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Abstract

�is thesis focuses primarily on understanding some of the structures of the string topology
of a manifold through homotopy-theoretic constructions on the based loop space of the
manifold. In their seminal work on string topology, Chas and Sullivan showed that, for
M a closed, oriented manifold, the homology of its free loop space, LM, forms a Batalin-
Vilkovisky (BV) algebra under the loop product and the loop-rotation operator ∆. We relate
this structure to the homological algebra of the singular chainsC∗ΩM of the based loop space
ofM, showing that its Hochschild cohomology HH∗(C∗ΩM) carries a BV algebra structure
isomorphic to that of string topology. Furthermore, this structure is compatible with the
usual cup product and Lie bracket on Hochschild cohomology. �is isomorphism arises
from a derived form of Poincaré duality using C∗ΩM-modules as local coefficient systems.
�is derived Poincaré duality also comes from a form of fibrewise Atiyah duality on the level
of fibrewise spectra, and we use this perspective to connect the algebraic constructions to the
Chas-Sullivan loop product.
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Chapter 

Introduction

String topology, as initiated by Chas and Sullivan in their  paper [], is the study of
algebraic operations on H∗(LM), where M is a closed, smooth, oriented d-manifold and
LM =Map(S,M) is its space of free loops.�ey show that, because LM fibers overM with
fiber the based loop space ΩM ofM, H∗(LM) admits a graded-commutative loop product

○ ∶ Hp(LM)⊗Hq(LM)→ Hp+q−d(LM)

of degree −d. Geometrically, this loop product arises from combining the intersection
product on H∗(M) and the Pontryagin or concatenation product on H∗(ΩM). Writing
H∗(LM) = H∗+d(LM) to regrade H∗(LM), the loop product makes H∗(LM) a graded-
commutative algebra. Chas and Sullivan describe this loop product on chains in LM, but
because of transversality issues they are not able to construct the loop product on all of C∗LM
this way. Cohen and Jones instead give a homotopy-theoretic description of the loop product
in terms of a ring spectrum structure on a generalized�om spectrum LM−TM .

H∗(LM) also admits a degree- operator ∆ with ∆ = , coming from the S-action on
LM that rotates the free loop parameterization. Furthermore, the interaction between ∆ and
○ makes H∗(LM) a Batalin-Vilkovisky (BV) algebra, or, equivalently, an algebra over the
homology of the framed little discs operad. Consequently, it is also a Gerstenhaber algebra,
an algebra over the homology of the (unframed) little discs operad, via the loop product ○
and the loop bracket {−,−}, a degree- Lie bracket defined in terms of ○ and ∆.
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Such algebraic structures arise in other mathematical contexts. For example, if A is a
differential graded algebra, its Hochschild homologyHH∗(A) has a degree- Connes operator
B with B = , and its Hochschild cohomology HH∗(A) is a Gerstenhaber algebra under
the Hochschild cup product ∪ and the Gerstenhaber Lie bracket [−,−]. Consequently, it is
natural to ask whether these constructions recover some of the structure of string topology for
a choice of algebra A related toM. Two algebras that arise immediately as candidates areC∗M,
the differential graded algebra of cochains ofM under cup product, and C∗ΩM, the algebra
of chains on the based loop space ΩM ofM, with product induced by the concatenation of
based loops.
In the mid-s, Goodwillie and Burghelea and Fiedorowicz independently devel-

oped the first result of this form [, ], showing an isomorphism between H∗(LX) and
HH∗(C∗ΩX) for a connected space X that takes ∆ to the B operator. Shortly a�er this result,
Jones used a cosimplicial model for LM to show an isomorphism between H∗(LX) and
HH∗(C∗X) when X is simply connected, taking a cohomological version of the ∆ operator
to B [].
With the introduction of string topology, similar isomorphisms relating the loop ho-

mology H∗(LM) of M to the Hochschild cohomologies HH∗(C∗M) and HH∗(C∗ΩM)
were developed. One such family of isomorphisms arises from variations on the Jones iso-
morphism, and so also requires M to be simply connected. More closely reflecting the
Burghelea-Fiedorowicz–Goodwillie perspective, Abbaspour, Cohen, and Gruher [] instead
show that, ifM is a K(G , )manifold for G a discrete group, then there is an isomorphism
of graded algebras between H∗(LM) and H∗(G , kGc), the group cohomology of G with
coefficients in the group ring kG with the conjugation action. Vaintrob [] notes that this is
also isomorphic to HH∗(kG) and shows that, when k is a field of characteristic , HH∗(kG)
admits a BV structure isomorphic to that of string topology.
Our main result is a generalization of this family of results, replacing the group ring kG

with the chain algebra C∗ΩM. WhenM = K(G , ), ΩM ≃ G, so C∗ΩM and kG = C∗G are
equivalent algebras.

