

X ∗ (K × L) −−−−→ X ⊗ (K × L) −−−−→ X ⊗ (L×K) −−−−→ (X ⊗K)⊗ L

We have removed the superscript “L” from this diagram for reasons of space. Both
composites in this diagram are induced by maps of cosimplicial frames covering the
weak equivalence QX ∗K −→ QX ⊗K, and so they are equal.

Corollary 5.6.8. Suppose C is a monoidal SSet-model category. Then C

satisfies Conjecture 5.6.6.

Proof. The cosimplicial frame S ⊗ ∆[−] satisfies the hypothesis of Proposi-
tion 5.6.7. (The unit S is automatically cofibrant).

Remark 5.6.9. Notice that, if T ∗ is a cosimplicial frame in C satisfying the
hypothesis of Proposition 5.6.7, and if F : C −→ D is a monoidal Quillen functor,
then FT ∗ is also a cosimplicial frame satisfying the hypothesis of Proposition 5.6.7.
Therefore any monoidal C-model category will satisfy Conjecture 5.6.6.

Corollary 5.6.10. Every monoidal Ch(Z)-model category satisfies Conjec-
ture 5.6.6.

Proof. In view of Remark 5.6.9, it suffices to construct a cosimplicial frame
S∗ on the unit S in Ch(Z) with a natural map S∗[m]⊗S∗[n] −→ S∗⊗(∆[m]×∆[n]).
We define S∗[m]k to be the free abelian group on the nondegenerate k-simplices
of ∆[m], with the boundary map defined as the alternating sum of the faces. For
example, S∗[1] is Z in degree 1 and Z ⊕ Z in degree 0, with the boundary map
taking 1 to (1,−1). One can easily check that this defines a cosimplicial frame on
S. The map S∗[m]⊗S∗[n] −→ S∗⊗ (∆[m]×∆[n]) is the Eilenberg-Zilber map.
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Note that all of the monoidal model categories we have considered in this book
are either monoidal SSet-model categories or monoidal Ch(Z)-model categories.

Conjecture 5.6.6 is equivalent to asserting that the diagram below commutes,
where we have dropped the superscript on the tensor product.

(X ⊗ (S ⊗K))⊗ L
mr

−−−−→ (X ⊗ L)⊗ (S ⊗K)
(m`)−1

−−−−→ ((X ⊗ L)⊗ S)⊗K

(m`)−1⊗1

y a

y

((X ⊗ S)⊗K)⊗ L
a

−−−−→ (X ⊗ S)⊗ (K × L)
1⊗TK,L
−−−−−→ (X ⊗ S)⊗ (L×K)

The importance of Conjecture 5.6.6 is made clear by the following theorem.

Theorem 5.6.11. The homotopy pseudo-2-functor of Theorem 5.6.5 lifts to
a homotopy pseudo-2-functor from monoidal model categories satisfying Conjec-
ture 5.6.6 to central closed HoSSet-algebras.

Proof. Suppose C is a monoidal model category. We use the notation of
Theorem 5.6.5. We define t : iK ⊗L X −→ X ⊗L iK as the composite

(S ⊗L K)⊗L X
(mr

S,X,K )−1

−−−−−−−−→ (S ⊗L X)⊗L K
`X⊗1
−−−→ X ⊗L K

(r′X)−1⊗1
−−−−−−→ (X ⊗L S)⊗L K

m`
X,S,K

−−−−−→ X ⊗L (S ⊗LK)

All of the coherence diagrams except the diagram

iK ⊗L iL
t

−−−−→ iL⊗L iK

µ

y µ

y

i(K × L)
iT

−−−−→ i(L×K)

commute using the coherence isomorphisms discussed in the proof of Theorem 5.6.5.
Those coherence diagrams can be used to reduce this last diagram to the commu-
tative diagram of Conjecture 5.6.6. Thus Ho C is a central HoSSet-algebra with
this structure if and only if Conjecture 5.6.6 holds for C. It is then an extremely
long diagram chase to check that a monoidal Quillen functor F induces a central
HoSSet-algebra functor. This diagram chase does not require Conjecture 5.6.6, but
it does require realizing that the natural isomorphism FX⊗LFY −→ F (X⊗LY ) is
a HoSSet-module natural transformation. It also requires a great deal of patience,
so we will leave it to the interested reader.

Since Conjecture 5.6.6 is true for simplicial monoidal model categories, we get
the following corollary.

Corollary 5.6.12. The homotopy pseudo-2-functor can be lifted to a pseudo-
2-functor from (not necessarily central) monoidal SSet-model categories to central
closed HoSSet-algebras. Similarly, the homotopy pseudo-2-functor can be lifted to a
pseudo-2-functor from monoidal Ch(Z)-model categories to central closed HoSSet-
algebras.

Another immediate corollary is the following.

Corollary 5.6.13. The homotopy pseudo-2-functor lifts to a pseudo-2-functor
from symmetric monoidal model categories satisfying Conjecture 5.6.6 to symmetric
closed HoSSet-algebras.
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Proof. Let T denote the commutativity isomorphism of HoC, and t the cen-
trality isomorphism. Let i denote the functor HoSSet −→ HoC. We must show
that TiK,X = tiK,X . This is yet another diagram chase. We use the fact that T is
the derived natural transformation of a natural transformation of Quillen functors,
so is a HoSSet-module natural transformation. This means m`

Y,X,K ◦ (TX,Y ⊗1) =
TX⊗K,Y ◦mr

X,Y,K . Applying this to the definition of t, and using the fact that T
changes the left unit to the right unit, we get the required result.

5.7. Framings on pointed model categories

In this section, we show that if C is a pointed model category, then HoC is a
closed HoSSet∗-module, where SSet∗ denotes the category of pointed simplicial
sets.

It follows from Corollary 3.1.6 that a cosimplicial frame A∗ on an object A
of a pointed model category C induces an adjunction (A∗ ∧ −,C(A∗,−), ϕ) from
SSet∗ to C, whose restriction to SSet is the adjunction considered in Section 5.4.
That is, we have A∗ ∧K+

∼= A∗ ⊗K. Similarly, a simplicial frame Y∗ on an object
Y induces an adjunction (Hom∗(−, Y∗),C(−, Y∗), ϕ) from SSetop to C. Again, we
have Hom∗(K+, Y∗) ∼= Hom(K,Y∗).

By Remark 3.1.7, the framing of Theorem 5.2.8 induces a bifunctor C×SSet∗ −→
C, denoted (A,K) 7→ A∧K, and an adjoint Cop×C −→ SSet∗, denoted by (A, Y ) 7→
Map∗`(A, Y ). Furthermore, we have A ∧K+

∼= A ⊗K for an unpointed simplicial
set K. Dually, we also get a bifunctor SSetop

∗ × C −→ C, denoted by (K,Y ) 7→
Hom∗(K,Y ), and an adjoint Cop× C −→ SSet∗ denoted by (A, Y ) 7→ Map∗r(A, Y ).

The results of Section 5.4 go through almost without change in the pointed
case.

Proposition 5.7.1. Let C be a pointed model category. Suppose f : A• −→ B•

is a cofibration in C∆ with respect to the Reedy model structure, and g : K −→ L
is a cofibration of pointed simplicial sets. Then the induced map f � g : (A• ∧
L) qA•∧K (B• ∧ K) −→ B• ∧ L is a cofibration in C, which is trivial if f is. Du-
ally, if p : Y• −→ Z• is a fibration in C∆op

, the map Hom�(g, p) : Hom∗(L, Y•) −→
Hom∗(K,Y•)×Hom∗(K,Z•) Hom∗(L,Z•) is a fibration which is trivial if p is.

Proof. We can assume g is the map ∂∆[n]+ −→ ∂∆[n], in which case the
proposition follows from Proposition 5.4.1.

Proposition 5.7.2. Suppose C is a pointed model category, and f : A∗ −→ B∗

is a cofibration of cosimplicial frames of A and B respectively. Suppose in addition
A, and hence B, are cofibrant. Then, if g : K −→ L is a trivial cofibration of pointed
simplicial sets, the induced map f�g : (A∗∧L)qA∗∧K (B∗∧K) −→ B∗∧L is a trivial
cofibration. Dually, if p : Y∗ −→ Z∗ is a fibration of simplicial frames on fibrant
objects, then Hom�(g, p) : Hom∗(L, Y∗) −→ Hom∗(K,Y∗)×Hom∗(K,Z∗) Hom∗(L,Z∗)
is a trivial fibration.

Proof. We can assume g is one of the maps Λr[n]+ −→ ∆[n]+, in which case
the proposition follows from Proposition 5.4.3.

We then get pointed analogs of the rest of the results of Section 5.4 without dif-
ficulty, though one must check that the zig-zag of weak equivalences from C(A∗, Y )
to C(A, Y∗) preserves the basepoint. The results of Section 5.5 and Section 5.6
extend to the pointed case with no difficulty.
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We then get the following theorems, whose proofs are the same as the proofs of
Theorem 5.6.2 and Theorem 5.6.5 respectively. Note that the 2-category of pointed
model categories is just the full sub-2-category whose objects are pointed model
categories, and similarly for the 2-category of pointed monoidal model categories.

Theorem 5.7.3. The homotopy pseudo-2-functor lifts to a pseudo-2-functor
from pointed model categories to closed HoSSet∗-modules which commutes with
the duality 2-functor.

Theorem 5.7.4. The homotopy pseudo-2-functor lifts to a pseudo-2-functor
from pointed monoidal model categories to closed HoSSet∗-algebras.

We make the analogous conjecture to Conjecture 5.6.6 as well.

Conjecture 5.7.5. Suppose C is a pointed monoidal model category and K
is a pointed simplicial set. The natural isomorphism RiK −→ RK defined as in
Conjecture 5.6.6 is an isomorphism of HoSSet∗-module functors.

Then the analog of Proposition 5.6.7 goes through without difficulty, and so all
monoidal SSet∗-model categories and all monoidal Ch(Z)-model categories satisfy
Conjecture 5.7.5.

Theorem 5.7.6. The homotopy pseudo-2-functor of Theorem 5.7.4 lifts to a
homotopy pseudo-2-functor from pointed monoidal model categories satisfying Con-
jecture 5.7.5 to central HoSSet∗-algebras.

Corollary 5.7.7. The homotopy pseudo-2-functor can be lifted to a pseudo-2-
functor from (not necessarily central) monoidal SSet∗-model categories to central
closed HoSSet∗-algebras. It can also be lifted to a functor from monoidal Ch(Z)-
model categories to central closed HoSSet∗-algebras.

Corollary 5.7.8. The homotopy pseudo-2-functor lifts to a pseudo-2-functor
from pointed symmetric monoidal model categories satisfying Conjecture 5.7.5 to
symmetric closed HoSSet∗-algebras.
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CHAPTER 6

Pointed model categories

We have just seen that the homotopy category of a model category is naturally
a closed HoSSet-module, and that the homotopy category of a pointed model cat-
egory is naturally a closed HoSSet∗-module. The homotopy category of a pointed
model category has additional structure as well, as was pointed out by Quillen
in [Qui67, Sections I.2 and I.3]. The purpose of this chapter is to study this
additional structure.

We begin in Section 6.1 with the suspension and loop functors. These exist
in any closed HoSSet∗-module, but there are a number of results specific to the
homotopy category of a pointed model category that we will need later. The results
in this section are all proved in [Qui67, Section I.2]. In Section 6.2 we define the
cofiber and fiber sequences in the homotopy category of a pointed model category,
and in Section 6.3 we discuss some of their properties. These sections are both
based on [Qui67, Section I.3], but they have some new features. In particular,
we prove that Verdier’s octahedral axiom holds, and we give a different version
of the compatibility between cofiber and fiber sequences. In Section 6.4 we study
the naturality of cofiber sequences. The main new feature in this section is that
we show that the closed HoSSet∗-module structure respects the cofiber and fiber
sequences.

In Section 6.5 we pull together the properties of cofiber and fiber sequences to
define a pre-triangulated category. A pre-triangulated category is, then, a closed
HoSSet∗-module together with some cofiber and fiber sequences which satisfy the
same properties as those in the homotopy category of a pointed model category.
The main point of these, for us, is to provide a 2-category in which the homotopy
pseudo-2-functor can land. Finally, in Section 6.6, we define closed monoidal pre-
triangulated categories and show that the homotopy category of a pointed monoidal
model category is naturally such a thing.

6.1. The suspension and loop functors

This section is devoted to the study of the suspension and loop functors that
exist in the homotopy category of a pointed model category. These functors were
introduced in [Qui67]. We adopt a slightly different approach, using the framing
constructed in Chapter 5.

Before giving the definition of the suspension and loop functors, we recall that
in a pointed category with colimits and limits, we define the cokernel, or cofiber,
of a map f : X −→ Y to be the coequalizer g : Y −→ Z of f and the zero map. In

147
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practice, we usually think of g as the pushout in the diagram

X
f

−−−−→ Y
y g

y

∗ −−−−→ Z

though most coequalizers are not pushouts. We usually abuse notation and just
refer to the cokernel or cofiber Z. Similarly, the kernel or fiber of f is the equalizer
of f and the zero map, or equivalently, the pullback of f through the zero map.

Definition 6.1.1. Suppose C is a pointed model category. The suspension
functor Σ: Ho C −→ Ho C is the functor X 7→ X ∧L S1 defined by the closed action
of HoSSet∗ on Ho C given in Section 5.7. Dually, the loop functor Ω: HoC −→ HoC

is the functor X 7→ RHom∗(S
1, X).

The suspension functor is of course left adjoint to the loop functor. Note that,
by definition, ΣX = QX ∧ S1. Recall that the pointed simplicial set S1 is the
cokernel of the map ∂∆[1]+ −→ ∆[1]+. Furthermore, X ∧ ∂∆[1]+ = X ⊗ ∂∆[1] =
X ∨ X . Also, X ∧ ∆[1]+ = X ⊗ ∆[1] = X × I , the functorial cylinder object
obtained from the functorial factorization. Hence ΣX is the cokernel in C of the
map QX ∨QX −→ QX × I including the two ends of the functorial cylinder object
on QX . If X is cofibrant, ΣX is naturally isomorphic (in the homotopy category, of
course) to the cokernel in C of the map X∨X −→ X×I , using the pointed analog of
Corollary 5.4.6. This is the original definition of the suspension given in [Qui67].

Dually, by definition, we have ΩX = Hom∗(S
1, RX). Writing S1 as a cokernel

as above, we find that ΩX is the kernel in C of the map (RX)I −→ RX × RX
projecting the canonical path object of RX onto its two ends. If X is fibrant, we
do not have to apply R first. This is the original definition of the loop functor given
in [Qui67].

The following lemma is extremely useful.

Lemma 6.1.2. Suppose C is a pointed model category, A is a cofibrant object,
and Y is a fibrant object. Then we have natural isomorphisms

πt Map∗`(A, Y ) ∼= πt Map∗r(A, Y ) ∼= [ΣtA, Y ] ∼= [A,ΩtY ]

for all nonnegative integers t.

Proof. Using associativity of the HoSSet∗-action, we have a natural isomor-
phism ΣtX ∼= X ∧L St in Ho C. Hence we have

[ΣtX,Z] ∼= [X ∧L St, Z] ∼= [St, RMap∗`(X,Z)] ∼= πtRMap∗`(X,Z).

Since A is cofibrant and Y is fibrant, we then get [ΣtA, Y ] ∼= πt Map∗`(A, Y ) as
required.

Remark 6.1.3. Suppose A is cofibrant and X is fibrant in a pointed model cat-
egory C. We can use Lemma 6.1.2 to describe [ΣA,X ]. An element of π1 Map∗r(A,X)

is represented by an unpointed map ∆[1] �h−→ Map∗r(A,X) whose restrictions to ∆[0]
are both 0. This corresponds, via adding a disjoint basepoint and adjointness, to
a map h : A −→ X∆[1] = XI such that p0h = p1h = 0. Two such one-simplices

h̃ and h̃′ give the same element of π1 Map∗r(A,X) if and only if there is a map

∆[1]×∆[1] �H−→ Map∗r(A,X) such that H̃ is h̃ on ∆[1]×{0}, h̃′ on ∆[1]×{1}, and
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0 on ∂∆[1] × ∆[1]. Again using adjointness, we find that h and h′ represent the
same element of [ΣA,X ] if and only if there is a map H : A −→ X∆[1]×∆[1] such that
p0
0H = h, p1

0H = h′, and p0
1H = p1

1H = 0. Here p0
0 : X∆[1]×∆[1] −→ X∆[1] is the

trivial fibration dual to the inclusion ∆[1]×{0} −→ ∆[1]×∆[1], and similarly for p1
0,

p0
1, and p1

1. Such a map H is like a right homotopy between the right homotopies
h and h′, though the definition we have just given is different from that of [Qui67,
Section I.2].

In the next section we will need to know that a right homotopy between right
homotopies induces a corresponding left homotopy between right homotopies. This
lemma is our version of [Qui67, Lemma I.2.1].

Lemma 6.1.4. Suppose C is a pointed model category, A is cofibrant, and X
is fibrant. Suppose h.h′ : A −→ XI satisfy p0h = p0h

′ = p1h = p1h
′ = 0. Then

h and h′ represent the same element of [ΣA,X ] if and only if there is a map
H : A× I −→ XI such that Hi0 = h, Hi1 = h′, and p0H = p1H = 0.

Proof. By Remark 6.1.3, h and h′ represent the same element of [ΣA,X ] if

and only if there is a map H̃ : A −→ X∆[1]×∆[1] such that p0
0H = h, p1

0H = h′, and
p0
1H = p1

1H = 0. Let

P = (∆[1]× {1})q∂∆[1]×{1} (∂∆[1]×∆[1])

Then the inclusion P −→ ∆[1]×∆[1] is a trivial cofibration of simplicial sets. Hence
the dual mapX∆[1]×∆[1] −→ XP is a trivial fibration. Furthermore,XP is a pullback
of X∆[1]×{1} and X∂∆[1]×∆[1]. We then get a commutative diagram

Aq A
( �H,i

1
1h

′)
−−−−−→ X∆[1]×∆[1]

(i0,i1)

y
y

A× I
(h′s,0)
−−−−→ XP

Here i0, i1, and s are the structure maps of the functorial cylinder object A×I , and
i11 is the map induced by the surjection ∆[1]×∆[1] −→ ∆[1] × {1}. Hence there is
a lift G : A× I −→ X∆[1]×∆[1]. Let H denote the map p0

0G : A× I −→ X∆[1]. Then
Hi0 = h, Hi1 = h′, and p0H = p1H = 0, as required.