�eorem .. Let k be a commutative ring, and let X be a k-oriented, connected Poincaré
duality space of dimension d. Poincaré duality, extended to allow C∗ΩX-modules as local
coefficients, gives a sequence of weak equivalences inducing an isomorphism of graded





k-modules
D ∶ HH∗(C∗ΩX)→ HH∗+d(C∗ΩX).

Pulling back −B along D gives a degree- operator −D−BD on HH∗(C∗ΩX).�is operator
interacts with the Hochschild cup product to make HH∗(C∗ΩX) a BV algebra, where the
induced bracket coincides with the usual bracket on Hochschild cohomology.

When X is a manifold as above, the composite of D with the Goodwillie isomorphism
HH∗(C∗ΩX) → H∗(LX) gives an isomorphism HH∗(C∗ΩX) ≅ H∗(LX) taking this BV
algebra structure to that of string topology. ∎

We produce the D isomorphism in�eorem .., and we establish the BV algebra struc-
ture on HH∗(C∗ΩM) and its relation to the string topology BV algebra in�eorems ..,
and ... Since the D isomorphism ultimately comes from Poincaré duality with local coef-
ficients, this result also allows us to see more directly that the Chas-Sullivan loop product
comes from the intersection product on the homology ofM with coefficients taken in C∗ΩM
with the loop-conjugation action.

We now indicate the structure of the rest of this dissertation. In Chapter , we provide
background and preliminary material for our comparison of string topology and Hochschild
homology. We state the basic properties of the singular chains C∗X of a space X, including
the algebra structure when X is a topological monoid. We also develop the notions of Ext,
Tor, and Hochschild homology and cohomology over a differential graded algebra A in
terms of a model category structure on the category of A-modules, and we use two-sided bar
constructions asmodels for this homological algebra. Via Rothenberg-Steenrod constructions,
we relate these algebraic constructions to the topological setting. Additionally, we state the
key properties of the loop product ○ and BV operator ∆ in string topology, and we survey
previous connections between the homology of loop spaces and Hochschild homology and
cohomology.

In Chapter , we develop the extended or “derived” Poincaré duality we use above, which
originates in work of Klein [] and of Dwyer, Greenlees, and Iyengar []. In this setting,
we broaden the notion of local coefficient module forM to include modules over the DGA
C∗ΩM, instead of simply modules over πM, and we show that Poincaré duality for πM-
modules implies Poincaré duality for this wider class of coefficients.
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In Chapter , we relate the Hochschild homology and cohomology of C∗ΩM to this
extended notion of homology and cohomology with local coefficients, where the coefficient
module is C∗ΩM itself with an action coming from loop conjugation. In fact, there are
several different models of this adjoint action that are convenient to use in different contexts,
and in order to switch between them we must employ some technical machinery involving
morphisms of A∞-modules between modules over an ordinary DGA. In any case, this
result combines with Poincaré duality to establish the isomorphism D above, coming from a
sequence of weak equivalences on the level of chain complexes.
Chapter  relates the BV structure of the string topology ofM to the algebraic structures

present on the Hochschild homology and cohomology of C∗ΩM. In order to do so, we
must engage with a spectrum-level, homotopy-theoretic description of the Chas-Sullivan
loop product. We show that the�om spectrum LM−TM and the topological Hochschild
cohomology of S[ΩM], the suspension spectrum of ΩM, are equivalent as ring spectra,
using techniques in fiberwise spectra from Cohen and Klein []. We recover the chain-level
equivalences established earlier by smashing with the Eilenberg-Mac Lane spectrum Hk and
passing back to the equivalent derived category of chain complexes over k.
We then show that the pullback −D−BD of the B operator to HH∗(C∗ΩM) forms a

BV algebra structure on HH∗(C∗ΩM), and that this structure coincides with that of string
topology. We do this by establishing that D is in fact given by a Hochschild cap product
against a fundamental class z ∈ HHd(C∗ΩM), for which B(z) = . �ese two conditions
allow us to apply an algebraic argument of Ginzburg [], with some sign corrections by
Menichi [], to establish this BV algebra structure.
Appendix A contains various algebraic definitions, including our conventions regarding

chain complexes, differential graded algebras, coalgebras, andHopf algebras, and (bi)modules
over DGAs. It also defines Gerstenhaber and Batalin-Vilkovisky algebras and includes a
statement of the cofibrantly generatedmodel category structure of the category of unbounded
chain complexes. Finally, it contains an overview of the definitions of A∞ algebras and A∞
modules and how they relate to two-sided bar constructions and Ext and Tor.



Chapter 

Background and Preliminaries

. Singular Chain Complexes

.. Simplicial Sets and Properties of C∗X

We note our conventions regarding simplicial objects and singular complexes of topological
spaces.

Definition .. Let ∆ denote the simplicial category, with objects

[n] = { <  < . . . < n}

for n ∈ N and morphisms ∆([m], [n]) all order-preserving maps from [m] to [n]. If C is a
category, then a simplicial object F● in C is a functor F ∶ ∆op → C, and a cosimplicial object
G● in C is a functor G ∶ ∆ → C.
Define the geometric n-simplex ∆n by

∆n = {(t, . . . , tn) ∈ Rn+ ∣
n

∑
i=
ti = , ti ≥ } ,

with the subspace topology fromRn+.�e elements of [n] can be identified with the vertices
of ∆n, with i corresponding to the vertex (, . . . , , . . . , )with  in coordinate i+. Extending
ϕ ∈ ∆([m], [n]) linearly gives a map ϕ∗ ∶ ∆m → ∆n; the assignment [n] ↦ ∆n , ϕ ↦ ϕ∗
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determines a cosimplicial space ∆●. Let d i and s i denote its coface and codegeneracy maps.∎

Recall that k denotes our fixed commutative ring. Let X be a topological space, and let
Fk denote the free functor from Set to k-Mod.

Definition .. Define the singular complex functor S● by Sn(X) = Top(∆n , X). Since ∆●

is a cosimplicial space, S●(X) is a simplicial set. Denote its face and degeneracy maps by di
and si .
Let CS●(X; k) be the simplicial k-module Fk(S●(X)), and let the (unnormalized) chain

complex CS∗(X; k) of X be the associated Moore chain complex, with differential d =
∑ni=(−)idi . Let DS∗(X; k) be the degenerate chain complex of X, defined levelwise by
DSn(X; k) = ∑i si(CS∗(X); k).�en define the normalized chain complex C∗(X; k) of X to
be the quotient CS∗(X; k)/DS∗(X; k). ∎

It is standard [, §III.] that the projection map CS∗(X; k) → C∗(X; k) is a chain
homotopy equivalence, and thus that H∗(C∗(X; k)) ≅ H∗(CS∗(X; k)) = H∗(X; k). Also, we
follow Schwede and Shipley’s convention [, §.] of taking the normalization functor N in
the Dold-Kan correspondence to be exactly the quotient complex NA = CA/DA, rather than
the usual subcomplex of A.�en C∗(X; k) = N(C●(X; k)). If X is a one-point space, then
the only non-degenerate simplex is the unique map ∆ → X, so C∗(X; k) ≅ k. Finally, the k
is o�en dropped when the ground ring is understood from context, as are the parentheses
when no ambiguities can arise.

.. Tensor Products and Eilenberg-Zilber Equivalences

Let Y be another topological space. We recall the standard natural Eilenberg-Zilber equiv-
alences between C∗X ⊗ C∗Y and C∗(X × Y). Take an n-simplex ϕ ∈ Sn(X × Y). Letting
πX and πY denote the projection maps, the n-simplices πXϕ ∶ ∆n → X and πYϕ ∶ ∆n → Y
uniquely determine ϕ by ϕ = (πXϕ, πYϕ).

Definition .. Define the Alexander-Whitney map AW ∶ C∗(X × Y)→ C∗X ⊗ C∗Y by

AW(ϕ) =
n

∑
i=
dn−i+⋯dn−dnπXϕ ⊗ dn−i πYϕ.



.. SINGULAR CHAIN COMPLEXES 

Similarly, define the Eilenberg-Zilber map EZ ∶ C∗X ⊗ C∗Y → C∗(X × Y) on simplices
ρ ∶ ∆n → X and σ ∶ ∆m → Y by

EZ(ρ ⊗ σ) = ∑
(µ,ν)∈Sn ,m

(−)є(µ,ν)(sν(n)⋯sν()ρ, sµ(m)⋯sµ()σ),

where Sn,m is the set of (n,m)-shuffles in Sn+m, and є ∶ Sn+m → {±} is the sign homomor-
phism. Note that the µ(i) and ν( j) values together range from  through n +m − . ∎

Below are several standard facts about EZ and AW (see [, p. ]).