Conversely, suppose we have such an H . Let Q denote the boundary of ∆[1]×
∆[1], which is the pushout of ∂∆[1] ×∆[1] and ∆[1] × ∂∆[1] over ∂∆[1] × ∂∆[1].
Then we have a commutative square

A
i01h−−−−→ X∆[1]×∆[1]

i0

y
y

A× I
H′

−−−−→ XQ

where H ′ is the map whose projection to X∆[1]×{0} is hs, whose projection to
X∆[1]×{1} is H , and whose projection to X∂∆[1]×∆[1] is 0. As the left vertical map
is a trivial cofibration and the right vertical map is a fibration, there is a lift G in

this diagram. Then Gi1 is the required map H̃ : A −→ X∆[1]×∆[1].

Of course, [ΣA,X ] is also isomorphic to π1 Map∗`(A,X). Hence an element of
[ΣA,X ] also has a representative of the form h : A× I −→ X where hi0 = hi1 = 0.
There is a dual lemma to Lemma 6.1.4 as well. It will be important later to be able
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to tell when a map h : A × I −→ X represents the same homotopy class as a map
k : A −→ XI .

Lemma 6.1.5. Suppose C is a pointed model category, A is cofibrant, and X
is fibrant. Suppose h : A × I −→ X satisfies hi0 = hi1 = 0, and k : A −→ XI

satisfies p0k = p1k = 0. Then h and k represent the same element of [ΣA,X ]
under the isomorphism π1 Map∗`(A,X) ∼= π1 Map∗r(A,X) if and only if there is a
map H : A × I −→ XI such that Hi0 = k, Hi1 = 0, p0H = h, and p1H = 0. Such
a map H is called a correspondence between h and k.

Proof. Recall that the isomorphism π1 Map∗`
∼= π1 Map∗r(A,X) is induced

by the weak equivalences C(A◦, X) −→ diag C(A◦, X◦) ←− C(A, Y◦). Let r : X −→
XI and s : A × I −→ A be structure maps of the functorial path and cylinder
objects. Then if there is a homotopy in diag C(A◦, Y◦) between rh and ks, then
h and k represent the same homotopy class. We cannot assert the converse since
diag C(A◦, Y◦) need not be fibrant. Such a homotopy corresponds to a map ∆[1]×
∆[1] −→ diag C(A◦, Y◦) with certain properties. This is equivalent to two 2-simplices
H0 and H1 of diag C(A◦, Y◦) with d0H0 = ks, d1H0 = d1H1, d2H0 = d0H1 = 0,
and d2H1 = rh. These 2-simplices are actually maps A ×∆[2] −→ X∆[2], and, for

example, d0H0 is really the map Y d
0

◦H0 ◦ (A× d0).
Let us suppose first that there is a correspondence H : A× I −→ X I such that

Hi0 = k, Hi1 = 0, p0H = h, and p1H = 0. Define H0 to be the composite

Y s
1

◦H ◦ (A× s0) and H1 to be the composite Y s
0

◦H ◦ (A× s1). It is an exercise
in the simplicial identities to verify that H0 and H1 satisfy the required properties,
so that h and k represent the same homotopy class.

Conversely, suppose h and k represent the same homotopy class. We first
construct a correspondence between h and some map k′. To do so, let H ′ be a lift
in the diagram

A
0

−−−−→ XI

i1

y (p0,p1)

y

A× I
(h,0)
−−−−→ X ×X

Then G is a correspondence between h and H ′i0, which we denote k′. Hence h
and k′ represent the same homotopy class, so k and k′ also represent the same
homotopy class. Lemma 6.1.4 then gives us a map H ′′ : A × I −→ XI such that
p0H

′′ = p1H
′′ = 0, H ′′i0 = k, and H ′′i1 = k′. We then have a commutative

diagram

A× Λ1[2]
G

−−−−→ XI

y (p0,p1)

y

A×∆[2]
(h◦(A×s1),0)
−−−−−−−−→ X ×X

where G is the map which is H ′′ on A × d2i2 and H ′ on A × d0i2. Let F be a lift
in this diagram. Then F ◦ (A× d1) is the required correspondence between h and
k.

Now, recall that a cogroup structure on an object X of a (pointed) category
C is a lift of the functor C(X,−) from C to (pointed) sets to a functor to groups.
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When C has coproducts, a cogroup structure is equivalent to a counit map X −→ 0,
a comultiplication map X −→ X q X , and a co-inverse map X −→ X which make
a coassociativity diagram, a left and right counit diagram, and a left and right
co-inverse diagram all commute. Dually, a group structure on an object X is a lift
of the functor C(−, X) to groups. When C has products, a group structure on X is
equivalent to a unit map 1 −→ X , a multiplication map X×X −→ X , and an inverse
map X −→ X making an associativity diagram, a left and right unit diagram and
a left and right inverse diagram all commute. An object equipped with a cogroup
structure is called a cogroup object, or just a cogroup, and an object equipped with
a group structure is called a group object, or just a group. We have evident notions
of homomorphisms of groups and cogroups as well.

Corollary 6.1.6. Suppose C is a pointed model category. Then the iterated
suspension functor Σt lifts to a functor to the category of cogroups in Ho C and
homomorphisms for t ≥ 1. If t ≥ 2, Σt lifts to a functor to the category of abelian
cogroups in HoC and homomorphisms. Dually, the iterated loop functor Ωt lifts to
a functor to the category of groups in HoC and homomorphisms for t ≥ 1. If t ≥ 2,
Ωt lifts to a functor the category of abelian groups in Ho C and homomorphisms.

Proof. This follows from Lemma 6.1.2, the Quillen equivalence between Top∗

and SSet∗, and the well-known fact that, for topological spaces X , πt(X, x) is
naturally a group for t ≥ 1 and an abelian group for t ≥ 2.

Remark 6.1.7. It is useful to have an explicit construction for the product in
[ΣA,X ] for A cofibrant and X fibrant. We can get such an explicit construction
by translating the definition of the group structure in π1 of a simplicial set (see the
remarks following Proposition 3.6.3). We find that if we have two maps h, h′ : A −→
XI representing elements [h], [h′] ∈ [ΣA,X ], their product [h][h′] is represented by

the map h ∗ h′ defined as follows. Note that XΛ1[2] is the pullback of two copies of

XI over the maps p1 and p0. Thus, the maps h, h′ define a map A −→ XΛ1[2], since

p1h = p0h
′. Since A is cofibrant and the map X∆[2] −→ XΛ1[2] is a trivial fibration,

there is a lift to a map A
H
−→ X∆[2]. Define h ∗ h′ = Xd1H . One can prove directly

that [h ∗h′] is independent of the lift H and choice of representatives h and h′, but
this is unnecessary since we already know that [ΣA,X ] is a group and this is the
group structure for it. Note that we can define h ∗ h′, though not uniquely, as long
as p1h = p0h

′, and then we will have p0(h ∗ h′) = p0h and p1(h ∗ h′) = p1h
′. It is

still true that h ∗ h′ is well-defined up to an appropriate notion of homotopy, but
we do not prove this nor do we need it.

The unit in [ΣA,X ] is [0]. The inverse in [ΣA,X ] is given by a similar con-
struction as the product. A map h : A −→ XI representing an element of [ΣA,X ],

together with the 0 map, defines a map A −→ XΛ0[2]. We choose a lift to a map

H : A −→ X∆[2]. Then Xd0H represents the inverse of [h].

6.2. Cofiber and fiber sequences

This section is devoted to proving that there is a natural coaction in Ho C of
the cogroup ΣA on the cofiber of a cofibration of cofibrant objects A −→ B in a
pointed model category C. This allows to define cofiber sequences, and, by duality,
fiber sequences. In the next two sections we study some properties of cofiber and
fiber sequences. We prove approximately the same results in this section as in the
first four pages of [Qui67, Section I.3], but we use a somewhat different method.
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Our construction of a coaction of ΣA on the cofiber C of a cofibration A
f
−→ B

of cofibrant objects in a pointed model category C will use the results and notations
about homotopies of Section 1.2. To construct such a coaction, it is necessary and
sufficent to construct a natural right action of the group [ΣA,X ] on [C,X ] for all
X . In fact, by using the natural isomorphism (in HoC) X −→ RX , we need only
construct such a natural action for fibrant X .

We construct such a right action as follows. Denote the map B −→ C by
g. Given a map h : A −→ XI representing an element [h] of [ΣA,X ] and a map
u : C −→ X representing an element [u] of [C,X ], we have a commutative diagram

A
h

−−−−→ XI

f

y p0

y

B
ug

−−−−→ X

Since p0 is a trivial fibration and f is a cofibration, there is a lift α : B −→ X I .
Since p1h1f = p1h = 0, there is a unique map w : C −→ X such that wg = p1α. We
then define [u]� [h] = [w].

Dually, suppose p : E −→ B is a fibration of fibrant objects with fiber i : F −→ E.
If h : A × I −→ B represents an element of [A,ΩB] and u : A −→ F represents an
element of [A,F ], let α : A× I −→ E be a lift in the commutative diagram

A
iu

−−−−→ E

i0

y p

y

A× I
h

−−−−→ B

Then we define [u] � [h] = [w], where w : A −→ F is the unique map such that
if = αi1.

It is enlightening to take C = Top∗ and A = S0. Then, given a loop h in B
and a point u in F , [u]� [h] is defined by taking a lift of h to a path α which starts
at u, and taking its other endpoint w.

Theorem 6.2.1. Suppose f : A −→ B is a cofibration of cofibrant objects with
cofiber g : B −→ C in a pointed model category C and X is fibrant. Then the
pairing ([u], [h]) 7→ [u]� [h] constructed above defines a natural right action of the
group [ΣA,X ] on [C,X ], so defines a right coaction of ΣA on C. Dually, suppose
p : E −→ B is a fibration of fibrant objects with fiber i : F −→ E in C and A is
cofibrant. Then the pairing ([u], [h]) 7→ [u]� [h] constructed above defines a natural
right action of the group [A,ΩB] on [A,F ], so defines a right action of the group
object ΩB on the fiber F .

The fibration half of Theorem 6.2.1 follows immediately from the cofibration
half and duality. We will theorefore concentrate on the cofibration half. We will
prove Theorem 6.2.1 in a series of lemmas. We need a preliminary lemma about
cylinder objects.

Lemma 6.2.2. Suppose f : A −→ B is a cofibration of cofibrant objects in a
pointed model category C, with cofiber g : B −→ C. Then there are cylinder objects

B′ for B and C ′ for C and maps A× I
f ′

−→ B′ g′

−→ C ′ such that g′ is the cofiber of
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the cofibration f ′ and the following diagram is commutative.

A q A
(i0,i1)
−−−−→ A× I

s
−−−−→ A

fqf

y f ′

y f

y

B q B
(i0,i1)
−−−−→ B′ s

−−−−→ B

gqg

y g′

y g

y

C q C
(i0,i1)
−−−−→ C ′ s

−−−−→ C

Proof. Let Q denote the pushout in the diagram

Aq A
(i0,i1)
−−−−→ A× I

fqf

y e

y

B q B
j

−−−−→ Q

so that j and e are cofibrations. The fold map B q B −→ B together with the

composite A × I
s
−→ A

f
−→ B define a map Q −→ B. If we factor this into a

cofibration Q
k
−→ B′ followed by a trivial fibration B′ s

−→ B, we find that B′ is a
cylinder object for B, where (i0, i1) = kj. It follows that the first two rows of our
diagram are commutative, where f ′ = ke.

Now we define g′ : B′ −→ C ′ as the cofiber of the cofibration f ′. Then there are

induced maps C q C
(i0,i1)
−−−−→ C ′ s

−→ C factoring the fold map of C and making our
diagram commutative. We must show that (i0, i1) is a cofibration and s is a weak
equivalence. We use the result and method of the cube lemma 5.2.6. By applying
the result of the cube lemma 5.2.6 to the pushout squares defining C ′ and C, we
find that s is a weak equivalence. By applying the method of the cube lemma 5.2.6
to the pushout square defining CqC as the cofiber of fqf and the pushout square
defining C ′, we get a cofibration in the Reedy model structure on CB, where B is
the category with three objects used in the cube lemma 5.2.6. The only thing to
check here is that the map Q −→ B′ is a cofibration, which of course it is. Since the
colimit functor is a left Quillen functor, as in the proof of the cube lemma 5.2.6,
we find that the map C q C −→ C ′ is a cofibration.

With this lemma in hand, we can prove that our pairing is well-defined.

Lemma 6.2.3. Suppose f : A −→ B is a cofibration of cofibrant objects with
cofiber C in a pointed model category C, and X is fibrant. Then the pairing
([u], [h]) 7→ [u]� [h] defines a map [C,X ]× [ΣA,X ] −→ [C,X ].

Proof. Define the maps u, h, and α as in the definition of [u] � [h]. Sup-
pose h′ : A −→ XI is a (possibly) different representative for [h], v : C −→ X is a
(possibly) different representative of [u], and β is a lift in the diagram

A
h′

−−−−→ XI

f

y p0

y

B
vg

−−−−→ X
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Let w be the unique map such that wg = p1α, and let w′ be the unique map such
that w′g = p1β. We must show that [w] = [w′]. By Lemma 6.1.4, there is a map
H : A × I −→ XI such that Hi0 = h, Hi1 = h′, and p0H = p1H = 0. We use the
notation and cylinder objects of Lemma 6.2.2 and its proof. By Corollary 1.2.6,
there is a homotopy K : C ′ −→ X from u to v. We then get a commutative diagram

Q
(H,αqβ)
−−−−−→ XI

k

y p0

y

B′ Kg′

−−−−→ X

Let G̃ : B′ −→ XI be a lift in this diagram. Then p1G̃ ◦ ke = p1H = 0, so there is

a unique map G : C ′ −→ X such that Gq = p1G̃. It follows that G is a homotopy
from w to w′, as required.

Lemma 6.2.4. Suppose f : A −→ B is a cofibration of cofibrant objects with
cofiber C in a pointed model category C. Then the map [C,X ]× [ΣA,X ] −→ [C,X ]
constructed above is natural for maps of fibrant objects X.

Proof. Suppose q : X −→ Y is a map of fibrant objects. The induced map
[ΣA,X ] −→ [ΣA, Y ] takes the class [h] represented by h : A −→ X I to [qIh]. Simi-
larly, the induced map [C,X ] −→ [C, Y ] takes [u] to [qu]. Now let α be a lift in the
diagram

A
h

−−−−→ XI

f

y p0

y

B
ug

−−−−→ X

Then [u]� [h] = [w], where w is the unique map C −→ X such that wg = p1α. But
qIα is a lift in the diagram

A
qIh
−−−−→ Y I

f

y p0

y

B
qug
−−−−→ Y

Thus, by Lemma 6.2.3, [qu]� [qIh] = [v], where v is the unique map C −→ Y such
that vg = p1q

Iα. But p1q
Iα = qp1α = qwg. Thus v = qw, so [qu] � [qIh] =

q([u]� [h]), as required.

We can now finish the proof of Theorem 6.2.1.

Proof of Theorem 6.2.1. It remains to show that the product � is associa-
tive and unital. The unit of [ΣA,X ] is the zero map. In this case, we can choose
our lift α in the definition of [u] � [h] to be rug, where r : X −→ XI is one of
the structure maps of the path object XI . Hence p1α = ug, so [u] � [0] = [u], as
required. To check associativity, we use the description of the product on [ΣA,X ]
given in Remark 6.1.7. So suppose h, h′ : A −→ XI represent elements of [ΣA,X ],
and u : C −→ X . Given a lift α used to define u�h, we have ([u]� [h])� [h′] = [k],
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where k is the unique map such that kg = p1β, and where β is a lift in the square

A
h′

−−−−→ XI

f

y p0

y

B
p1α
−−−−→ X

Thus we have p0β = p1α, so we can define α ∗ β as in Remark 6.1.7. We find that
α ∗ β is a lift in the square

A
h∗h′

−−−−→ XI

f

y p0

y

B
ug

−−−−→ X

for a particular choice of h∗h′. Hence [u]� ([h][h′]) = [q] for the unique map q such
that qg = p1(α ∗ β). But p1(α ∗ β) = p1β = kg. Hence q = k, so ([u]� [h])� [h′] =
[u]� ([h][h′]), as required.

The coaction of Theorem 6.2.1 is natural for maps of cofibrations as well.

Proposition 6.2.5. Suppose C is a pointed model category and we have a com-
mutative square of cofibrant objects

A′ f ′

−−−−→ B′

q1

y q2

y

A
f

−−−−→ B

where f ′ and f are cofibrations, with cofibers g′ : B′ −→ C ′ and g : B −→ C respec-
tively. Then the induced map q3 : C ′ −→ C is equivariant in Ho C with respect to
the cogroup homomorphism Σq1.

The corresponding statement for fibrations holds by duality.

Proof. Suppose X is fibrant, h : A −→ XI represents an element of [ΣA,X ],
and u : C −→ X represents an element of [C,X ]. We must show that ([u]� [h])q3 =
[uq3]� [hq1]. To see this, let α be a lift in the diagram

A
h

−−−−→ XI

f

y p0

y

B
ug

−−−−→ X

so that [u]� [h] = [w], where w is the unique map such that wg = p1α. Then αq2
is a lift in the diagram

A′ hq1−−−−→ XI

f ′

y p0

y

B′ uq3g
′

−−−−→ X

Thus [uq3] � [hq1] = [r] for the unique map r such that rg′ = p1αq2. But we can
take r = wq3, as the reader can check.
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With Theorem 6.2.1 in hand, we make the following definition.

Definition 6.2.6. Suppose C is a pointed model category. A cofiber sequence
in Ho C is a diagram X −→ Y −→ Z in Ho C together with a right coaction of ΣX

on Z which is isomorphic in HoC to a diagram of the form A
f
−→ B

g
−→ C where

f is a cofibration of cofibrant objects in C with cofiber g and where C has the
right ΣA-coaction given by Theorem 6.2.1. Dually, a fiber sequence is a diagram
X −→ Y −→ Z together with a right action of ΩZ on X which is isomorphic to a

diagram F
i
−→ E

p
−→ B where p is a fibration of fibrant objects with fiber i and

where F has the right ΩB-action given by Theorem 6.2.1.

Note that what this isomorphism means precisely in the cofiber sequence case
is that there are isomorphisms α : X −→ A, β : Y −→ B, and γ : Z −→ C making
the evident diagrams commute and such that γ is equivariant with respect to the
cogroup isomorphism Σα.

Note also that if X
f
−→ Y

g
−→ Z is a cofiber sequence in HoC, in particular we

have gf = 0 in Ho C.
A cofiber sequence has associated to it a boundary map, which we now define.