Proposition .. Take spaces X′, Y ′ and continuous maps f ∶ X → X′, g ∶ Y → Y ′.�en
(a) AW and EZ are both natural, so the diagrams below commute:

C∗X ⊗ C∗Y
C∗ f⊗C∗g

��

EZ // C∗(X × Y)
C∗( f×g)

��
C∗X′ ⊗ C∗Y ′ EZ // C∗(X′ × Y ′)

C∗(X × Y)
C∗( f×g)

��

AW // C∗X ⊗ C∗Y
C∗ f⊗C∗g

��
C∗(X′ × Y ′) AW // C∗X′ ⊗ C∗Y ′

(b) AW and EZ are associative, so (AW ⊗ id)AW = (id⊗AW)AW and EZ(EZ ⊗ id) =
EZ(id⊗EZ).

(c) AW and EZ are compatible: let τ denote the map interchanging tensor factors defined in
Section A.., and let t = tX ,Y denote the topological interchange map t ∶ X × Y → Y × X
given by t(x , y) = (y, x), with the same notational conventions as for the τ morphisms.
�en

C∗(X × X′)⊗ C∗(Y × Y ′)
EZ

��

AW⊗AW // C∗X ⊗ C∗X′ ⊗ C∗Y ⊗ C∗Y ′

id⊗τ⊗id
��

C∗(X × X′ × Y × Y ′)
C∗(id×t×id)

��

C∗X ⊗ C∗Y ⊗ C∗X′ ⊗ C∗Y ′

EZ⊗EZ

��
C∗(X × Y × X′ × Y ′) AW

// C∗(X × Y)⊗ C∗(X′ × Y ′)

(d) EZ is compatible with interchange of factors: C∗t ○ EZ = EZ ○ τ.
(e) AW ○ EZ = id, and there exists a natural map H with dH +Hd = EZ ○ AW − id, so that
EZ and AW are chain homotopy inverses.

�e equality AW ○ EZ = id holds only on the normalized chain complexes. ∎
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Notation .. Denote by EZX ,...,Xn and AWX ,...,Xn the unique maps between C∗X ⊗⋯ ⊗
C∗Xn and C∗(X ×⋯ × Xn) determined by iterated EZ and AW maps, respectively. ∎

It is standard that for a space X with diagonal δ, ∆ = AW ○ C∗δ and є ∶ C∗X → C∗(pt)
make C∗X a counital differential graded coalgebra.

.. �e Based Loop Space, Topological Monoids, and Group Models

Suppose now that X has a fixed basepoint x. Recall that the based loop space ΩX of X is
homotopy equivalent to the Moore loop spaceMX, which has a strictly associative and unital
multiplication by concatenation. Hence,MX is a topological monoid.

LetM be a topological monoid. Following Burghelea and Fiedorowicz [, p. ], define
a simplicial group G● = B(F , J , S●(M)), where J is the James free monoid construction, F
is the free group construction, and B(−,−,−) is May’s two-sided categorical bar construc-
tion [].�en the maps ∣B(J , J , S●(M))∣→ ∣S●(M)∣, ∣S●(M)∣→ M, and ∣B(J , J , S●(M))∣→
∣B(F , J , S●(M))∣ are all both homotopy equivalences and maps of monoids, so the zigzag

∣G●∣ = ∣B(F , J , S●(M))∣← ∣B(J , J , S●(M))∣→ ∣S●(M)∣→ M

yields a simplicial topological groupG● homotopy equivalent toM.�is construction applied
to MX yields a group model G for ΩX. Another such construction is the Kan loop group
G̃●(K) of a simplicial set K [, ].�en ∣G̃●(S●X)∣ provides a topological group model for
ΩX.

.. Properties of C∗G

Let G be a topological monoid, with identity element e ∈ G and multiplication map m ∶
G ×G → G. Let ι ∶ {e}→ G be the inclusion. It is standard that µ = C∗m ○ EZ and η = C∗ι

make C∗G a differential graded algebra. Furthermore, µ and η are compatible with the
coalgebra structure on C∗G, so C∗G is a differential graded Hopf algebra.

Suppose now that G is a topological group, with inverse map i ∶ G → G. We discuss the
existence of an antipode map for the DGH C∗G.
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Proposition .. Let S = C∗i.�en S is an algebra anti-automorphism of C∗G, S = id, and
∆(id⊗S)µ ≃ ηє (similarly for S ⊗ id).