Definition 6.2.7. Suppose C is a pointed model category, and X
f
−→ Y

g
−→ Z

is a cofiber sequence in HoC. The boundary map is the map ∂ : Z −→ ΣX in HoC

which is the composite

Z −→ Z q ΣX
0×1
−−→ ΣX

where the first map is the coaction. Dually, if X
f
−→ Y

g
−→ Z is a fiber sequence, the

boundary map is the map ∂ : ΩZ −→ X which is the composite

ΩZ
(0,1)
−−−→ X × ΩZ −→ Z

Note that, if θ ∈ [ΣA,X ], then θ∂ = [0] � θ. Similarly, if θ ∈ [A,ΩZ], then
∂θ = [0]� θ.

6.3. Properties of cofiber and fiber sequences

In this section we study some of the properties of the cofiber and fiber sequences
defined in the previous section. We concentrate on cofiber sequences, as the corre-
sponding properties of fiber sequences follow by duality. The results of this section
are mostly proved by Quillen in [Qui67, Section I.3].

We begin with some simple properties.

Lemma 6.3.1. The collection of cofiber sequences is replete in the homotopy
category of a pointed model category C. That is, any diagram isomorphic to a
cofiber sequence is a cofiber sequence. Dually, the collection of fiber sequences is
replete as well.

Lemma 6.3.1 follows immediately from the definition of cofiber sequences. One
must be careful to note that X ′ −→ Y ′ −→ Z ′ is isomorphic to a cofiber sequence
X −→ Y −→ Z if and only if there is a commutative diagram

X ′ −−−−→ Y ′ −−−−→ Z ′

q1

y q2

y q3

y

X −−−−→ Y −−−−→ Z
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where the qi are isomorphisms and q3 is Σq1-equivariant.

Lemma 6.3.2. For any X in a pointed model category C, the diagram ∗ −→

X
1
−→ X together with the trivial coaction of Σ∗ = ∗ on X is a cofiber sequence in

HoC. Dually, the diagram X
1
−→ X −→ ∗ with the trivial action of Ω∗ = ∗ on X is

a fiber sequence.

Proof. The cofibration ∗ −→ QX has cofiber QX
1
−→ QX .

The following lemma is part (i) of [Qui67, Propopsition I.3.5].

Lemma 6.3.3. Suppose f : X −→ Y is an arbitrary map in Ho C, where C is a

pointed model category. Then there is a cofiber sequence X
f
−→ Y

g
−→ Z for some g.

Dually, there is a fiber sequence W
h
−→ X

f
−→ Y for some h.

Proof. The composite QX
qX
−−→ X

f
−→ Y

rY−→ RY is a map in HoC from a
cofibrant object to a fibrant object. It is therefore represented by a map f ′ : QX −→
RY of C. Factor f ′ into a cofibration i : QX −→ Y ′ followed by a trivial fibration
p : Y ′ −→ RY . Let g′ : Y ′ −→ Z denote the cofiber of i. Give Z the coaction of ΣX
given by the composite

Z −→ Z q ΣQX
1qΣqX
−−−−→ Z q ΣX

where the first map is the coaction of ΣQX on Z. Then we have a commutative
diagram in HoC

QX
i

−−−−→ Y ′ g′

−−−−→ Z

qX

y r−1
Y p

y
∥∥∥

X
f

−−−−→ Y
g′p−1rY
−−−−−→ Z

The vertical maps are isomorphisms and the identity map of Z is ΣqX -equivariant.
Since the top row is a cofiber sequence, so is the bottom row, as required.

We now move on to some less trivial properties of cofiber sequences. The
following is [Qui67, Proposition I.3.3].

Proposition 6.3.4. Suppose C is a pointed model category, and X
f
−→ Y

g
−→ Z

is a cofiber sequence in Ho C. Then the sequence Y
g
−→ Z

∂
−→ ΣX, where ∂ is the

boundary map of Definition 6.2.7, becomes a cofiber sequence when ΣX is given the
ΣY -coaction

ΣX −→ ΣX q ΣX
1qΣf
−−−→ ΣX q ΣY

1qi
−−→ ΣX q ΣY

where the first map is the cogroup structure map and i is the cogroup inverse map
of ΣY .

Proposition 6.3.4 and duality imply the corresponding result for fiber sequences
as well, whose exact formulation we leave to the reader. Note that Proposition 6.3.4

implies in particular that ∂g = 0 in a cofiber sequence X
f
−→ Y

g
−→ Z. Also note

that one can apply Proposition 6.3.4 any number of times, to generate a “long exact
sequence” often called the Puppe sequence.



158 6. POINTED MODEL CATEGORIES

Proof. We can assume f is actually a cofibration A −→ B in C with cofiber
g : B −→ C. Define the mapping cone C ′ of f via the pushout diagram

Aq A
(i0,i1)
−−−−→ A× I

(f,0)

y a

y

B
g′

−−−−→ C ′

By manipulating pushouts, one can check that the cofiber of g′ is the map h′ : C ′ −→
A ∧ S1 induced by the zero map on B and the canonical map A × I −→ A ∧ S1.

We therefore have a cofiber sequence B
g′

−→ C ′ h′

−→ ΣA, which we will show is

isomorphic to B
g
−→ C

∂
−→ ΣA in HoC.

Note that there is a map b : C ′ −→ C such that bg′ = g induced by the identity

map on B, the map AqA
1q0
−−→ A, and the unique map A× I −→ ∗. It is not clear

from this description that b is a weak equivalence. To see this we must manipulate
pushouts. Let (I, 1) denote be the pointed simplicial set ∆[1] with basepoint 1.
Then A ∧ (I, 1) is the cone on A, and there is a map i′0 : A −→ A ∧ (I, 1) induced
by i0. We claim that there is a pushout square

A
i′0−−−−→ A ∧ (I, 1)

f

y
y

B
g′

−−−−→ C ′

The proof of this involves examining C(C ′,−), and we leave the details to the
reader. The map b : C ′ −→ C is induced by the identity on B and A and the map
A ∧ (I, 1) −→ ∗. Since the latter map is a weak equivalence (left to the reader), the
cube lemma 5.2.6 implies that b is a weak equivalence as well.

We now show that ∂b = h′ : C ′ −→ ΣA in HoC. To see this, suppose X is
fibrant, and we have an element θ of [ΣA,X ] represented both by j : A × I −→ X
and k : A −→ XI . Then θh′ is represented by the map u : C ′ −→ X which is j on
A× I and 0 on B. To calculate θ∂, we choose a lift H in the diagram

A
k

−−−−→ XI

f

y p0

y

B
0

−−−−→ X

Then θ∂ is represented by the map c : C −→ X such that cg = p1H . It follows that
θ∂b is represented by the map u′ : C ′ −→ X which is 0 on A× I and p1H on B. We
must show that u and u′ are homotopic. To see this, choose a correspondence H ′

between j and k using Lemma 6.1.5. Define H ′′ : C ′ −→ XI to be H ′ on A× I and
H on B. Then H ′′ is the required homotopy between u and u′.

We therefore have a commutative diagram in Ho C

B
g′

−−−−→ C ′ h′

−−−−→ ΣA
∥∥∥ b

y
∥∥∥

B
g

−−−−→ C
∂

−−−−→ ΣA
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Since the vertical maps are isomorphisms and the top sequence is a cofiber sequence,
so is the bottom one. It remains to show that the coaction of ΣB on ΣA induced
by g′ has the stated form.

In order to compute this coaction, letX be fibrant as before, and let θ ∈ [ΣA,X ]
be represented by j : A×I −→ X . Let h : B −→ XI represent an element in [ΣB,X ].
Let H be a lift in the diagram

B
h

−−−−→ XI

g′

y p0

y

C ′ u
−−−−→ X

where u is the map which is 0 on B and is j on A× I . Then H is h on B and some
map K on A× I . We have Ki0 = hf , Ki1 = 0, and p0K = j. The action of [h] on
θ is given by θ � [h] = [p1K].

Now, [p1K] = [k] for some map k : A −→ XI . Let G : A × I −→ XI be a
correspondence between p1K and k. Then we have p0G = p1K, p1G = 0, Gi0 = k,
and Gi1 = 0. We then have a commutative diagram

A
0

−−−−→ X∆[2]

i1

y
y

A× I
(K,G)
−−−−→ XΛ1[2]

analogous to the diagram in Remark 6.1.7. Let F be a lift in this diagram, and let

K ∗ G = Xd1F . Then we have p0(K ∗G) = p0K = j, p1(K ∗ G) = p1G = 0, and
(K ∗G)i1 = 0. Furthermore, (K ∗G)i0 is a possible choice for Ki0 ∗Gi0 = (hf) ∗ k.
Thus K ∗G is a correspondence between j and a possible choice for hf ∗ k. Hence
θ = [hf ](θ� [h]), where the multiplication is in the group [ΣA,X ]. Thus θ � [h] =
θ[hf ]−1, as required.

The following is part (ii) of [Qui67, Proposition I.3.5]. Our proof is somewhat
simpler.

Proposition 6.3.5. Suppose C is a pointed model category and we have a com-
mutative diagram in Ho C

X
f

−−−−→ Y
g

−−−−→ Z

α

y β

y

X ′ f ′

−−−−→ Y ′ g′

−−−−→ Z ′

where the rows are cofiber sequences. Then there is a (nonunique) map γ : Z −→
Z ′ which is Σα-equivariant and satisfies γg = g′β. The dual statement for fiber
sequences holds as well.

Proof. We can assume that our cofiber sequences are actually sequences A
f
−→

B
g
−→ C and A′ f ′

−→ B′ g′

−→ C ′ of maps of C, where f and f ′ are cofibrations, g is
the cofiber of f , g′ is the cofiber of f ′, and all objects are cofibrant.

We claim that we can also assume that A′ and B′ are fibrant. Indeed, let
B′′ = R(RA′ qA′ B′). Then we have a cofibration f ′′ : RA′ −→ B′′, and we let
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g′′ : B′′ −→ C ′′ be its cofiber. We then have a commutative diagram

A′ f ′

−−−−→ B′ g′

−−−−→ C ′

rA′

y
y

y

RA′ f ′′

−−−−→ B′′ g′′

−−−−→ C ′′

The first two vertical maps are weak equivalences, so the cubes lemma 5.2.6 guar-
antees that the last vertical map is also a weak equivalence. Proposition 6.2.5
guarantees that it is ΣrA′ -equivariant in HoC. Hence we may as well replace the
top cofiber sequence by the bottom cofiber sequence, so we can assume A′ and B′

are fibrant.
Now, since A′ and B′ are fibrant, α is represented by some map p : A −→ A′, and

β is represented by some map q : B −→ B′. We have [qf ] = [f ′p]. Let h : A −→ (B′)I

be a homotopy from qf to f ′p. Let H be a lift in the commutative diagram

A
h

−−−−→ (B′)I

f

y p0

y

B
q

−−−−→ B′

Let q′ = p1H . Then [q′] = [q] = β, and q′f = p1H = f ′p. Thus p and q′ induce
a map r : C −→ C ′. The class γ = [r] makes the required diagram commute and is
Σα-equivariant by Proposition 6.2.5.

We now prove that a version of Verdier’s octahedral axiom holds for the cofiber
sequences in the homotopy category of a pointed model category. Quillen states
that this axiom holds in [Qui67, Section I.3], but says that it is not worth the effort
to write it down. Readers of [HPS97] will realize that, on the contrary, Verdier’s
octahedral axiom is very important, at least in the stable situation. It is the only
tool we have for getting at the cofiber of a composite. Incidentally, the axiom as
stated below bears no resemblance to an octahedron: it is called the octahedral
axiom by analogy to the triangulated case, discussed in the next chapter, where it
can be written as an octahedron.

Proposition 6.3.6. Let C be a pointed model category. Suppose we have maps

X
v
−→ Y

u
−→ Z in Ho C. Then there exist cofiber sequences

X
v
−→ Y

d
−→ U

X
uv
−→ Z

a
−→ V

Y
u
−→ Z

f
−→ W

and

U
r
−→ V

s
−→ W

in Ho C such that au = rd, sa = f , r is ΣX-equivariant, s is Σv-equivariant, and
the ΣU -coaction on W is the composite

W −→W q ΣY
1qΣd
−−−→W q ΣU.

There is of course a dual statement for fiber sequences in HoC, which follows
by duality.
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Proof. We may as well assume that X,Y , and Z are cofibrant and fibrant,
and that the maps v and u are cofibrations in C. We can then take d to be the
cofiber of v, a to be the cofiber of uv, and f to be the cofiber of u. The first three
cofiber sequences are then immediate.

The map r : U −→ V is then the pushout of the map u and the identity map
on ∗ over the identity map on X . Then au = rd by construction, and r is ΣX-
equivariant in Ho C by Proposition 6.2.5. It also follows that r is a cofibration. The
easiest way to see this is to check that r has the left lifting property with respect
to trivial fibrations, but it also follows from the methods of the cube lemma 5.2.6.

Similarly, the map s : V −→ W is the pushout of the identity maps on Z
and ∗ over the map v. Then sa = f and Proposition 6.2.5 implies that s is Σv-
equivariant in Ho C. Furthermore, by commuting colimits we find that s is the

cofiber of r. Hence we do get a cofiber sequence U
r
−→ V

s
−→W in HoC.

We must still check that the two coactions of ΣU on W agree. To see this, let
B be a fibrant object of C, let g : W −→ B be a map, and let h : U −→ BI represent
a class in [ΣU,B]. We must show that [g]� [h] = [g]� [hd], where the first product
is the action of [ΣU,B] on [W,B] and the second product is the action of [ΣY,B]
on [W,B]. Let H be a lift in the commutative diagram

U
h

−−−−→ BI

r

y p0

y

V
gs

−−−−→ B

Then [g]� [h] = [k], where k is the unique map such that ks = p1H . One can then
readily verify that Ha is a lift in the commutative diagram

Y
hd

−−−−→ BI

u

y p0

y

Z
gf

−−−−→ B

Since p1Ha = ksa = kf , we conclude that [g]� [hd] = [k] as well.

We close this section by investigating how the cofiber and fiber sequences in
HoC interact. The following proposition is closely related to [Qui67, Proposition
6], but is somewhat stronger and easier to use.

Proposition 6.3.7. Let C be a pointed model category, and suppose X
f
−→ Y

g
−→

Z is a cofiber sequence in Ho C and X ′ i
−→ Y ′ p

−→ Z ′ is a fiber sequence in Ho C.
Suppose in addition we have a commutative diagram

X
f

−−−−→ Y
g

−−−−→ Z
∂

−−−−→ ΣX

α

y β

y
�
α−1

y

ΩZ ′ ∂
−−−−→ X ′ i

−−−−→ Y ′ p
−−−−→ Z ′

where α̃−1 is the inverse of the adjoint of α with respect to the group structure on
[ΣX,Z ′]. Then there is a fill-in map γ : Z −→ Y ′ making the diagram commute.
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Similarly, if we have a commutative diagram

X
f

−−−−→ Y
g

−−−−→ Z
∂

−−−−→ ΣX

�δ
−1

y γ

y δ

y

ΩZ ′ ∂
−−−−→ X ′ i

−−−−→ Y ′ p
−−−−→ Z ′

then there is a fill-in map β : Y −→ X ′ making the diagram commute.

Proof. Note that the two assertions of Proposition 6.3.7 are dual, so it suffices
to prove the second statement. As usual, we can assume our cofiber sequence is of

the form A
f
−→ B

g
−→ C where f is a cofibration in C with cofiber g and A,B, and

C are cofibrant. In fact, we can replace C by the mapping cone C ′, as in the proof
of Proposition 6.3.4. Recall that C ′ is the pushout in the diagram

Aq A
(i0,i1)
−−−−→ A× I

(f,0)

y
y

B
g′

−−−−→ C ′

and that the cofiber of g′ is ∂′ : C ′ −→ A ∧ S1. Furthermore, the sequence A
f
−→

B
g′

−→ C ′ ∂′

−→ ΣA is isomorphic in HoC to the sequence A
f
−→ B

g
−→ C

∂
−→ ΣA, as

was proved in the course of proving Proposition 6.3.4. Dually, we can assume our

fiber sequence is of the form F
i
−→ E

p
−→ D where p is a fibration with fiber i and

F,E, and D are fibrant. Altogether then, we have a diagram

A
f

−−−−→ B
g′

−−−−→ C ′ ∂′

−−−−→ ΣA

�δ
−1

y γ

y δ

y

ΩD
∂

−−−−→ F
i

−−−−→ E
p

−−−−→ D

in Ho C.
Now, choose a representative c : C ′ −→ E of γ and a representative h : A∧S1 −→

D of δ. We will also denote by h the map A× I −→ D induced by h. By hypothesis,
we have [pc] = [h∂′]. We claim that we can assume that ph = h∂ ′. Indeed, let
H : C ′ × I −→ D be a homotopy from ph to h∂ ′. Then we have a commutative
diagram

C ′ c
−−−−→ E

i0

y p

y

C ′ × I
H

−−−−→ D

Let G : C ′× I −→ E be a lift in this diagram. Then G is a homotopy from c to Gi1,
so we can replace c by Gi1. Since pGi1 = Hi1 = h∂′, this means we can assume
pc = h∂′, as claimed.

Since pc = h∂′, we have pcg′ = h∂′g′ = 0 in C, so there is a unique map b : B −→
F such that ib = cg′. The map c is then ib on B and some map H : A× I −→ E on
A× I . Since pc = h∂′, we have pH = h. Since c is ib on B, we have Hi0 = ibf and

Hi1 = 0. Let β = [b]. Then to complete the proof we must show that [bf ] = ∂(δ̃−1).

But by definition ∂(δ̃−1) = 0 � δ̃−1, where the product is the action of the group
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[A,ΩD] on [A,F ]. Hence we must show that [bf ]� [h] = 0. To calculate [bf ]� [h],
we first consider the commutative diagram

A
ibf
−−−−→ E

i0

y p

y

A× I
h

−−−−→ D

Given a lift K in this diagram, [bf ] � [h] = [k] for the unique map k such that
ik = Ki1. However, the map H is a lift in this diagram, and it satisfies Hi1 = 0.
Thus k = 0, so [bf ]� [h] = 0, as required.

6.4. Naturality of cofiber sequences

In this section, we show that the cofiber (resp. fiber) sequences in the homotopy
category of a pointed model category C are preserved by left (resp. right) Quillen
functors. We also show that cofiber and fiber sequences are preserved by the closed
HoSSet∗-module structure on Ho C induced by the framing.

Proposition 6.4.1. Suppose (F,U, ϕ) : C −→ D is a Quillen adjunction of
pointed model categories. Then LF : Ho C −→ HoD preserves cofiber sequences.

That is, if X
f
−→ Y

g
−→ Z is a cofiber sequence in Ho C with coaction ψ : Z −→

Z q ΣX, then (LF )X
(LF )f
−−−−→ (LF )Y

(LF )g
−−−−→ (LF )Z is a cofiber sequence in Ho D,

where the coaction on (LF )Z is given by the composite

(LF )Z
(LF )ψ
−−−−→ (LF )(Z q ΣX) ∼= (LF )Z q (LF )ΣX

1qm
−−−→

∼=
(LF )Z q Σ(LF )X

Here m is the isomorphism (LF )(A ∧L S1)
∼=
−→ (LF )A ∧L S1 constructed in the

unpointed case in Theorem 5.6.2. Dually, RU preserves fiber sequences.

Proof. We may as well assume that our cofiber sequence is of the form A
f
−→

B
g
−→ C where f is a cofibration with cofiber g and A,B, and C are cofibrant.

Since F is a left Quillen functor, it preserves cofibrations and colimits, so we have a

cofiber sequence FA
Ff
−−→ FB

Fg
−−→ FC. Since, for cofibrant D, (LF )D is naturally

isomorphic to FD in Ho D via the natural transformation q, it suffices to check the
statement about the coaction.

So suppose W is fibrant in D, α ∈ [FC,W ], and β ∈ [ΣFA,W ]. Let α•β be the
product defined by the coaction described in the statement of the proposition. We
must show that α�β = α•β. We will actually show that ϕ(α�β) = ϕ(α•β), where
we have used ϕ instead of Rϕ for the isomorphism [FC,D] ∼= [C,UD] when C is
cofibrant and D is fibrant. This is simpler since we have ϕ(α•β) = (ϕα)�(ϕ(βm)).
This equality just follows from the naturality of ϕ.

Recall from Lemma 5.5.1 and Lemma 5.6.1 that there is a weak equivalence of

simplicial frames (UW )◦ −→ U(W◦). In particular, there is a map (UW )I
j
−→ U(W I)

such that Upi◦j = pi for i = 0, 1. This weak equivalence of simplicial frames defines
the map m, by adjointness. That is, choose a representative h : A −→ (UW )I for
ϕ(βm). Then ϕ−1(jh) : FA −→ W I is a representative for β. Similarly, choose a
representative u : C −→ UW for ϕα. Then ϕ−1u : FC −→W is a representative for
α.
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Now, let H be a lift in the commutative diagram

A
h

−−−−→ (UW )I

f

y p0

y

B
ug

−−−−→ UW

Then (ϕα)� (ϕ(βm)) = [v], where v is the unique map such that vg = p1H . Note
that jH satisfies Up0 ◦ jH = ug and jHf = jh. Thus ϕ−1(jH) is a lift in the
commutative diagram

FA
ϕ−1(jh)
−−−−−→ W I

Ff

y p0

y

FB
(ϕ−1u)◦Fg
−−−−−−−→ W

Hence α � β = [w], where w is the unique map such that w ◦ Fg = p1ϕ
−1(jH).

Hence ϕ(α � β) = [ϕw], and ϕw satisfies ϕw ◦ g = Up1 ◦ jH = p1H = vg. Thus
ϕw = v, so α� β = (ϕα) � (ϕ(βm)), as required.

Proposition 6.4.1 implies that some of the functors giving the closed HoSSet∗-
module structure on HoC respect cofiber or fiber sequences.

Corollary 6.4.2. Suppose C is a pointed model category.

(a) The functor − ∧L − : HoC× HoSSet∗ −→ Ho C preserves cofiber sequences

in the second variable. That is, suppose A ∈ Ho C and X
f
−→ Y

g
−→ Z is a

cofiber sequence in HoSSet∗. Then A ∧LX
1∧Lf
−−−→ A∧L Y

1∧Lg
−−−→ A ∧L Z is

a cofiber sequence in Ho C, where the coaction on A ∧L Z is the composite

A ∧L Z −→ A ∧L (Z ∨ ΣX) ∼= (A ∧L Z)q (A ∧L ΣX)

1∧La
−−−→

∼=
(A ∧L Z) q Σ(A ∧L X).

Here a is the (pointed) associativity isomorphism A ∧L (X ∧L S1) ∼= (A ∧L

X) ∧L S1 whose unpointed version was constructed in Section 5.5.
(b) The functor RHom∗(−,−) converts cofiber sequences in the first variable

into fiber sequences. That is, suppose A ∈ Ho C and X
f
−→ Y

g
−→ Z is a cofiber

sequence in HoSSet∗. Then the sequence RHom∗(Z,A) −→ RHom∗(Y,A) −→
RHom∗(X,A) is a fiber sequence in Ho C where the action is given by the
composite

ΩRHom∗(X,A)×RHom∗(Z,A)
∼=
−→ RHom∗(ΣX,A)×RHom∗(Z,A)

∼= RHom∗(Z ∨ ΣX,A) −→ RHom∗(Z,A)

Here the first map is adjoint to the associativity isomorphism Σ(−∧LX) ∼=
− ∧L ΣX.

(c) The functor RMap∗`(−,−) ∼= RMap∗r(−,−) preserves fiber sequences in
the second variable and converts cofiber sequences to fiber sequences in the

first variable. That is, suppose A ∈ Ho C and X
f
−→ Y

g
−→ Z is a fiber
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sequence in HoC. Then the sequence RMap∗r(A,X) −→ RMap∗r(A, Y ) −→
RMap∗r(A,Z) is a fiber sequence in HoSSet∗, with action

ΩRMap∗r(A,Z)×RMap∗r(A,X) ∼= RMap∗r(A,ΩZ)×RMap∗r(A,X)

−→ RMap∗r(A,X)

Here the first map is the adjoint to the inverse of the associativity isomor-

phism A∧L Σ− ∼= Σ(A ∧L−). Dually, if X
f
−→ Y

g
−→ Z is a cofiber sequence

in Ho C, then RMap∗r(Z,A) −→ RMap∗r(Y,A) −→ RMap∗(X,A) is a fiber
sequence in HoSSet∗, with action

ΩRMap∗r(X,A)×RMap∗r(Z,A) ∼= RMap∗r(ΣX,A)×RMap∗r(Z,A)

−→ RMap∗(Z,A)

Here the first map is adjoint to the isomorphism

ΩRHom∗(−, A) ∼= RHom∗(Σ−, A)

of part (b).

Proof. Apply Proposition 6.4.1 to the Quillen functor QA ∧ − and its ad-
joint Map∗`(QA,−), and also to the Quillen functor Hom∗(−, RA) and its adjoint
Map∗r(−, RA). The fact that the coaction in part (a) is as claimed follows from
coherence. That the other actions are as claimed follows by adjointness.

We are still left with checking that the other functors giving the closed HoSSet∗-
module structure on Ho C respect cofiber or fiber sequences. The proof of this is
fairly complicated, and is similar in flavor to the proofs in Section 5.5 and Sec-
tion 5.6. We first need an alternative definition of the coaction. This definition is
dual to Quillen’s first definition of the action [Qui67, Section I.3] associated to a
fibration.

Let f : A −→ B be a cofibration of cofibrant objects in a pointed model category
C with cofiber g : B −→ C. Choose a cylinder object A′ for A. Denote by r : A′ −→
A′ ∧ S1 the cofiber of (i0, i1) : A q A −→ A′. Let B̃ denote the double mapping

cylinder of f . That is, B̃ is the pushout in the diagram

A q A
(i0,i1)
−−−−→ A′

fqf

y
y

B q B −−−−→ B̃

Then the fold map B q B −→ B and the map fs : A′ −→ B induce a map B̃ −→ B.

Factor this map into a cofibration B̃ −→ B′ followed by a trivial cofibration s : B′ −→
B. The B′ is a cylinder object for B, and there is an induced map f ′ : A′ −→ B′,
which is in fact a cofibration, such that f ′ij = ijf for j = 0, 1 and sf ′ = fs.

Now let Bf denote the single mapping cylinder on f , so that we have a pushout
square

A
i0−−−−→ A′

f

y
y

B
j

−−−−→ Bf
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Since i0 is a trivial cofibration, so is j. By manipulating colimits, the reader can
check that there is a pushout square

A
i1−−−−→ A′

jf

y
y

Bf −−−−→ B̃

We therefore get an induced trivial cofibration Bf
(i0,f

′)
−−−−→ B′, where the notation

indicates that the restriction to B is i0 and the restriction to A′ is f ′.
Consider the pushout square

Bf
(i0,f

′)
−−−−→ B′

(g,r)

y k

y

C q (A′ ∧ S1)
π

−−−−→ C̃

We then find that π is a weak equivalence. One can then verify that the map

ki1 : B −→ C̃ satisfies ki1f = 0, so induces a map i1 : C −→ C̃ . Let t : A′ −→ A × I
denote a map of cylinder objects, as in the remarks preceding Proposition 1.2.5.

Note that t induces a weak equivalence A′ ∧S1 t
−→ A∧S1 by the cube lemma 5.2.6.

Let ψ denote the composite

C
i1−→ C̃

π−1

−−→ C q (A′ ∧ S1)
1qt
−−→
∼=

C q (A ∧ S1) ∼= C qL ΣA

in HoC. Here the last isomorphism is the inverse of the evident weak equivalence
QC qQ(QA ∧ S1) −→ C q (A ∧ S1).

Lemma 6.4.3. Let C is a pointed model category. Suppose f : A −→ B is a
cofibration of cofibrant objects with cofiber g : B −→ C. Then the map ψ : C −→
C q ΣA in HoC defined above is the same as the coaction of Theorem 6.2.1.

In particular, this lemma is saying that ψ does not depend on any of the choices
made in defining it.

Proof. Let X be fibrant, and suppose u : C −→ X and and h : A −→ XI are
maps representing elements of [C,X ] and [ΣA,X ] respectively. We must show that
[u]� [h] = ([u], [h]) ◦ ψ. Let h′ be a lift in the diagram

A
h

−−−−→ XI

f

y p0

y

B
ug

−−−−→ X

Then p1h
′ = vg for a unique map v, and we have [u]� [h] = [v].

To evaluate ([u], [h]) ◦ ψ, we will use the notation used in the definition of ψ.
Let H ′ : A × I −→ XI be a correspondence of h with some map k′ : A × I −→ X .
Let H denote the composition of H ′ with the weak equivalence of cylinder objects
A′ −→ A × I used in the definition of ψ, and similarly for k : A′ −→ X . Then we
have p1H = Hi1 = 0, p0H = k, and Hi0 = h. Also, k and h represent the same
element of [ΣA,X ] under the evident weak equivalences, since k′ and h do.
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Now consider the commutative diagram

Bf
(h′,H)
−−−−→ XI

(i0,f
′)

y p1

y

B′ p1h
′s

−−−−→ X

where Bf is the mapping cylinder on f and B′ is the cylinder object for B used
in the definition of ψ. Let K : B′ −→ XI be a lift in this diagram. We leave it to

the reader to check that there is a map m = ((u, k), p0K) : C̃ −→ X , where we have
used the same letter k for the map A′ ∧ S1 −→ X induced by k.

It follows that ([u], [h]) ◦ ψ = [mi1]. The reader can check that mi1g = p0Ki1.
Now Ki1 is a homotopy between p0Ki1 = mi1g and p1Ki1 = p1h

′ = vg. Further-
more, Ki1f = 0. Therefore, Ki1 extends to a homotopy between mi1 and v, as
required.

Our plan is to lift the definition of ψ by replacing each object by an appropriate
cosimplicial frame on it. For this, we need a generalization of Lemma 6.2.2 to
cosimplicial frames.

Lemma 6.4.4. Suppose f : A −→ B is a cofibration of cofibrant objects in a
pointed model category C, with cofiber g : B −→ C. Then there are cosimplicial

frames B∗ for B and C∗ for C and maps A◦ f∗

−→ B∗ g∗

−→ C∗ of cosimplicial frames
covering f and g respectively, such that f ∗ is a cofibration in the Reedy model
structure with cofiber g∗.

Proof. Recall the functors `•, r• : C −→ C∆ of Definition 5.2.7. A cosimplicial
frame on X is a factorization of `•X −→ r•X into a cofibration i : `•X −→ X∗ which
is an isomorphism in degree 0, followed by a weak equivalence s. Let Q denote the
pushout in the diagram

`•A
i

−−−−→ A◦

`•f

y e

y

`•B
j

−−−−→ Q

Since i is a cofibration by the definition of the cosimplicial frame A◦, so is j. Since
`• is a left Quillen functor (see Section 5.2), `•f is a cofibration, so e is as well.
Furthermore, there is an induced isomorphism B ∼= Q[0], and with respect to this
isomorphism, e is the map f in degree 0. We have a weak equivalence s : A◦ −→ r•A

so that si is the canonical map `•A
τA−→ r•A. Then (r•f)s and τB define a map

Q −→ r•B. We factor this map into a cofibration Q
k
−→ B∗ followed by a trivial

fibration B∗ s
−→ r•B, where q and s are both the identity in degree 0. We can do this

using the method of Theorem 5.2.8 since Q is isomorphic to B in degree 0. We then
find that B∗ is a cosimplicial frame on B with structure map i = kj : `•B −→ B∗.
We define f∗ = ke, so that f∗ is a cofibration which is isomorphic to the map f in
degree 0.

Now we define g∗ : B∗ −→ C∗ as the cofiber of the cofibration f∗. Then there

are induced maps `•C
i
−→ C∗ s

−→ r•C factoring the canonical map. Furthermore, i
is an isomorphism in degree 0 and with respect to this isomorphism g∗ is g in degree
0. We must show that i is a cofibration and s is a weak equivalence. The proof that
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i is a cofibration is just like the proof of the corresponding fact in Lemma 6.2.2. To
prove that s is a weak equivalence, note that we have a pushout square

A◦[n]
f∗[n]
−−−−→ B∗[n]

y g∗[n]

y

∗ −−−−→ C∗[n]

since colimits are taken objectwise. Furthermore, f ∗[n] is a cofibration, as pointed
out in Remark 5.1.7. Comparing this to the pushout square that defines g, we find

from the cube lemma 5.2.6 that the map C∗[n]
s[n]
−−→ C is a weak equivalence, and

hence that s is a weak equivalence.

We can now prove that the other functors associated to the framing of Theo-
rem 5.2.8 preserve cofiber and fiber sequences.

Proposition 6.4.5. Let C be a pointed model category.

(a) The functor −∧L− : HoC×HoSSet∗ preserves cofiber sequences in the first

variable. That is, suppose K is a pointed simplicial set and X
f
−→ Y

g
−→ Z is

a cofiber sequence in HoC. Then X ∧LK
f∧L1
−−−→ Y ∧LK

g∧L1
−−−→ Z ∧LK is a

cofiber sequence in Ho C. The coaction on Z ∧L K is the composite

Z ∧L K −→ (Z q ΣA) ∧L K ∼= (Z ∧L K) q (ΣA ∧L K)

1qm
−−−→ (Z ∧L K)q Σ(A ∧L K)

where m is the isomorphism

(A ∧L S1) ∧L K
a
−→ A ∧L (S1 ∧L K)]

1∧LT
−−−→ A ∧L (K ∧L S1)

a
−→ (A ∧L K) ∧L S1

(b) The functor RHom∗(−,−) preserves fiber sequences in the second variable.

That is, suppose K is a pointed simplicial set and X
f
−→ Y

g
−→ Z is a fiber

sequence in HoC. Then RHom∗(K,X) −→ RHom∗(K,Y ) −→ RHom∗(K,Z)
is a fiber sequence in Ho C. The action on RHom∗(K,X) is the dual of the
coaction in part (a).

Proof. Part (b) follows from duality and part (a), so we only prove part (a).

As usual, we can assume our cofiber sequence is of the form A
f
−→ B

g
−→ C where

f is a cofibration in C with cofiber g and A,B and C are all cofibrant. We choose

maps of cosimplicial frames A◦ f∗

−→ B∗ g∗

−→ C∗ as in Lemma 6.4.4, so that f∗ is a
cofibration with cofiber g∗. Then Proposition 5.7.1 implies that A ∧K −→ B∗ ∧K
is a cofibration with cofiber B∗ ∧K −→ C∗ ∧K.

In order to calculate the coaction, we choose a cofibration of cosimplicial frames

A◦qA◦ (i∗0 ,i
∗
1)

−−−−→ (A× I)∗ using Lemma 6.4.4, whose cofiber is a map of cosimplicial

frames (A × I)∗
r∗

−→ (A ∧ S1)∗. Define B∗
f as the pushout of (A × I)∗ and B∗,

as Bf is defined in the definition of ψ. Then B∗
f is a cosimplicial frame on Bf .

Similarly, define B̃∗ as the pushout of (A q I)∗ and B∗ q B∗, so that B̃∗ is a

cosimplicial frame on B̃. We can then factor the map B̃∗ −→ B∗ into a cofibration

B̃∗ −→ (B′)∗ followed by a weak equivalence, such that the factorization in degree
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0 is the one used in the definition of ψ. The proof of this is similar to the proof

of Theorem 5.2.8. Then (B′)∗ is a cosimplicial frame on B′. Finally, define C̃∗

as the pushout of C∗ q (A ∧ S1)∗ and (B′)∗, just as we defined C̃ . Then C̃∗ is a

cosimplicial frame on C̃, and we have a weak equivalence π∗ : C∗q(A∧S1)∗ −→ C̃∗.
The functor that takes a cosimplicial frameX∗ toX∗∧K preserves cofibrations,

weak equivalences between cofibrant objects, and colimits, by Proposition 5.4.1. It
follows that the coaction on C∗ ∧K is the composite

C∗ ∧K
i∗1−→ C̃∗ ∧K

(π∗∧1)−1

−−−−−−→ (C∗ ∧K)q ((A ∧ S1)∗ ∧K)

1qt
−−→ (C∗ ∧K)q ((A ∧K) ∧ S1).

where t is induced by any map of cylinder objects (A × I)∗ −→ A◦ × I . For any
cosimplicial frame X∗ on X , there is a map of cosimplicial frames X∗ −→ X◦ by
Lemma 5.5.1. Applying this idea and Lemma 5.5.2, we find that the coaction on
C ∧K is the composition

C ∧K
ψ∧1
−−→ (C ∧K)q ((A ∧ S1) ∧K)

1qt
−−→ (C ∧K)q ((A ∧K) ∧ S1)

where t is induced by any map of cylinder objects. The map a(1∧LT )a : (A∧I+)∧
K −→ (A∧K)∧ I+ comes from a map of cylinder objects, so we can use it for t.