Proof: We first show that S = C∗i is a graded anti-automorphism of C∗G, so that S ○ µ =
µ ○ τ ○ (S ⊗ S). Since i ○m = m ○ t ○ (i × i) and C∗t ○ EZ = EZ ○ τ,

S ○ µ = C∗i ○ C∗m ○ EZ = C∗(i ○m) ○ EZ = C∗(m ○ t ○ (i × i)) ○ EZ

= C∗m ○ EZ ○ τ ○ (C∗i ⊗ C∗i) = µ ○ τ ○ (S ⊗ S).

Since i = id, (C∗i) = id, so C∗i is an involution of C∗G.
Finally, the antipode diagram for ⊗ S commutes up to chain homotopy, using the chain

homotopy H from EZ ○ AW to id:

C∗G⊗
id⊗S // C∗G⊗

EZ

&&MMMMMMMMMM

C∗(G ×G)

AW

88qqqqqqqqqq
C∗(id×i) // C∗(G ×G)

AW

88qqqqqqqqqq
id //

C∗m

&&MMMMMMMMMM
C∗(G ×G)

C∗m

xxqqqqqqqqqq

C∗G

C∗∆
99rrrrrrrrrr

є // k
η // C∗G ∎

A similar diagram holds for S ⊗ id.

. Differential Graded Homological Algebra

Wehave seen thatC∗G provides aDGA forG a topologicalmonoid, andwe are now interested
in developing suitable notions of homological algebra for modules over these DGAs. In order
to develop constructions of homological algebra for modules over a DGA A, we determine
a cofibrantly generated model category structure on the category A-Mod of A-modules.
(Appendix A contains our conventions regarding DGAs, their modules, and cofibrantly
generated model categories.)

�is model category structure leads to suitable definitions of Ext∗A(−,−) and TorA∗(−,−)
as the homology of derived functors associated to HomA(−,−) and − ⊗A −, respectively.
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Furthermore, the cofibrantly generated model structure incorporates the notions of semifree
extensions and resolutions of A-modules. In cases where the underlying algebra and modules
are cofibrant as chain complexes of k-modules, two-sided bar constructions give convenient
models for cofibrant replacement and hence for the derived functors of ⊗A and HomA.
Additionally, these bar constructions arise in work of Félix, Halperin, and�omas [] that
generalize the Rothenberg-Steenrod spectral sequence on the level of chain complexes, and
we use them to connect these algebraic models to their topological applications.

.. A Model Category Structure on A-Mod

Recall from Section A. the cofibrantly generated model category structure on the category
Ch(k) of unbounded chain complexes, with the cofibrations generated by the set I of maps
in ∶ Sn− → Dn and the trivial cofibrations generated by the set J of maps jn ∶ → Dn.
Now suppose that A is a DGA over k. Let FA ∶ Ch(k)→ Ch(k) denote the free A-module

functor A⊗ −. FA is a monad in Ch(k), with the natural transformations FAFA → FA and
I → FA arising from the multiplication and unit maps of A. Furthermore, the category of
le� A-modules is precisely the category of algebras of the monad FA. Let IA = FA(I) and
JA = FA(J) be the images of the sets I under FA. As a consequence of [, Lemma .], the
category A-Mod admits a model category structure if A is cofibrant:

Proposition .. Suppose that A is a cofibrant object in Ch(k). �en A-Mod has a cofi-
brantly generated model category structure with IA as the set of generating cofibrations and
JA as the set of generating trivial cofibrations. A morphism in A-Mod is a weak equivalence
or a fibration if the underlying morphism of chain complexes is one.

Proof: We verify the hypotheses of Lemma . of []; the stated characterization of the weak
equivalences and fibrations is part of the conclusion of the lemma. Since FA is given by tensor
product with A, it commutes with filtered colimits. Since chain complexes are small, the
domains of IA and JA are small relative to IA-cell and JA-cell.
Finally, sinceA is cofibrant, FA preserves trivial cofibrations by the pushout product axiom,

and so each element of JA is a trivial cofibration in Ch(k).�us, the morphisms in JA-cell
are all trivial cofibrations in Ch(k), and hence are all weak equivalences in A-Mod. As the
morphisms in JA-cell are the regular JA-cofibrations in the terminology of [], condition ()
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in the lemma is satisfied, and so A-Mod admits the desired cofibrantly generated model
category structure. ∎

Homological algebra for A-modules has also been discussed in terms of semifree exten-
sions and resolutions. We review the definitions of these notions and relate them to the model
category structure exhibited above.