6.5. Pre-triangulated categories

In this section, we abstract the properties of cofiber and fiber sequences in
the homotopy category of a pointed model category to define a pre-triangulated
category.

Let S be a (right) closed HoSSet∗-module. We will denote the associated
functors by A ∧K, Hom(K,A), and Map(A,B). We assume that S is non-trivial,
so has at least one object. Then, by adjointness, A ∧ ∗ is an initial object 0 of S

for any A ∈ S. Dually, Hom(∗, A) is a terminal object 1 of S. Furthermore, for any
A ∈ S, there is a map A∧ S0 −→ A ∧ ∗ = 0. In particular, there is a map 1 −→ 0, so
S is pointed. We denote the initial and terminal object by ∗ rather than 0 or 1.

We have suspension and loop functors in S, defined by ΣA = A ∧ S1 and
ΩA = Hom(S1, A). The same argument as used in Corollary 6.1.6 shows that ΣA
is naturally a cogroup object and ΣtA is naturally an abelian cogroup object for
t ≥ 2. Dually, ΩA is naturally a group object and ΩtA is naturally an abelian
group object for t ≥ 2.

Definition 6.5.1. Suppose S is a nontrivial (right ) closed HoSSet∗-module.
A pre-triangulation on S is a collection of cofiber sequences, or left triangles, and
fiber sequences, or right triangles, satisfying the following conditions.

(a) A cofiber sequence is in particular a diagram of the form X
f
−→ Y

g
−→ Z

together with a right coaction of the cogroup ΣX on Z. A fiber sequence

is in particular a diagram of the form X
f
−→ Y

g
−→ Z together with a right

action of the group ΩZ on X .
(b) Every diagram isomorphic to a cofiber sequence is a cofiber sequence. Simi-

larly, every diagram isomorphic to a fiber sequence is a fiber sequence. Note
that the isomorphisms must take into account the action, as in Lemma 6.3.1.
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(c) For any X , the diagram ∗ −→ X
1
−→ X is a cofiber sequence (with the only

possible coaction). The diagram X
1
−→ X −→ ∗ is a fiber sequence (with the

only possible action).
(d) Every map is part of a cofiber and fiber sequence, as in Lemma 6.3.3.
(e) Cofiber sequences can be shifted to the right, and fiber sequences can be

shifted to the left, as in Proposition 6.3.4.
(f) Fill-in maps exist, as in Proposition 6.3.5.
(g) Verdier’s octahedral axiom and its dual both hold, as in Proposition 6.3.6.
(h) Cofiber and fiber sequences are compatible, as in Proposition 6.3.7.
(i) The smash product preserves cofiber sequences in each variable. The functor

Hom(−,−) preserves fiber sequences in the second variable and converts
cofiber sequences in the first variable into fiber sequences. The functor
Map(−,−) preserves fiber sequences in the second variable and converts
cofiber sequences in the first variable into fiber sequences. See Corollary 6.4.2
and Proposition 6.4.5 for exact statements.

Having defined a pre-triangulation, we also need to define a pre-triangulated
category.

Definition 6.5.2. A pre-triangulated category is a nontrivial closed HoSSet∗-
module S with all small coproducts and products, together with a pre-triangulation
on S.

We have seen in the last four sections that the homotopy category of a pointed
model category is a pre-triangulated category. Pre-triangulated categories are the
unstable analog of triangulated categories, studied by many people. See, for ex-
ample, [BBD82],[HPS97], and [Nee92]. We will discuss the relationship between
triangulated and pre-triangulated categories in the next chapter.

We point out however that pre-triangulated categories, while convenient for
our purposes, do not capture all the good properties of the homotopy category of a
pointed model category. For example, in the homotopy category of a pointed model
category, coproducts of cofiber sequences are again cofiber sequences, by Proposi-
tion 6.4.1. We have not been able to prove this in an arbitrary pre-triangulated
category. One could add this as an axiom, of course.

We now discuss a few properties of pre-triangulated categories. Note first of
all that the axioms for a pre-triangulated category are self-dual. That is, if S is
a pre-triangulated category, so is DS with the dual HoSSet∗ action. The cofiber
sequences in DS correspond to the fiber sequences in S, and similarly for fiber
sequences. This means that properties of cofiber sequences and properties of fiber
sequences are dual.

We will denote the morphisms in a pre-triangulated category by [X,Y ]. Given a

cofiber sequence X
f
−→ Y

g
−→ Z in a pre-triangulated category, the coaction induces

a map Z
∂
−→ ΣX as the composite Z −→ Z q ΣX

(0,1)
−−−→ ΣX . Note that ∂ preserves

the coaction. Dually, given a fiber sequence X
f
−→ Y

g
−→ Z, there is an induced map

∂ : ΩZ −→ X .

Proposition 6.5.3. Suppose S is a pre-triangulated category.
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(a) Suppose X
f
−→ Y

g
−→ Z is a cofiber sequence in S, and W is an object of S.

Then we have a long exact sequence of pointed sets

. . .
(Σ∂)∗

−−−→ [ΣZ,W ]
(Σg)∗

−−−→ [ΣY,W ]
(Σf)∗

−−−→ [ΣX,W ]

∂∗

−→ [Z,W ]
g∗

−→ [Y,W ]
f∗

−→ [X,W ]

This long exact sequence satisfies the following additional properties.
(i) We have g∗a = g∗b if and only if there is an x ∈ [ΣX,W ] such that

a� x = b under the action of the group [ΣX,W ] on [Z,W ].
(ii) Similarly, ∂∗c = ∂∗d if and only if there is a y ∈ [ΣY,W ] such that

c = d(Σf)∗y under the product in the group [ΣX,W ].
(b) Suppose we have a commutative diagram

X
f

−−−−→ Y
g

−−−−→ Z

a

y b

y c

y

X ′ f ′

−−−−→ Y ′ g′

−−−−→ Z ′

where the rows are cofiber sequences and where c is Σa-equivariant. Then if
a and b are isomorphisms, so is c.

Of course, there is a dual proposition for fiber sequences.

Proof. For part (a), note that we have a fiber sequence

Map(Z,W ) −→ Map(Y,W ) −→ Map(X,W )

in HoSSet∗. Also, we have πi Map(Z,W ) ∼= [ΣiZ,W ] by adjointness. It suffices
therefore to prove that we have a long exact sequence in homotopy given a fiber
sequence of pointed simplicial sets. Such a fiber sequence can be realized by a
fibration of fibrant objects p : E −→ B with fiber F . Applying the geometric re-
alization, we get a fibration |p| : |E| −→ |B| with fiber |F |, by Lemma 3.2.4 and
Corollary 3.6.2. This reduces us to studying the homotopy sequence of a fibration
of pointed topological spaces. Here Lemma 2.4.16 applies to give us the required
long exact sequence. One could also construct this long exact sequence by hand, of
course, as is done in [Qui67, Proposition I.3.4].

It remains to verify the improved exactness properties (i) and (ii) of part (a).
Translating the problem to Top∗ as above, we have a fibration p : E −→ B with
fiber i : F −→ E. Suppose we have u, v ∈ π0F such that i∗u = i∗v. We must show
there is an ω ∈ π1B such that u � ω = v. Of course, u and v just correspond to
(path components of) points of F . To say that i∗u = i∗v just means that there is a
path ω̃ from u to v in E. Then pω̃ is a loop in B, so represents an element ω ∈ π1B.
We compute u�ω by finding a lift of ω to E which starts at u. The path ω̃ is such
a lift, and so u� ω is the end of ω̃, namely v. The converse is straightforward.

Similarly, suppose c, d ∈ π1B satisfy ∂∗c = ∂∗d, so that 0 � c = 0 � d. Then
there are lifts ω and ϕ of (representatives of) c and d to paths in E beginning at the
basepoint, such that the endpoints of ω and ϕ lie in the same path component of F .
We can therefore choose a path between these endpoints lying in F . Putting these
paths together, we get a loop ρ in E whose projection down to B is homotopic to
d−1c. Thus c = d(Ωp)∗ρ, as required. The converse is straightforward.

Part (b) will follow from part (a) by a complicated version of the five-lemma.
To see this, suppose we have a commutative diagram as in part (b). Using the
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inverses of a and b and the existence of fill-in maps, we find that we can assume
a and b are the identity maps. Then, for any object W , we have a commutative
diagram

. . . −−−−→ [ΣX,W ]
∂∗

−−−−→ [Z,W ]
g∗

−−−−→ [Y,W ]
f∗

−−−−→ [X,W ]
∥∥∥ c∗

y
∥∥∥

∥∥∥

. . . −−−−→ [ΣX,W ]
∂∗

−−−−→ [Z,W ]
g∗

−−−−→ [Y,W ]
f∗

−−−−→ [X,W ]

and we must show that c∗ is an isomorphism. Note that, for x ∈ [Z,W ], we have
g∗c∗(x) = g∗(x). Thus, by the improved exactness of part (a), we have c∗x = xα
for some α ∈ [ΣX,W ]. Then c∗(xα−1) = (c∗x)α−1 = x, so c∗ is surjective. Now
suppose that c∗(x) = c∗(y). Then the same argument shows that y = xβ for some
β. Furthermore, we must have c∗(x)β = c∗(xβ) = c∗(x), so β is in the stabilizer
Stab(c∗(x)). It is clear that Stab(x) ⊆ Stab(c∗(x)) by the equivariance of c∗. We
claim that this is in fact an equality. Indeed, if h ∈ Stab(c∗(x)) = Stab(xα), then
αhα−1 is in Stab(x). Since Stab(x) ⊆ Stab(c∗(x)), this means that α and α−1 are
both in the normalizer of Stab(x). But conjugation by α−1 gives an isomorphism
from Stab(x) to Stab(c∗(x)). Thus Stab(c∗(x)) = Stab(x), and so y = xβ = x, as
required.

Having defined pre-triangulated categories, we now define the 2-category of
pre-triangulated categories.

Definition 6.5.4. Suppose S and T are pre-triangulated categories. An exact
adjunction from S to T is an adjunction of closed HoSSet∗-modules (F,U, ϕ,m)
where ϕ is the adjointness isomorphism and m is the natural isomorphism FX ∧
K −→ F (X ∧ K), such that F preserves cofiber sequences and U preserves fiber

sequences. That is, if X
f
−→ Y

g
−→ Z is a cofiber sequence in S, then FX

Ff
−−→

FY
Fg
−−→ FZ is a cofiber sequence in T, where the coaction is induced by the

coaction on Z and the isomorphism FΣX ∼= ΣFX induced by m. We say that F is
left exact. There is a similar statement for fiber sequences and U , and we say that
U is right exact.

We leave it to the reader to check that we get a 2-category of pre-triangulated
categories, exact adjunctions, and natural transformations of HoSSet∗-module
functors. Such natural transformations are automatically stable. in the sense that
they commute with the suspension (or smashing with any other pointed simplicial
set).

The reader who is familiar with triangulated categories may suspect that the
condition that U preserve fiber sequences should be redundant, as it is for triangu-
lated categories. However, we have been unable to prove that. We can show that,
if F is left exact with right adjoint U , and p : E −→ B is a map with fiber F , then
the fiber of Up is UF . This gives us two actions of UΩB on UF , and we do not
know how to see that they are the same.

The duality we have already discussed for pre-triangulated categories gives a
duality 2-functorD. We then have the following theorem, which sums up the results
of this chapter so far.
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Theorem 6.5.5. The homotopy pseudo-2-functor of Theorem 5.7.3 lifts to a
pseudo-2-functor from pointed model categories to pre-triangulated categories which
commutes with the duality 2-functor.

6.6. Pointed monoidal model categories

In this brief section, we define the notion of a closed monoidal pre-triangulated
category and show that the homotopy category of a pointed monoidal model cate-
gory is naturally one.

We begin with the definition of a closed monoidal pre-triangulated category.

Definition 6.6.1. Define a closed monoidal pre-triangulated category to be a
closed HoSSet∗-algebra S with all coproducts and products, together with a pre-
triangulation on the underlying closed HoSSet∗-module, such that the following
properties hold.

(a) The functor −∧− : S× S −→ S preserves cofiber sequences in each variable.
(b) The functors Hom`(−,−),Homr(−,−) : Sop × S −→ S preserve fiber se-

quences in the second variable and convert cofiber sequences in the first
variable into fiber sequences.

Of course, when we say that −∧− preserves cofiber sequences in each variable,
we mean that the coaction is also determined, as in Definition 6.5.4, and similarly for
the right adjoints. We have analogous definitions of a closed central monoidal pre-
triangulated category and a closed symmetric monoidal pre-triangulated category.
In the latter case, we require that the monoidal functor i : HoSSet∗ −→ S be
symmetric monoidal.

In a closed monoidal pre-triangulated category, we often write Sn for ΣnS =
i(Sn), where n ≥ 0. We then have the following lemma.

Lemma 6.6.2. Suppose S is a closed symmetric monoidal pre-triangulated cat-
egory. Then the following diagram commutes.

Sm ∧ Sn
µ

−−−−→ Sm+n

T

y (−1)mn

y

Sn ∧ Sm
µ

−−−−→ Sm+n

Here µ denotes the multiplicativity isomorphism of the monoidal functor i, T de-
notes the commutativity isomorphism of S, and −1 denotes the inverse of the iden-
tity with respect to the abelian group structure on Sm+n, unless m or n is 0, where
the question does not arise.

Proof. By using the various commutativity and associativity coherence dia-
grams, one can see that the lemma is automatic in case m or n is 0, and follows in
general from the case m = n = 1. It suffices to prove the analogous diagram for
m = n = 1 commutes in HoSSet∗, and hence it suffices to prove it in HoK∗, or in
HoTop∗. In this case, we think of S1×S1 as the usual quotient of a square where
the opposite sides are identified. The twist map is reflection about one of the diag-
onals. If we then identify all of the boundary of the square to get S2, we find that
the twist map is homotopic to the map that takes (x, y, z) to (x, y,−z). This map
is well-known to have degree −1. See [Mun84, Theorem 21.3], for example.
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We then have an obvious notion of a closed pre-triangulated module over a
closed monoidal pre-triangulated category as well. A pre-triangulated category
is the same thing as a closed pre-triangulated module over the closed symmetric
monoidal pre-triangulated category HoSSet∗.

We define a morphism of closed monoidal pre-triangulated categories to be
an adjunction of closed HoSSet∗-algebras which is an exact adjunction of the
underlying pre-triangulated categories. In this way we get a 2-category of closed
monoidal pre-triangulated categories, where the 2-morphisms are 2-morphisms of
the underlying HoSSet∗-algebra functors.

We then get the following theorems.

Theorem 6.6.3. The homotopy pseudo-2-functor lifts to a pseudo-2-functor
from pointed monoidal model categories to closed monoidal pre-triangulated cate-
gories.

Proof. Suppose C is a pointed monoidal model category. We have already
seen that Ho C is a closed HoSSet∗-algebra and a pre-triangulated category. It
thus suffices to show that −∧L − preserves cofiber sequences in each variable, and
similarly for the adjoints of − ∧L −. But this follows from Proposition 6.4.1, since
for any cofibrant A, A ∧ − and − ∧ A are left Quillen functors. We have already
seen that morphisms and 2-morphisms behave correctly.

The following theorem then follows from Theorem 5.7.6 and Corollary 5.7.8.

Theorem 6.6.4. The homotopy pseudo-2-functor lifts to a pseudo-2-functor
from pointed monoidal model categories satisfying Conjecture 5.7.5 to closed cen-
tral monoidal pre-triangulated categories, and to a pseudo-2-functor from pointed
symmetric monoidal model categories satisfying Conjecture 5.7.5 to closed symmet-
ric monoidal pre-triangulated categories.

Of course, the homotopy category of a symmetric monoidal model category is
naturally both a closed symmetric monoidal category and a closed monoidal pre-
triangulated category, even if Conjecture 5.7.5 does not hold. The point is that the
functor i : HoSSet∗ −→ Ho C may not be symmetric monoidal in this case.



CHAPTER 7

Stable model categories and triangulated

categories

We have just seen that the homotopy category of a pointed model category C

is naturally a pre-triangulated category. In this chapter, we examine what hap-
pens when the suspension functor is an equivalence on HoC. We refer to a pre-
triangulated category where the suspension functor is an equivalence as a triangu-
lated category, and we refer to a pointed model category whose homotopy category
is triangulated as a stable model category. Of course, there is already a well-known
definition of a triangulated category, and the definition we give does not coincide
with the classical definition. We justify this in Section 7.1 by showing that every
triangulated category is a classical triangulated category, and that we can recover
most of the structure of a triangulated category from a classical triangulated cate-
gory. Our position is that every classical triangulated category that arises in nature
is the homotopy category of a stable model category, so is triangulated in our sense.

For the rest of the chapter, we examine generators in the homotopy category
of a stable model category. These generators are very important in [HPS97], and
we try to uncover their precursors in the model category world. In Section 7.2, we
remind the reader of the definition of an algebraic stable homotopy category, the
only kind of stable homotopy category we treat in this book. This section provides
some of the motivation for the next two sections. In Section 7.3, we construct
weak generators in the homotopy category of a pointed cofibrantly generated model
category. In Section 7.4 we discuss finitely generated model categories and show
that, in this case, the weak generators of Section 7.3 are small in an appropriate
sense.

The material in this chapter is all new, so far as the author knows. We do
demand a little more of the reader than in previous chapters as well. In particular,
we use the theory of homotopy limits of diagrams of simplicial sets from [BK72].

7.1. Triangulated categories

In this section we define triangulated categories and study some of their proper-
ties. Triangulated categories were first introduced by Verdier in [Ver77], and have
been very useful since then. A good introduction to triangulated categories can
be found in [Mar83, Appendix 2]. The definition we give is new, and is stronger
than the usual one. Perhaps we should call our triangulated categories simplicially
triangulated, but we do not, since every triangulated category with the standard
definition that we know of is also a triangulated category with our stronger defini-
tion.

175



176 7. STABLE MODEL CATEGORIES AND TRIANGULATED CATEGORIES

Definition 7.1.1. A triangulated category is a pre-triangulated category in
which the suspension functor Σ is an equivalence of categories. A pointed model
category is stable if its homotopy category is triangulated.

We then have an obvious 2-category of triangulated categories, namely the full
sub-2-category of the 2-category of pre-triangulated categories whose objects consist
of triangulated categories. This full sub-2-category is closed under the duality 2-
functor, since Σ is an equivalence if and only if its adjoint Ω is an equivalence.