Definition .. An A-module P is a semifree extension ofM if P is a union of an increasing
family of A-submodules P(−) ⊂ P() ⊂ ⋯ such that P(−) = M and each P(k)/P(k − ) is
A-free on a basis of cycles. IfM = , we say P is an A-semifree module.
Let f ∶ M → N be a morphism of A-modules. A semifree resolution of f is a semifree

extension P ofM with a quasi-isomorphism P ≃Ð→ N extending f .
A semifree resolution of an A-module N is a semifree resolution of → N . ∎

Proposition .. �e class of semifree extensions coincides with IA-cell.

Proof: Suppose P is a semifree extension of M. We show each P(n − ) ↪ P(n) is a map
of IA-cell. By the definition of a semifree extension, as graded k-modules P(n) ≅ P(n −
)⊕ (A⊗ V(n)), where V(n) is free on a basis {v j} j∈J with each dv j ∈ P(n − ). Hence, the
following is a pushout diagram:

⊕ j∈J A⊗ S ∣v j ∣−
⊕dv j //

⊕FA(i∣v j ∣)
��

P(n − )

��
⊕ j∈J A⊗ D∣v j ∣

⊕v j // P(n)

Consequently, P(n − ) → P(n) is in IA-cell. Since P is the colimit of these maps over n,
M → P is also in IA-cell.
Conversely, suppose f ∶ M → P is a morphism in IA-cell. �en f is a transfinite com-

position of pushouts along the FA(in)morphisms. Note that a morphism A⊗ Sn → M′ of
A-modules is determined solely by the image of ⊗  inM′.�e pushout Pβ a�er any stage
in the transfinite composition is isomorphic as a graded k-module to a direct sum ofM and
copies of A, and so the image of ⊗  in Pβ lies in only a finite number of factors of this direct
sum. Using this finiteness, the transfinite composition can be reorganized into a countable
sequence of pushout diagrams as above, thus exhibitingM → P as a semifree extension. ∎
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As a result of the characterization of cofibrations in a cofibrantly generated model cate-
gory, we obtain the following connections between cofibrations of A-modules and semifree
extensions.

Corollary .. If i ∶ M → P is a semifree extension of A-modules, then it is a cofibration. A
map i ∶ M → N is a cofibration if and only if i is a retract of a semifree extension j ∶ M → P.
An A-module Q is cofibrant if and only if it is a retract of a semifree A-module F, i.e., an
A-module direct summand of F. ∎

Furthermore, several useful results from [, §] regarding semifree resolutions generalize
to statements about cofibrations of A-modules.�e most general one is as follows, where ϕ∗

denotes the pullback notation of Appendix A...

Proposition .. Suppose that
(a) ϕ ∶ B → A is a DGA morphism,
(b) P is a cofibrant B-module, Q a cofibrant A-module, and f ∶ P → ϕ∗Q a morphism of

B-modules,
(c) g ∶ ϕ∗M → N is a morphism of le� A-modules,
(d) h ∶ S → ϕ∗T is a morphism of right B-modules.
�en if ϕ, f , g , h are all quasi-isomorphisms, so are h⊗ϕ f ∶ S⊗BP → T⊗AQ andHomϕ( f , g) ∶
HomA(Q ,M)→ HomB(P,N). ∎

Taking B = A above yields the following useful results:

Proposition .. Suppose P and Q are cofibrant (le� or right, as is appropriate) A-modules.
(a) P ⊗A − and HomA(P,−) are exact functors from A-Mod to Ch(k) and preserve all weak
equivalences in A-Mod.

(b) If f ∶ P → Q is a weak equivalence in A-Mod, then f ⊗AM and HomA( f ,M) are also
weak equivalences for all A-modulesM.

Proof: �e only statements requiring verification are those concerning exactness. Since P is
cofibrant, it is a retract of a colimit of free A-modules, so these exactness properties follow.
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.. Defining Ext∗A and Tor
A
∗

Since −⊗A − and HomA(−,−) preserve sufficiently large classes of weak equivalences, they
admit total le� and right derived functors, and hence the category of A-modules admits
analogues of the classical Ext and Tor derived functors. We review these notions briefly below.
We follow Hovey [] in requiring that the factorization axioms for a model category produce
functorial factorizations. Consequently, each model category admits cofibrant and fibrant
replacement functors denoted Q and R, respectively. By this functoriality, Q comes with a
natural trivial fibration qM ∶ QM → M, and, dually, R comes with a natural trivial cofibration
rM ∶ M → RM.

Definition .. Suppose M and N are le� A-modules and P is a right A-module. Define
the total le� derived functor ⊗LA of ⊗A to be P ⊗LAM = QP ⊗A QM, where Q is the cofibrant
replacement functor above. Similarly, the total right derived functor RHomA of HomA is
defined to be RHomA(M ,N) = HomA(QM , RN).
Define TorAn(P,M) = Hn(P ⊗LAM) and ExtnA(M ,N) = Hn(RHomA(M ,N)). ∎

Note that these derived functors take values in the homotopy category of Ch(k), where
weak equivalences are inverted. By Proposition .., the derived functors are up to isomor-
phism independent of the choice of cofibrant replacement, and so the Ext and Tor modules
defined above are also independent of this choice.
Since all A-modules are fibrant, the existence of the cofibrant replacement functor Q

implies that any two weakly equivalent cofibrant objects M ,N of A-Mod are homotopy
equivalent.

Proposition .. IfM, N are cofibrant A-modules connected by a zigzag of weak equiva-
lences, there is a homotopy equivalence h ∶ M → N homotopic to this zigzag in HoA-Mod.

Proof: We first observe that if f ∶ P → P′ is a weak equivalence between cofibrant A-modules
P, P′, then f is a homotopy equivalence.
Apply the cofibrant replacement functor Q to the zigzag of weak equivalences connecting

M and N .�en this is a zigzag of weak equivalences between cofibrant A-modules, hence
a zigzag of weak equivalences. By choosing homotopy inverses where needed, there is a
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homotopy equivalence g ∶ QM → QN in the same homotopy class as this zigzag. Let
h = qN gq−M , where q−M is a homotopy inverse to the weak, hence homotopy, equivalence
qM ∶ QM → M. ∎

.. Bar constructions, Ext, and Tor

Several constructions of Ext and Tor over a DGA A exist in the literature [, , , , ]. We
describe them in terms of bar constructions over A. Such constructions are general enough
to be performed in any monoidal category.

Definition .. Let (C,⊗, I) be a monoidal category and let (A, µ, η) be a monoid in C.
Given a right A-moduleM and a le� A-module N , define the (two-sided) bar construction to
be the simplicial C-object B●(M ,A,N), with Bn(M ,A,N) = M ⊗ A⊗n ⊗ N , k ≥ .�e face
and degeneracy maps di and si are given by

si = id⊗i+⊗η ⊗ id⊗n+−i , di =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

aM ⊗ idn , i = ,

id⊗i ⊗µ ⊗ id⊗n−i ,  ≤ i ≤ n − ,

id⊗n⊗aN , i = n.

∎

In the case where C = Ch(k) and A is therefore a DGA, write m[a ∣ ⋯ ∣ ak]n for the
elementm⊗ a⊗⋯⊗ ak ⊗ n.�e differential d in Bk(M ,A,N) is given by the graded tensor
product of the differentials of the factors; explicitly, this is

d(m[a ∣ ⋯ ∣ ak]n) = dm[a ∣ ⋯ ∣ ak]n +
k

∑
i=

(−)∣m∣+∣a ∣+⋯+∣a i− ∣m[a ∣ ⋯ ∣ dai ∣ ⋯ ∣ ak]n

+ (−)∣m∣+∣a ∣+⋯+∣ak ∣m[a ∣ ⋯ ∣ ak]dn.

Definition .. Let X● be a simplicial chain complex, and let ∆● denote the standard
cosimplicial simplicial set of simplices, with ∆nm = ∆([m], [n]).�en k∆● is the associated
cosimplicial simplicial k-module, and N(k∆●) is the cosimplicial chain complex obtained by
applying the Dold-Kan normalization functor N levelwise. Following the perspective of [,
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§], define the geometric realization of X● to be the coend ∣X●∣ = N(k∆●)⊗∆op X●. Likewise,
define the thick realization of X● to be ∥X●∥ = k∆● ⊗∆op X●.
Define B(M ,A,N) = ∥B●(M ,A,N)∥ and B̄(M ,A,N) = ∣B●(M ,A,N)∣. ∎

As discussed above, we define N(k∆n) to be the quotient complex k∆n/D(k∆n), taking
the nondegenerate simplices of k∆(m, n) as a basis for N(k∆n)m and taking the differential
to be the Moore complex differential, ds = ∑ki=(−)idi .�is differential makes B●(M ,A,N)
a chain complex of chain complexes B∗(M ,A,N). Examining the enriched coend of Def-
inition .. shows that B(M ,A,N) ≅ Tot(B∗(M ,A,N)). �e differential on the factor
Bp(M ,A,N) is ds + (−)pd.
Furthermore, for M (resp., N) an A-A-bimodule, B(M ,A,N) is a le� (resp., right) A-

module. In particular, then, B(A,A,M) is a le� A-module. In this case, there is a map of
A-modules qM ∶ B(A,A,M) → M given by qM(a[]m) = am and qM(a[a ∣ ⋯ ∣ ak]m) = .
�is map qM is a fibration and a weak equivalence of A-modules.