Similarly, we have a 2-category of stable model categories. If R is a ring, the
model category Ch(R) is stable , with any of the model structures in Section 2.3.
Similarly, if B is a commutative Hopf algebra over a field, then Ch(B) is a stable
model category. On the other hand K∗ and SSet∗ are definitely not stable model
categories. The model categories of [EKMM97] and [HSS98] are stable model cat-
egories whose homotopy categories are equivalent to the standard stable homotopy
category of spectra. In the model categories Ch(R) and Ch(B), the suspension
functor is already an equivalence before passing to the homotopy category. The
reader may think it preferable to require this of any stable model category. This is
not reasonable, however, because changing the functorial factorization changes the
definition of the suspension. The suspension may be an equivalence before passing
to the homotopy category with one functorial factorization and not with another.
Furthermore, the suspension is not an equivalence in the model category of sym-
metric spectra studied in [HSS98], though it is an equivalence in the homotopy
category.

We have analogous definitions of a closed monoidal triangulated category and
of a closed (pre-)triangulated module over a closed monoidal triangulated category.
Such a closed module is in fact automatically triangulated, as the reader can easily
check. The homotopy category of a stable monoidal model category is a closed
monoidal triangulated category, and will be a closed central monoidal triangulated
category if Conjecture 5.7.5 holds for the model category. Similarly, the homotopy
category of a stable symmetric monoidal model category is both a closed symmetric
monoidal category and a closed monoidal triangulated category, but we do not know
it is a closed symmetric monoidal triangulated category unless Conjecture 5.7.5
holds for the model category.

We must of course relate our definition of a triangulated category to the stan-
dard one. We begin this process with the following lemma.

Lemma 7.1.2. Triangulated categories are additive.

Proof. Suppose S is a triangulated category. Since Σ is an equivalence, so is
Σ2. Thus we have a natural isomorphism Σ2Ω2X −→ X . Since Σ2Z is an abelian
cogroup object for any Z, and Σ2f is an abelian cogroup map for any f , this proves
that every object of S is an abelian cogroup object and that every map is an abelian
cogroup map. To complete the proof that S is additive, we only have to show that
the canonical map X q Y −→ X × Y is an isomorphism. But since both coproducts
and products exist in S, this is purely formal, and we leave it to the reader.

Remark 7.1.3. Because of this lemma, a cofiber sequence X
f
−→ Y

g
−→ Z in a

triangulated category is completely determined by f , g, and the map Z
∂
−→ ΣX .

Indeed, the coaction of ΣX on Z is a map Z −→ ZqΣX ∼= Z×ΣX . The unit axiom
forces the first component of this coaction to be 1Z , and the second component is ∂.
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For this reason, in a triangulated category S, we will refer to a cofiber sequence, or

triangle, as a diagram X
f
−→ Y

g
−→ Z

h
−→ ΣX . Note that if we have a commutative

diagram

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ ΣX

a

y b

y Σa

y

X ′ f ′

−−−−→ Y ′ g′

−−−−→ Z ′ h′

−−−−→ ΣX ′

a fill-in map c : Z −→ Z ′ is Σa-equivariant if and only if Σa◦h = h′ ◦c, so our notion
of a map of cofiber sequence also translates correctly to the triangulated situation.
Dually, we will refer to a fiber sequence in a triangulated category as a diagram

ΩZ
f
−→ X

g
−→ Y

h
−→ Z.

We now show that a triangulated category in the sense of Definition 7.1.1 is
also a triangulated category in the classical sense. First we recall the triangulated
version of Verdier’s octahedral axiom.

Definition 7.1.4. Suppose S is an additive category equipped with an additive

endofunctor Σ: S −→ S and a collection of diagrams of the form X
f
−→ Y

g
−→ Z

h
−→

ΣX , called triangles. We abbreviate such a triangle by (X,Y, Z). We say that

Verdier’s octahedral axiom holds if, for every pair of maps X
v
−→ Y

u
−→ Z, and

triangles (X,Y, U), (X,Z, V ) and (Y, Z,W ) as shown in the diagram (where a
circled arrow U −→◦ X means a map U −→ ΣX), there are maps r and s as shown,
making (U, V,W ) into a triangle, such that the following commutativities hold:

au = rd es = (Σv)b sa = f br = c

�
�
� ���

�
�
� ���

�
�

�� �

�
�
� ���

�
�
� ���

�
�

�� �

��

�

��
�
�
�
�
�
�
�
� � � �

�
�
�
�
�
�
� �
�� �

	

	

	
U Y W

X Z

V

uv

uv

ab

c

d e

f

r s

This is the form of the octahedral axiom given in [HPS97], and is equivalent
to the original definition given by Verdier in the presence of the other axioms for a
classical triangulated category. The reader should compare this to Proposition 6.3.6.

We can now give the classical definition of a triangulated category.

Definition 7.1.5. Suppose S is an additive category. A classical triangulation
on S is an additive self-equivalence Σ: S −→ S together with a collection of dia-

grams of the form X
f
−→ Y

g
−→ Z

h
−→ ΣX , called triangles, satisfying the following

properties.



178 7. STABLE MODEL CATEGORIES AND TRIANGULATED CATEGORIES

(a) Triangles are replete. That is, any diagram isomorphic to a triangle is a
triangle.

(b) For any X , the diagram ∗ −→ X
1
−→ X −→ Σ∗ = ∗ is a triangle.

(c) Given any map f : X −→ Y , there is a triangle X
f
−→ Y

g
−→ Z

h
−→ ΣX .

(d) If X
f
−→ Y

g
−→ Z

h
−→ ΣX is a triangle, so is Y

g
−→ Z

h
−→ ΣX

−Σf
−−−→ ΣY .

(e) Given a diagram

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ ΣX

a

y b

y Σa

y

X ′ f ′

−−−−→ Y ′ g′

−−−−→ Z ′ h′

−−−−→ ΣX ′

whose rows are triangles and the left square is commutative, there is a map
c : Z −→ Z ′ making the entire diagram commute.

(f) Verdier’s octahedral axiom holds.

A classical triangulated category is an additive category together with a classical
triangulation on it.

We then have the following proposition, whose proof is just a matter of rewriting
the pre-triangulated axioms in the additive case.

Proposition 7.1.6. Suppose S is a triangulated category. Then the suspension
functor and cofiber sequences in S make S into a classical triangulated category.

The converse to Proposition 7.1.6 is extremely unlikely to be true, though we
do not know of a counterexample. A classical triangulated category is not a closed
HoSSet∗-module, and there doesn’t seem to be any reason it should be. It also
does not have fiber sequences, only cofiber sequences. However, that problem turns
out not be a problem at all. Indeed, we will show that, in a triangulated category,
the fiber sequences are completely determined by the cofiber sequences.

Before doing this, we show that, in a triangulated category, a cofiber sequence
can be shifted to the left as well as to the right. The following lemma is [Mar83,
Lemma A2.8].

Lemma 7.1.7. Suppose S is a triangulated category, and suppose

ΣX
Σf
−−→ ΣY

Σg
−−→ ΣZ

Σh
−−→ Σ2X

is a cofiber sequence. Then so is X
−f
−−→ Y

−g
−−→ Z

−h
−−→ ΣX.

Note that the converse to this lemma is immediate from the axioms.

Proof. There is some cofiber sequence X
−f
−−→ Y

−g′

−−→ Z ′ −h′

−−→ ΣX . We then
get a commutative diagram

ΣX
Σf
−−−−→ ΣY

Σg
−−−−→ ΣZ

Σh
−−−−→ Σ2X

∥∥∥
∥∥∥

∥∥∥

ΣX
Σf
−−−−→ ΣY

Σg′

−−−−→ ΣZ ′ Σh′

−−−−→ Σ2X

where the rows are cofiber sequences. There is then a fill-in map ΣZ −→ ΣZ ′,
which is an isomorphism by part (b) of Proposition 6.5.3. Since Σ is an equivalence
of categories, we can write this map as Σk for some map k : Z −→ Z ′. We then
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get an isomorphism of sequences from the desired sequence to the cofiber sequence

X
−f
−−→ Y

−g′

−−→ Z ′ −h′

−−→ ΣX .

This lemma allows us to shift cofiber sequences to the left, as we prove in the
following proposition. We need some notation to do so. Let εX : ΣΩX −→ X and
ηX : X −→ ΩΣX denote the counit and unit of the adjunction between Σ and Ω in
a closed HoSSet∗-module. Then we have (ΩεX) ◦ ηΩX = 1 and εΣX ◦ (ΣηX ) = 1.

Proposition 7.1.8. Suppose S is a triangulated category. Then X
f
−→ Y

g
−→

Z
h
−→ ΣX is a cofiber sequence if and only if ΩZ

−η−1
X

◦(Ωh)
−−−−−−−→ X

f
−→ Y

ε−1
Z

◦g
−−−−→ ΣΩZ

is a cofiber sequence.

Proof. Suppose first that (ΩZ,X, Y ) is a cofiber sequence. Then we find by
shifting to the right that the top row in the following diagram is a cofiber sequence.

X
f

−−−−→ Y
ε−1

Z
◦g

−−−−→ ΣΩZ
(ΣηX )−1◦(ΣΩh)
−−−−−−−−−−→ ΣX

∥∥∥
∥∥∥ εZ

y
∥∥∥

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ ΣX

The right-most square of this diagram commutes because (ΣηX )−1 = εΣX and
because ε is natural. Thus the bottom row must also be a cofiber sequence.

Conversely, suppose (X,Y, Z) is a cofiber sequence. The commutative diagram

ΣΩX
ΣΩf
−−−−→ ΣΩY

ΣΩg
−−−−→ ΣΩZ

(Σε−1
X )◦(ΣηX )−1◦(ΣΩh)

−−−−−−−−−−−−−−−→ Σ2ΩX

εX

y εY

y εZ

y ΣεX

y

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ ΣX

shows that the top row is also a cofiber sequence. Lemma 7.1.7 then shows that

the sequence ΩX
−Ωf
−−−→ ΩY

−Ωg
−−−→ ΩZ

−ε−1
X

◦η−1
X

◦Ωh
−−−−−−−−−→ ΣΩX is a cofiber sequence.

Shifting this cofiber sequence to the right two places, we find that the top row of
the following commutative diagram is a cofiber sequence.

ΩZ
−ε−1

X
◦η−1

X
◦Ωh

−−−−−−−−−→ ΣΩX
ΣΩf
−−−−→ ΣΩY

ΣΩg
−−−−→ ΣΩZ

∥∥∥ εX

y εY

y εZ

y

ΩZ
−η−1

X ◦Ωh
−−−−−−→ X

f
−−−−→ Y

g
−−−−→ Z

is a cofiber sequence. Hence the bottom row is as well, completing the proof.

Remark 7.1.9. The dual of Proposition 7.1.8 says that we can shift fiber se-

quences in a triangulated category to the right. That is, ΩZ
f
−→ X

g
−→ Y

h
−→ Z is a

fiber sequence if and only if ΩΣX
−g◦η−1

X−−−−−→ Y
h
−→ Z

Σf◦ε−1
Z−−−−−→ ΣX is a fiber sequence.

We also need to know that mapping into a cofiber sequence in a triangulated
category gives an exact sequence, just as mapping out of one does.
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Lemma 7.1.10. Suppose S is a classical triangulated category, and suppose X
f
−→

Y
g
−→ Z

h
−→ ΣX is a triangle in S. Then, for any W ∈ S, the sequence

[W,X ]
f∗
−→ [W,Y ]

g∗
−→ [W,Z]

h∗−→ [W,ΣX ]

is exact.

Of course, the dual statement also holds, and tells us that mapping out of a
fiber sequence in a triangulated category gives an exact sequence.

Proof. We first show that gf and hg are both 0. Indeed, consider the com-
mutative diagram

∗ −−−−→ Y
=

−−−−→ Y −−−−→ ∗

0

y
∥∥∥ 0

y

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ ΣX

where the rows are triangles (by axiom (b) of Definition 7.1.5). There is a fill-in
map c : Y −→ Z making the diagram commute. It follows that we must have c = g,
and therefore that hg = 0. Similarly, by applying axiom (d) to axiom (b), we get a
commutative diagram

X
=

−−−−→ X
0

−−−−→ ∗
0

−−−−→ ΣX
∥∥∥ f

y
∥∥∥

X
f

−−−−→ Y
g

−−−−→ Z
h

−−−−→ ΣX

Thus there is a fill-in map ∗ −→ Z making the diagram commutative. This fill-in
map must of course be the zero map, and so we have gf = 0.

Now suppose we have a map j : W −→ Y such that gj = 0. Then we get a
commutative diagram

W
0

−−−−→ ∗
0

−−−−→ ΣW
−Σ1
−−−−→ ΣW

j

y 0

y Σj

y

Y
g

−−−−→ Z
h

−−−−→ ΣX
−Σf
−−−−→ ΣY

Thus there is a fill-map ΣW −→ ΣX making the diagram commute. Since Σ is an
equivalence of categories, we can write this map as Σk for some map k : X −→ W .
Then Σ(f ◦ k) = Σj, so f ◦ k = j, as required.

Similarly, suppose we have a map j : W −→ Z such that hj = 0. Then the same
argument, shifted over to the right one spot, yields a map k such that j = gk.

We can now show that the fiber sequences in a triangulated category are com-
pletely determined by the cofiber sequences, as promised.

Theorem 7.1.11. Suppose S is a triangulated category. Then the sequence

ΩZ
f
−→ X

g
−→ Y

h
−→ Z is a fiber sequence if and only if the sequence ΩZ

f
−→ X

g
−→

Y
−ε−1

Z
◦h

−−−−−→ ΣΩZ is a cofiber sequence.
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Proof. Suppose ΩZ
f
−→ X

g
−→ Y

−ε−1
Z

◦h
−−−−−→ ΣΩZ is a cofiber sequence. There is

some fiber sequence ΩZ
f ′

−→ X ′ g′

−→ Y
h
−→ Z. Consider the commutative diagram

ΩZ
f

−−−−→ X
g

−−−−→ Y
−ε−1

Z
◦h

−−−−−→ ΣΩZ
∥∥∥

∥∥∥ −εZ

y

ΩZ
f ′

−−−−→ X ′ g′

−−−−→ Y
h

−−−−→ Z

Since the top row is a cofiber sequence and the bottom row is a fiber sequence, the
compatibility between cofiber and fiber sequences guarantees that there is a map
k : X −→ X ′ making the diagram commute. We claim that k is an isomorphism.
To see this, we use the five-lemma. Suppose W is an arbitrary object of S. Then
Proposition 7.1.8 and Lemma 7.1.10 imply that we have a commutative diagram
where the rows are exact sequences:

[W,ΩY ]
(Ωh)∗
−−−−→ [W,ΩZ]

f∗
−−−−→ [W,X ]

g∗
−−−−→ [W,Y ]

(−ε−1
Z

◦h)∗
−−−−−−−→ [W,ΣΩZ]

∥∥∥
∥∥∥ k∗

y
∥∥∥ −(εZ )∗

y

[W,ΩY ]
(Ωh)∗
−−−−→ [W,ΩZ]

f∗
−−−−→ [W,X ]

g∗
−−−−→ [W,Y ]

h∗−−−−→ [W,Z]

The five-lemma then implies that k∗ is an isomorphism, so, since W was arbitrary,
k is an isomorphism. We then have a commutative diagram

ΩZ
f

−−−−→ X
g

−−−−→ Y
h

−−−−→ Z
∥∥∥ k

y
∥∥∥

∥∥∥

ΩZ
f ′

−−−−→ X ′ g′

−−−−→ Y ′ h
−−−−→ Z

Since the bottom row is a fiber sequence, so is the top row. The proof of the
converse is dual.

Theorem 7.1.11 implies that a classical triangulated category is not so far away
from a triangulated category. Indeed, given a classical triangulated category, we can
recover the loop functor Ω up to natural isomorphism by taking the right (and also
left) adjoint of Σ. Such an adjoint always exists for any equivalence of categories.
We can then define fiber sequences as in Theorem 7.1.11. The interested reader
can check that these fiber sequences satisfy all the properties of fiber sequences
in a pre-triangulated category, except of course the compatibility with the (non-
existent) closed HoSSet∗-module structure. It is most instructive to check the
compatibility between the cofiber and fiber sequences.

Since the fiber sequences in a triangulated category are determined by the
cofiber sequences, we would expect morphisms of triangulated categories also to de-
pend only on the cofiber sequences. The following proposition is based on [Mar83,
Proposition A2.11].

Proposition 7.1.12. Suppose S and T are triangulated categories. Suppose
(F,U, ϕ) : S −→ T is an adjunction of closed HoSSet∗-modules. Then (F,U, ϕ) is
an exact adjunction if and only if F preserves cofiber sequences.

Proof. If (F,U, ϕ) is an exact adjunction, then by definition F preserves
cofiber sequences and U preserves fiber sequences. Conversely, suppose F pre-
serves cofiber sequences. We must show that U preserves fiber sequences. Suppose
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ΩZ
f
−→ X

g
−→ Y

h
−→ Z is a fiber sequence. We must show that the sequence

ΩUZ
Uf◦Dm
−−−−−→ UX

Ug
−−→ UY

Uh
−−→ UZ is a fiber sequence. Here m is the natural

isomorphism ΣFW −→ FΣW and Dm : ΩUZ −→ UΩZ is its dual, as in Section 1.4.
Note first that adjointness implies that mapping into this latter sequence produces

an exact sequence. There is some fiber sequence ΩUZ
f ′

−→ X ′ g′

−→ UY
Uh
−−→ UZ,

and mapping into it also produces an exact sequence. The five-lemma then implies
that it suffices to construct a map X ′ −→ UX making the diagram

ΩUZ
f ′

−−−−→ X ′ g′

−−−−→ UY
Uh
−−−−→ UZ

∥∥∥
y

∥∥∥
∥∥∥

ΩUZ
Uf◦Dm
−−−−−→ UX

Ug
−−−−→ UY

Uh
−−−−→ UZ

commute. We will construct this map by constructing its adjoint FX ′ −→ X . Let ε′

and η′ denote the counit and unit of the adjunction (F,U, ϕ). Let j : FΩUZ −→ ΩZ
denote the composite ε′ΩZ ◦ F (Dm). Consider the commutative diagram below:

FΩUZ
Ff ′

−−−−→ FX ′ Fg′

−−−−→ FUY
m◦(−Fε−1

UZ
)◦FUh

−−−−−−−−−−−−→ ΣFΩUZ

j

y ε′Y

y Σj

y

ΩZ
f

−−−−→ X
g

−−−−→ Y
−ε−1

Z ◦h
−−−−−→ ΣΩZ

Here the bottom row is a cofiber sequence by Theorem 7.1.11, and the top row is a
cofiber sequence by Theorem 7.1.11 and the fact that F preserves cofiber sequences.
It takes some work to verify that this diagram commutes, but it does. Since we can
shift cofiber sequences over to the left in a triangulated category, there is a fill-in
map FX ′ −→ X . Its adjoint is the desired map X ′ −→ UX .

Another useful fact about triangulated categories is the following.

Lemma 7.1.13. Suppose S is a closed symmetric monoidal triangulated cate-
gory. Let S−n = ΩnS for n > 0. The the following diagram is commutative for
arbitrary integers m and n.

Sm ∧ Sn
a

−−−−→ Sm+n

T

y (−1)mn

y

Sn ∧ Sm
a

−−−−→ Sm+n

Here a is the associativity isomorphism, combined if necessary with the unit and
counit of the adjoint equivalence (Σ,Ω, ϕ).

Proof. The proof of this lemma is a long diagram chase. We outline the
argument but leave the details to the reader. We know the lemma already for
nonnegative m and n, by Lemma 6.6.2. Suppose that one of m and n is negative.
Without loss of generality, let us suppose n is negative. Then, since T is a HoSSet∗-
module natural transformation, we have a commutative diagram

(Sm ∧ Sn) ∧ S−n m`

−−−−→ Sm ∧ (Sn ∧ S−n)

T∧1

y T

y

(Sn ∧ Sm) ∧ S−n mr

−−−−→ (Sn ∧ S−n) ∧ Sm
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Here we have used the same notation as in Theorem 5.6.5. It follows from the
coherence diagrams that mr is determined by m` and T , and we know how T
behaves on Sm∧S−n. Since we also know how T behaves on S0∧Sm, a long diagram
chase tells us that T must behave as claimed on Sm ∧ Sn. A similar argument
allows us to go from one negative integer to two negative integers, completing the
proof.

7.2. Stable homotopy categories

A stable homotopy category, as defined in [HPS97], is a certain kind of closed
symmetric monoidal triangulated category. The goal of the rest of this chapter
will be to determine what conditions we need to put on a model category so its
homotopy category is a stable homotopy category. We do not entirely succeed in
this goal, but we come reasonably close.

In this section, we will recall the definition of an algebraic stable homotopy
category and describe the theorems we will prove in the rest of this chapter.

We begin with some definitions.

Definition 7.2.1. Suppose S is a pre-triangulated category, and G is a set of
objects of S. We say that G is a set of weak generators for S if [ΣnG,X ] = 0 for
all G ∈ G and all n ≥ 0 implies that X ∼= ∗. If S is triangulated, we usually allow
ΣnG = Ω−nG for n < 0 as well, without changing notation.

So, for example, S0 is a weak generator of HoSSet∗, and R is a weak generator
of the triangulated category HoCh(R), though we would have to include Σ−nR for
all n ≥ 0 if we were thinking of Ho Ch(R) as only a pre-triangulated category.

The goal of the next section is to construct a set of weak generators for any
pointed cofibrantly generated model category. The weak generators are simply the
cofibers of the generating cofibrations.

However, a set of weak generators by itself is not tremendously useful. Just
as in the definition of a cofibrantly generated model category, one also needs an
appropriate definition of smallness. The one we adopt is the following.

Definition 7.2.2. Suppose S is a pre-triangulated category. An object X ∈ S

is called small if, for every set Yα, α ∈ K of objects of S, the induced map

colimS⊆K,S finite[X,
∐

α∈S

Yα] −→ [X,
∐

α∈K

Yα]

is an isomorphism.

Note that X is small if every map into a coproduct factors through a finite
subcoproduct. If S is triangulated, then X ∈ S is small if and only if for every set
Yα, α ∈ K of objects of S, the induced map

⊕

α∈K

[X,Yα] −→ [X,
∐

α∈K

Yα]

is an isomorphism. This is the definition of smallness given in [HPS97]. Note
also that Definition 7.2.2 is the logical definition of finiteness in any category where
coproducts are the only colimits one can expect to have, such as the homotopy
category of a (not necessarily pointed) model category. By analogy with the defi-
nitions of small and finite given in Section 2.1, it would be more natural to use the
word “finite” for these objects, and have a more general notion of smallness. At
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present, this does not appear to be useful, however, so there is no reason to change
the standard nomenclature.

We will give sufficient conditions for an object in a pointed model category to
be small in the homotopy category in Section 7.4.

Another useful property of an object in any closed symmetric monoidal category
is the following.

Definition 7.2.3. Suppose S is a closed symmetric monoidal category, and
X ∈ S. We say that X is strongly dualizable if the natural map Hom(X,S)⊗ Y −→
Hom(X,Y ) is an isomorphism for all Y .

We can now define an algebraic stable homotopy category.

Definition 7.2.4. An algebraic stable homotopy category is a closed symmetric
monoidal triangulated category S together with a set G of small strongly dualizable
weak generators of S.

These algebraic stable homotopy categories are the principal object of study
in [HPS97]. The definition given in [HPS97, Definition 1.1.4] is not the same as
the one given above, as it involves localizing subcategories and representability of
cohomology functors, but it is proven in [HPS97, Theorem 2.3.2] that the definition
above is equivalent to that one. Perhaps one should say almost equivalent, since
we are certainly using a stronger definition of triangulated category than was used
in [HPS97]. Also, we assumed in [HPS97] that the commutativity isomorphism
behaved correctly on spheres, as in Lemma 7.1.13, and now we are assuming it also
behaves correctly on S ∧K for any simplicial set K.

Another point is that, if the author were writing [HPS97] today, he would
not insist that the generators be strongly dualizable. Peter May suggested this
at the time, but the authors of [HPS97] were convinced by the importance of
strong dualizability in the examples. However, there are too many examples, such
as the G-equivariant stable homotopy category based on the trivial G-universe
of [EKMM97], and the homotopy category of sheaves of spectra of [BL96], where
the generators are not strongly dualizable. Furthermore, this condition is not
amenable to understanding from the model category point of view, as far as the
author can tell. We will therefore define an algebraic stable homotopy category
without duality to be an closed symmetric monoidal triangulated category together
with a set of small weak generators.

We then get a 2-category of algebraic stable homotopy categories as the evi-
dent full sub-2-category of closed symmetric monoidal triangulated categories. One
could also make a requirement that the morphisms preserve the generators in an
appropriate sense: see [HPS97, Section 3.4]. We do not do this, though.

Combining the results of the next two sections with the results already proven
in this book, we get the following theorem. This theorem is close to the author’s
original goal when he began thinking about the material in this book.

Theorem 7.2.5. The homotopy pseudo-2-functor lifts to a pseudo-2-functor
from finitely generated stable symmetric monoidal model categories satisfying Con-
jecture 5.7.5 to algebraic stable homotopy categories without duality.

Recall that, if C is either a monoidal SSet-model category or a monoidal Ch(Z)-
model category, then Conjecture 5.7.5 does hold for C.
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7.3. Weak generators

The goal of this section is to construct weak generators in the homotopy cate-
gory of a cofibrantly generated pointed model category. We will prove the following
theorem.

Theorem 7.3.1. Suppose C is a cofibrantly generated pointed model category,
with generating cofibrations I. Let G be the set of cofibers of maps of I. Then G is
a set of weak generators for Ho C.

The proof of Theorem 7.3.1 requires the notion of homotopy limits of diagrams
of simplicial sets, for which we rely on [BK72]. The definitive treatment of homo-
topy colimits and homotopy limits for any model category will be in [DHK]; see
also [Hir97].

We begin by studying homotopy classes of maps out of a colimit.

Proposition 7.3.2. Suppose we have a sequence of cofibrations

∗ −→ X0
f0
−→ X1 −→ . . .

fn−1
−−−→ Xn

fn
−→ . . .

in a pointed model category C, with colimit X. Suppose also that Y is fibrant. Then
we have an exact sequence of pointed sets

∗ −→ lim1[ΣXn, Y ] −→ [X,Y ] −→ lim[Xn, Y ] −→ ∗

When C is the category of pointed simplicial sets, this is proved in [BK72,
Corollary IX.3.3].

Proof. Recall that the functor Mapr∗(−, Y ) of Section 5.2 preserves limits,
as a functor from Cop to SSet∗. Thus Mapr∗(X,Y ) ∼= lim Mapr∗(Xn, Y ). Further-
more, since each map Xn −→ Xn+1 is a cofibration of cofibrant objects, each map
Mapr∗(Xn+1, Y ) −→ Mapr∗(Xn, Y ) is a fibration of fibrant pointed simplicial sets,
by Corollary 5.4.4. By [BK72, Theorem IX.3.1] we have a short exact sequence

∗ −→ lim1 π1 Mapr∗(Xn, Y ) −→ π0 Mapr∗(X,Y ) −→ lim Mapr∗(Xn, Y ) −→ ∗

But from Lemma 6.1.2, we have π0 Mapr∗(X,Y ) ∼= [X,Y ], π0 Mapr∗(Xn, Y ) ∼=
[Xn, Y ], and π1 Mapr∗(Xn, Y ) ∼= [ΣXn, Y ], so we get the required short exact
sequence.

Note that the colimit X in the sequence above is the coequalizer of the identity
map of

∐
Xn and the map g =

∐
fn. In general, there is no way to take this

coequalizer in Ho C instead of in C. However, if C is stable, we can find a cofiber
sequence

∐
Xn

1−g
−−→

∐
Xn −→ X ′ −→ Σ

∐
Xn

in Ho C. Then X ′ is called the sequential colimit, as in [HPS97, Section 2.2]. We
can actually form X ′ in the homotopy category of any pointed model category, as
long as each Xn is a suspension. Then we have an exact sequence of pointed sets

∗ −→ lim1[ΣXn, Y ] −→ [X ′, Y ] −→ lim[Xn, Y ] −→ ∗

just as we do for X . This gives us maps X ′ −→ X and X −→ X ′ in HoC, but we are
not able to prove that these maps are isomorphisms in general.
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Corollary 7.3.3. Suppose C is a pointed model category,

0 −→ X0
f0
−→ X1

f1
−→ . . .

fn−1
−−−→ Xn

fn
−→ . . .

is a sequence of cofibrations with colimit X, and Y is a fibrant object. If [Xn, Y ]∗ =
0 for all n, then [X,Y ]∗ = 0.

Proof. Apply Proposition 7.3.2 to ΩkY = Hom∗(S
k, Y ) for all k.

We also need a transfinite version of Corollary 7.3.3.

Proposition 7.3.4. Suppose C is a pointed model category, λ is an ordinal,
X : λ −→ C is a λ-sequence of cofibrations of cofibrant objects with colimit also
denoted by X, and Y is a fibrant object. If [Xβ , Y ]∗ = 0 for all β < λ, then
[X,Y ]∗ = 0.

Proof. If we apply the functor Mapr∗(−, Y ) to our λ-sequence, we get what
might be called an inverse λ-sequence of fibrations of pointed fibrant simplicial sets
Zβ = Mapr∗(Xβ , Y ). That is, the map Zβ −→ limγ<β Zγ is an isomorphism for all
limit ordinals β. Furthermore, Mapr∗(X,Y ) is the inverse limit of this sequence.

The diagram Zβ defines a functor Z from the inverse category λop to pointed
simplicial sets SSet∗. Recall from Corollary 5.1.5 that the inverse limit functor
on an inverse category is a right Quillen functor, right adjoint to the diagonal
functor. Furthermore, we claim that an inverse λ-sequence W of fibrations, such
as Z, is fibrant in the model structure given by Theorem 5.1.3. Indeed, given a
successor ordinal β, the map Wβ −→MβW is simply the map Wβ −→ Wβ−1, which
is a fibration by hypothesis. Given a limit ordinal β, the map Wβ −→ MβW is
the map Wβ −→ limγ<βWγ , which is an isomorphism, and hence a fibration, for
an inverse λ-sequence. Hence we have an isomorphism Mapr∗(X,Y ) ∼= (R lim)Z

in the homotopy category HoSSetλ
op

, where R lim denotes the total right derived
functor of the inverse limit.

However, there is another approach to this right derived functor, called the
homotopy limit. Homotopy limits are developed for diagrams of simplicial sets
such as Z in [BK72, Chapter XI]. The homotopy limit holim: SSetλ

op

−→ SSet

is also a right Quillen functor, but with respect to a different model structure on
diagrams. The weak equivalences are still defined objectwise, but now the fibrations
are also defined objectwise. Since the weak equivalences are the same in the two
model structures, they have the same homotopy categories. Furthermore, it is
shown in [BK72, Section XI.8] that the total right derived functor R holim is right
adjoint to the diagonal functor. Since R lim is also right adjoint to the diagonal
functor, we have an isomorphism

Mapr∗(X,Y ) ∼= (R lim)Z ∼= (R holim)Z ∼= holimZ

in the homotopy category of pointed simplicial sets. The last isomorphism comes
from the fact that Z is obviously fibrant in the model structure on which holim is
a right Quillen functor.

The advantage of this is that we can calculate holimZ. Indeed, it is proved
in [BK72, Section XI.7] that there is a spectral sequence associated to the ho-
motopy inverse limit of any diagram W of fibrant simplicial sets. The E2 term is
Es,t2 = lims πtW , where lims indicates the sth derived functor of the inverse limit.
In our case, πtZβ = [ΣtXβ, Y ] = 0, using Lemma 6.1.2. Hence the E2 term is
identically 0. As pointed out in [BK72], the only obstructions to the convergence
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of this spectral sequence arise from terms of the form lim1
r E

s,t
r , which are certainly

all 0 in our case. We conclude that holimZ has no homotopy, and hence that
Mapr∗(X,Y ) has no homotopy. Another application of Lemma 6.1.2 then shows
that [ΣtX,Y ] = 0 for all t, as required.

We can now prove Theorem 7.3.1.

Proof of Theorem 7.3.1. We must show that if [G, Y ]∗ = 0 for all G ∈ G,
then Y ∼= ∗ in HoC. We can use the small object argument to factor ∗ −→ Y into
a cofibration ∗ −→ Q′Y followed by a fibration Q′Y −→ Y . We use Q′ instead of
Q since this may be a different factorization from the one canonically associated
to C. It suffices to show that Q′Y ∼= ∗ in HoC. To do so, we show that the weak
equivalence Q′Y −→ RQ′Y is trivial, where R is the fibrant replacement functor
canonically associated to C. Note that [G,RQ′Y ]∗ ∼= [G, Y ]∗ = 0 for all G ∈ G.

By construction, Q′Y is the colimit of a λ-sequence X : λ −→ C, where each
map Xβ −→ Xβ+1 fits into a pushout square of the form

A −−−−→ Xβ

f

y
y

B −−−−→ Xβ+1

where f is a map in I with cofiber C. Furthermore, X0 = 0. Thus each Xβ is
cofibrant and each map Xβ −→ Xβ+1 is a cofibration.

We show by transfinite induction that [Xβ , RQ
′Y ]∗ = 0 for all β ≤ λ, where

Xλ = Q′Y . Since X0 = 0, we can certainly get started. We have a cofiber sequence
Xβ −→ Xβ+1 −→ C, and so also a cofiber sequence ΣnXβ −→ ΣnXβ+1 −→ ΣnC.
Thus, since C ∈ G, if [Xβ , RQ

′Y ]∗ = 0, then [Xβ+1, RQ
′Y ]∗ = 0. Now suppose β is

a limit ordinal, and [Xα, RQ
′Y ]∗ = 0 for all α < β. Then Proposition 7.3.4 shows

that [Xβ , RQ
′Y ]∗ = 0, as required.

7.4. Finitely generated model categories

The main objective of this seciton is to show that the weak generators con-
structed in the previous section are in fact small if the model category in question
is finitely generated. Along the way, we prove some useful properties of finitely
generated model categories.

The reader should recall that an object A of a category C is called finite relative
to a subcategory D if, for all limit ordinals λ and λ-sequences X : λ −→ C such that
each map Xα −→ Xα+1 is in D, the natural map

colim C(A,Xα) −→ C(A, colimXα)

is an isomorphism. A cofibrantly generated model category is finitely generated if
the generating cofibrations I and the generating cofibrations J can be chosen so
that their domains and codomains are finite relative to the cofibrations.

Lemma 7.4.1. Suppose C is a finitely generated model category, λ is an ordi-
nal, X,Y : λ −→ C are λ-sequences of cofibrations, and p : X −→ Y is a natural
transformation such that pα : Xα −→ Yα is a (trivial) fibration for all α < λ. Then
colim pα : colimXα −→ colimYα is a (trivial) fibration.
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Proof. We prove the fibration case; the trivial fibration case is analogous. If
λ is a successor ordinal or 0 there is nothing to prove, so we assume λ is a limit
ordinal. It suffices to show that colim pα has the right lifting property with respect
to J . So suppose we have a commutative square

A
f

−−−−→ colimXα

i

y
ycolimpα

B −−−−→
g

colimYα

where i is a map of J . The map f factors through a map f ′ : A −→ Xα for some α.
The map g factors analogously through a map g′ : B −→ Yα. We can assume the
index α is the same in both cases by simply taking the larger of the two. Now pαf

′

may not be equal to g′i, but they become equal in the colimit. They must therefore
be equal at some stage β. We can lift at the β stage, since pβ is a fibration, and
this lift gives a lift in the original diagram.

In practice, the domains and codomains of I and J tend to be finite relative
to a larger class of maps than the cofibrations. For example, in simplicial sets and
chain complexes, they are finite relative to the whole category. Even in topological
spaces, they are finite relative to closed T1 inclusions. In this case, Lemma 7.4.1
will work, with the same proof, for λ-sequences X and Y in the larger subcategory.
In this situation, the following corollary is useful.

Corollary 7.4.2. Suppose C is a finitely generated model category, and sup-
pose in addition that the domains and codomains of the generating cofibrations I
are finite relative to a subcategory D. Then, if λ is an ordinal and X : λ −→ C is
a λ-sequence of weak equivalences in D, the map X0 −→ colimXα is a weak equiv-
alence. In particular, if the domains and codomains of I are finite relative to the
whole category, transfinite compositions of weak equivalences are weak equivalences.

Proof. Define a new λ-sequence Y and a natural trivial fibration p : Y −→ X
by transfinite induction. Let Y0 = X0 and p0 be the identity. Having defined Yα

and pα, define Yα
iα−→ Yα+1

pα+1
−−−→ Xα+1 to be the functorial factorization of the

composite Yα
pα
−→ Xα

jα
−→ Xα+1 into a cofibration followed by a trivial fibration.

Since jα is a weak equivalence, so is iα. Having defined Yα and pα for all α less
than a limit ordinal β, define Yβ = colimYα and pβ = colim pα. Then pβ is a trivial
fibration, by the slight generalization of Lemma 7.4.1 referred to above.

Since each map Yα −→ Yα+1 is a trivial cofibration, the map X0 −→ colimYα is a
trivial cofibration. The map colim pα : colimYα −→ colimXα is a trivial fibration by
the argument of Lemma 7.4.1. Thus the map X0 −→ colimXα is a weak equivalence,
as required.

In all the examples we hve discussed except topological spaces, the domains and
codomains of the generating cofibrations and trivial cofibrations are finite relative
to the whole category. In this situation, not only are weak equivalences closed
under transfinite compositions, but so are fibrations and trivial fibrations, by a
straightforward argument we leave to the reader.

Theorem 7.4.3. Suppose C is a pointed finitely generated model category. Sup-
pose A is cofibrant and finite relative to the cofibrations. Then A is small in Ho C.
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We point out that the pointed hypothesis is probably not necessary. Certainly
our proof below will work for unpointed simplicial sets and topological spaces, for
example.

Proof. Let λ be an ordinal, and let Sλ be the set of all finite subsets of λ.
We will show by transfinite induction on λ that the canonical map

colimT∈Sλ
[A,

∐

α∈T

Xα] −→ [A,
∐

α<λ

Xα]

is an isomorphism for all sets {Xα |α < λ} of objects of HoC. Since we are assuming
that C is pointed, the inclusion of each finite subcoproduct into

∐
Xα is a split

monomorphism. It follows easily that the canonical map above is always injective,
so we only have to show, by transfinite induction, that it is surjective.

This is certainly true for finite ordinals λ, so there is no difficulty getting
started. Suppose it is true for an ordinal λ, and {Xα |α ≤ λ} is a set of objects of
HoC. Define Y0 = X0 qXλ, and for 0 < α < λ, let Yα = Xα. Then the induction
hypothesis implies that the canonical map

colimT∈Sλ
[A,

∐

α∈T

Yα] −→ [A,
∐

α<λ

Yα] = [A,
∐

α≤λ

Xα]

is an isomorphism. Since the set of finite subsets of λ+ 1 containing λ is cofinal in
the set of all finite subsets of λ+ 1, it follows that the canonical map

colimT∈Sλ+1
[A,

∐

α∈T

Xα] −→ [A,
∐

α≤λ

Xα]

is an isomorphism, as required.
We are left with the limit ordinal case of the induction. So suppose λ is a

limit ordinal, the induction hypothesis holds for all β < λ, and we have a set
{Xα |α < λ} in Ho C. There is no loss of generality in supposing that the Xα are
cofibrant. For β < λ, let Yβ =

∐
α<βXα. Then we have a λ-sequence of cofibrations

Y : λ −→ C. of cofibrant objects, whose colimit is
∐
Xα. The λ-sequence Y is

cofibrant in the model structure on Cλ of Theorem 5.1.3. In this model structure,
let Z ′ = RY , so that we have a trivial cofibration Y −→ Z ′ and a fibration Z ′ −→ ∗.
The functor Z ′ : λ −→ C may not be a λ-sequence, so let Z be the associated λ-
sequence, where Zα = Z ′

α for successor ordinals α and also 0, and Zβ = colimα<β Z
′
α

for limit ordinals β. The map Zβ −→ Zβ+1 for limit ordinals β is the composite
colimα<β Z

′
α −→ Z ′

β −→ Z ′
β+1, which is a cofibration, since Z ′ is cofibrant. Hence

Z is a λ-sequence of cofibrations. Furthermore, since each Z ′
α is fibrant, so is each

Zα, using Lemma 7.4.1. Since the map Y −→ Z is a trivial cofibration, and the
colimit is a left Quillen functor, each map Yα −→ Zα is a trivial cofibration. (This
is obvious for successor ordinals, of course). Again using the fact that the colimit
is a Quillen functor, e see that the map

∐
Xα = colimYα −→ colimZα is a weak

equivalence. Lemma 7.4.1 implies that colimZα is fibrant.

Now, suppose we have a map A
f
−→

∐
Xα in HoC. Then, since A is cofibrant

and colimZα is fibrant, f must be represented by some map g : A −→ colimZα in
C. Since A is finite relative to the cofibrations, this map must factor through some
Zβ. Hence, Ho C, f factors through

∐
α<β Xα. By the induction hypothesis, this

means that f factors through a finite subcoproduct of
∐
Xα, as required.
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Corollary 7.4.4. Suppose C is a pointed finitely generated model category.
Let G be the set of cofibers of the generating cofibrations I. Then G is a set of small
weak generators for the pre-triangulated category HoC.

Proof. We have already seen in Theorem 7.3.1 that G is a set of weak genera-
tors for HoC. Using Theorem 7.4.3, we need to check that the cofibers of the maps
of I , which are obviously cofibrant, are also finite relative to the cofibrations. This
follows by commuting colimits, using the fact that the domains and codomains of
the maps of I are finite relative to the cofibrations.

We point out that the definition of a finitely generated model category involves
the trivial cofibrations as well as the cofibrations. This is why smallness is lost under
the Bousfield localization of [Hir97] or [Bou79]. Indeed, the Bousfield localization
of a model category C is a different model structure on the same underlying category,
and the cofibrations are the same. Therefore if A was cofibrant and finite relative
to the cofibrations before localization, it still is after localization. However, the
trivial cofibrations change dramatically after localizing, so it is often the case that
the localized model category is no longer finitely generated, and that A is no longer
small in HoC.

Also, if A is small relative to the cofibrations but not cofibrant, in a finitely
generated model category, then A need not be small in Ho C. Indeed, consider the
trivial module k in the derived category of E(x), the exterior algebra on x over
a field k. Then k is certainly finite relative to all of Ch(E(x)). But Tor(k, k) is
infinite, and one can easily check, using the methods of axiomatic stable homotopy
theory [HPS97], that this is impossible for a small object in the derived category
of a ring.



CHAPTER 8

Vistas

In this brief final chapter, we discuss some questions we have left unresolved
in this book. This chapter has a less formal tone than the others, and concerns
material the author does not know all that much about. I apologize in advance for
incorrect claims or references, and for references that should be here and are not.

Consider first the 2-category of model categories. We have seen in Section 1.3
that Quillen equivalences behave like weak equivalences in this 2-category, as do
natural weak equivalences between Quillen functors. As mentioned in Section 1.3,
this suggests the following problem.

Problem 8.1. Define a model 2-category and show that the 2-category of
model categories is one. A Quillen adjunction should be a weak equivalence if
and only if it is a Quillen equivalence, and a natural transformation should be a
weak equivalence if and only if it is a natural weak equivalence when restricted to
cofibrant objects.

The author does not really expect this problem to be solved, as he can see no
reasonable definition of a fibration or cofibration. This problem is trying to get
at the “homotopy theory of homotopy theories”, which has also been studied by
Charles Rezk. Rezk’s work is unpublished, but the basic idea is to widen one’s
notion of a category. Instead of demanding that composition be associative, one
should only demand that it be associative up to infinite higher homotopy. Any
model category yields an object in Rezk’s category, but the author is not certain of
the situation with Quillen adjunctions and natural transformations.

Problem 8.2. Understand the relationship between the 2-category of model
categories and Rezk’s homotopy theory of homotopy theories.

The author expects this problem to be straightforward; he just doesn’t know
enough about Rezk’s work to solve it.

Moving on to examples, the author’s experience with model categories has led
him to believe that it is very helpful, in general, to have more than one model
structure on the same category, with the same weak equivalences. We have seen
one example of this with the two different model structure on Ch(R) discussed in
Section 2.3, where in one model structure every object is fibrant, and in the other
every object is cofibrant.

Problem 8.3. Find a model structure on topological spaces, with the same
weak equivalences as usual, in which every object is cofibrant, or else prove that
this is impossible.

The reader’s first reaction to this is probably that it must be impossible, or
someone would already have done it. However, there is an obvious candidate for
the cofibrations; the Hurewicz cofibrations, defined to be the maps with the left
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lifting property with respect to Y I −→ Y for all spaces Y . These are the cofibrations
in the model category considered by Strom [Str72], where the weak equivalences
are the homotopy equivalences. The fibrations in the Strom model structure are
the Hurewicz fibrations, which are maps with the right lifting property with re-
spect to X −→ X × I for all spaces X . If the Hurewicz cofibrations and the weak
equivalences defined a model structure on Top, the fibrations would have to be
Hurewicz fibrations with extra structure. The author can prove that any fibrant
object in this model structure would have to be connected, so in particular S0 is
not fibrant. This may seem like a contradiction, since after all every object must
be weakly equivalent to a fibrant object. But a connected space can have many
path components, so it is not a contradiction.

Such a model structure on Top would perhaps be interesting only for its surprise
value; however, it would make the study of topological symmetric spectra [HSS98]
much simpler.

One could also ask whether there is a model structure on simplicial sets where
every object is fibrant. Since simplicial sets are easy to work with anyway, this
would be of less importance.

Of course, there are many examples and possible examples of model categories
that we have not discussed. The general theory is that anytime there is a cohomol-
ogy theory, there ought to be a model category. So, for example, in the theory of
C∗-algebras there is K-theory.

Problem 8.4. Define a useful model structure on a suitable category of C∗-
algebras.

Since the author knows nothing about C∗-algebras, he has no idea of such a
thing is feasible. However, if it could be done, then presumably also a suitable
stable model category of C∗-algebras could be defined, and K-theory would cor-
respond to an object in this stable model category. But there would be other
objects too, corresponding to other cohomology theories currently unknown. The
author first discussed this idea with Jim McClure, who has done some work on the
subject [DM97] that might be a good place to start.

In the same way, the work of Voevodsky [Voe97] on the cohomology of schemes
seems certain to involve constructing a model category of suitable sheaves. It would
be extremely useful to understand Voevodsky’s work from the point of view of this
book, assuming that Voevodsky has in fact not already done so.

Recall in Chapter 4 we discussed the theory of monoidal model categories. We
did not discuss when one gets model categories of monoids and of modules over a
monoid in a monoidal model category. This issue has been dealt with in [SS97]
and [Hov98a]. However, neither of these sources addresses the following problem.

Problem 8.5. Find conditions on a symmetric monoidal model category C

under which the category of commutative monoids in C and homomorphisms is
again a model category, where the weak equivalences are the underlying ones.

This problem is subtle, as the following example will show. One would expect
the free commutative monoid functor to be part of a Quillen adjunction from a
symmetric monoidal model category C to the category of commutative monoids
in C. But in Ch(Z), for example, the free commutative monoid functor does not
preserve (underlying) weak equivalences between cofibrant objects. Up until very
recently, the author knew of no good model structure on commutative differential
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graded algebras over Z. However, Stanley [Sta98] has recently constructed such a
model structure.

On the other hand, there is a general theory that may imply that commutative
monoids are not the right thing to consider, as readers of [KM96] will be familiar
with. One considers the free commutative algebra triple and replaces it by a weakly
equivalent triple which comes from an operad and is cofibrant in some model cat-
egory structure on operads. Here we are getting into waters currently too deep
for the author to stand in, but the situation as I understand it is the following. If
(F,G, ϕ) is an adjunction from C to D, then GF is a triple (or monad) on C and
GF is a cotriple (or comonad) on D. That is, GF is a monoid in the monoidal cat-
egory of endofunctors of C, and GF is a comonoid in the category of endofunctors
of D. See [ML71] for some information about triples. One can then consider the
category of algebras over a triple. For example, given a ring R, an algebra over the
(left) free R-module triple on abelian groups is a (left) R-module. We then have
the following generalization of Problem 8.5.

Problem 8.6. Suppose T is a triple on a model category C. Find conditions
on C and T under which the category of T -algebras becomes a model category with
the underlying weak equivalences.

The only result I know in this direction is an unpublished theorem of Hop-
kins [Hop], which requires that every object of C be fibrant. I believe this theorem
will be published in joint work of Goerss and Hopkins.

Now, there will be times when there is no good model structure on the category
of T -algebras. In this case, rather than giving up, one tries to replace T by a
weakly equivalent triple T ′ for which there is a model structure on T ′-algebras.
This presumes one has a good notion of weak equivalence of triples, of course.

Problem 8.7. Given a model category C, find a model structure on the cate-
gory of triples on C.

Triples may be too general for such a model structure to exist. However, one
can consider operads instead. Operads were introduced by Peter May in [May72].
See [KM96] for a good discussion of operads. Every operad gives rise to a triple,
but the converse is false.

Problem 8.8. Suppose C is a model category. Find a model structure on oper-
ads over C. Find conditions on an operad T and C so that there is a model structure
on T -algebras. Show that weakly equivalent operads give rise to Quillen equiva-
lent categories of T -algebras. Develop spectral sequences for calculating homotopy
classes of maps of T -algebras.

I think this problem has a much better chance of being solved than the pre-
vious ones, though my opinion may not be worth much! So far as I know, the
closest approach to this problem is in [KM96], which does not ever mention model
categories but nonetheless is about them, and the thesis of Charles Rezk [Rez96] .

Then, if one wants to consider commutative monoids in a symmetric monoidal
model category, one would first try to construct a model structure on them. If that
failed, as it will sometimes, one would replace the free commutative algebra triple by
a weakly equivalent cofibrant operad, which is usually called an E∞-operad. Then
there should be a model structure on algebras over this operad. Such algebras
would then be called E∞-rings. This is the approach carried out in [KM96] for
Ch(Z).
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We now leave the abstruse world of operads and enter a slightly lower orbit.
One of the main themes of this book is that one cannot tell whether a model
category is simplicial by examining its homotopy category.

Problem 8.9. Show that every model category is Quillen equivalent to a sim-
plicial model category, or at least that there is a chain of Quillen equivalences from
any model category to a simplicial model category. Similarly, show that every Quil-
len adjunction is Quillen equivalent, in an appropriate sense, to a simplicial Quillen
adjunction, and that every natural transformation of Quillen adjunctions is Quil-
len equivalent to a simplicial natural transformation. That is, in the conjectural
language of Problem 8.1, show that the model 2-category of model categories is
Quillen 2-equivalent to the model 2-category of simplicial model categories.

The full statement of this problem is probably out of reach. But there may be
some construction one can make that will embed a model category into a simplicial
model category that might allow one to get started on this problem.

One can also consider specific examples. It has been proven by Schwede (per-
sonal communication) that the model category Ch(R) is Quillen equivalent to the
category of HR-modules, where HR is an Eilenberg-MacLane spectrum in the cat-
egory of symmetric spectra [HSS98]. This is a simplicial model category. A similar
result is certainly true if HR is the Eilenberg-MacLane spectrum in the category
of S-modules [EKMM97], though the author does not know a precise reference.

In fact, the only interesting model category the author knows of that is not
known to be Quillen equivalent to a simplicial model category is Ch(B), the model
category of chain complexes of comodules over a Hopf algebra B over a field k.
No doubt there should be some kind of Hopf algebra structure on the Eilenberg-
MacLane spectrum HB, and there should be a resulting model category of comod-
ules over HB, but the author does not know how to carry out the details.

Problem 8.10. Find a simplicial model category Quillen equivalent to Ch(B).

Another variation on the theme that the homotopy category of a general model
category is indistinguishable from the homotopy category of a simplicial model
category is of course Conjecture 5.6.6. The author’s failure to prove this conjecture
is his biggest disappointment in this book.

The most obvious question to ask about stable model categories is whether
one can stabilize a general pointed model category. The author has given two
partial answers to this question in [Hov98b], one based on Bousfield-Friedlander
spectra [BF78], and one based on symmetric spectra.

Our definition of a triangulated category depends on the pre-triangulated cat-
egory HoSSet∗. This seems somewhat unnecessary. Dan Kan has suggested (a
variation of) the following problem.

Problem 8.11. Let S denote the homotopy category of the category of sym-
metric spectra of [HSS98], also known as the (ordinary) stable homotopy category.
Then the homotopy category of a stable model category is naturally a closed tri-
angulated S-module.

This would be a stable analog of Theorem 5.6.2, and presumably any proof of
it would be based on some kind of stable framing. The statement of this problem
assumes that this stable framing will come from the model category of symmetric
spectra, but that may be an unjustified assumption.
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One might also hope that the results of Chapter 7 could be extended to cover
the more general stable homotopy categories considered in [HPS97], and their
unstable analogues.

Problem 8.12. Find a good definition of a localizing subcategory of a pre-
triangulated category, agreeing with the definition in [HPS97] in the triangulated
case. Show that the localizing subcategory generated by the cofibers of the gener-
ating cofibrations in a cofibrantly generated pointed model category is the whole
homotopy category.

The author thinks that the definition of a pre-triangulated category will have to
be strengthened to solve this problem. The homotopy category of a model category
has much more structure than we have considered in this book. Indeed, suppose C is
a model category. Then for any Reedy category I, there is a model structure on CI.
Furthermore, there is the colimit adjunction from CI to C, and the limit adjunction
from C to CI. Although the colimit and limit functors are not Quillen functors in
general, they still have derived functors. This is the theory of homotopy colimits
and homotopy limits; see [DHK]. More generally, a map of Reedy categories gives
rise to relative homotopy colimits and relative homotopy limits.

Problem 8.13. Develop a 2-category of “Reedy schemes”, where a Reedy
scheme is a 2-functor from Reedy categories to categories. Show that the homo-
topy pseudo-2-functor lifts to a pseudo-2-functor from model categories to Reedy
schemes. Show that the closed action of HoSSet on HoC can be recovered from
the Reedy scheme of C, as can the pre-triangulation when C is pointed.

This problem is so crazy that one might think that no one has ever considered
it. This is actually not quite true. There is a paper of Franke [Fra96] which seems
to consider something like this.

For the present, let us consider a (possibly transfinite) sequence in Ho C, where
C is a model category. Such a sequence can be lifted to a sequence of cofibrations of
cofibrant objects in C. The colimit in C will then be well-defined up to isomorphism
in Ho C. We can therefore add these (weak) colimits of sequences to the definition
of a pre-triangulated category.

Problem 8.14. Define a notion of a pre-triangulated category with sequential
colimits. Show that every triangulated category gives rise to such a thing, and
show that the homotopy category of a pointed model category is naturally such a
thing. Define a notion of cohomology functor in such a pre-triangulated category
as in [Bro62], and show that all cohomology functors in the homotopy category of
a pointed cofibrantly generated model category are representable.
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