Corollary .. If M is semifree as a chain complex of k-modules, then B(A,A,M) is a
semifree A-module, and so is an explicit cofibrant replacement for M. �e Ext and Tor
modules then admit explicit expressions as

Ext∗A(M ,N) ≅ H∗(HomA(B(A,A,M),N)),

TorA∗(P,M) ≅ H∗(B(P,A,A)⊗AM) = H∗(B(P,A,M)). ∎

Consequently, under the appropriate cofibrancy conditions, these bar constructions
provide a combinatorial construction of the complexes representing Ext∗A and Tor

A
∗ .

.. Hochschild Homology and Cohomology

With these combinatorial models for Ext and Tor in mind, we define a homology and co-
homology theory for bimodules over a DGA A. See Appendix A.. for our conventions
regarding bimodules and the canonical Ae = A⊗ Aop module structures on such bimodules.

Definition .. Given a DGA A and an A-A-bimoduleM, define theHochschild homology
of A with coefficients in M to be HH∗(A,M) = TorAe∗ (M ,A), treating M canonically as a
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right Ae-module and A as a le� Ae-module. Similarly, define theHochschild cohomology of A
with coefficients inM to be HH∗(A,M) = Ext∗Ae(A,M), whereM is now canonically a le�
Ae-module.
When M = A, considered as a bimodule over itself, we write HH∗(A) for HH∗(A,A)

and HH∗(A) for HH∗(A,A). ∎

In the case when M = N = A, B(A,A,A) is an A-A-bimodule, and hence canonically
a le� Ae-module. Since A is assumed to be cofibrant in Ch(k), B(A,A,A) is a cofibrant
Ae-module, weakly equivalent to A.

Definition .. �e Hochschild (co)chains of Awith coefficients inM are

CH∗(A,M) = M ⊗Ae B(A,A,A) and CH∗(A,M) = HomAe(B(A,A,A),M). ∎

�en Hochschild homology and cohomology over the DGA Amay be expressed as the
homology of theseHochschild chains and cochains. SinceM⊗Ae Bn(A,A,A) andM⊗A⊗n are
canonically isomorphic as chain complexes for all n ≥ , the simplicial structure on the former
induces one on the latter, which yields the definition of HH∗(A,M) given in the literature.
Furthermore, in the case where A and M are concentrated in degree , these definitions
reduce to the usual simplicial definitions of Hochschild homology and cohomology on an
ungraded unital k-algebra.

�ese combinatorial descriptions of the Hochschild chains and cochains give rise to ad-
ditional operations on Hochschild homology and cohomology when M = A. First, the
Hochschild homology HH∗(A) of A admits a degree- operator B with B =  due to
Connes [], arising from the cyclic permutation of the n +  A factors in the nth level
of CH∗(A,A).

�e operations onHochschild cohomology aremost easily described on the homogeneous
pieces HomAe(A⊗n+,A) of CH∗(A,A), which are isomorphic to Homk(A⊗n ,A).�e cup
product f ∪ g of cochains f ∶ A⊗p → A and g ∶ A⊗q → A is the map µ( f ⊗ g) ∶ A⊗p+q → A
given by applying f to the first p A tensor factors and g to the remaining q tensor factors,
and then multiplying the two A output tensor factors.�is cup product operation respects
cocycles and coboundaries, and hence defines a cup product ∪ on HH∗(A). Moreover, the
cup product is homotopy commutative on cochains, and so gives a graded-commutative
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product on HH∗(A). �e cup product can also be described on the derived level via the
Yoneda or composition product on RHomAe(A,A).
Gerstenhaber also identifies a degree- Lie bracket [−,−] on HH∗(A) arising from com-

position of cochains []. Given cochains f , g as above, let f ○i g denote the composite of f
and g where the output of g is the ith input of f .�en the bracket [ f , g] is commutator-like
expression

[ f , g] =
p

∑
i=

(−)i(∣g∣−) f ○i g − (−)∣ f ∣∣g∣
q

∑
i=

(−)i(∣ f ∣−)g ○i f .

Stasheff gives an alternate description of the bracket by extending f and g to coderivations on
the coalgebra B(k,A, k); their bracket is then the commutator [ f , g] of the coderivations. In
any case, the cup product and the bracket interact to make HH∗(A) a Gerstenhaber algebra.
Additionally, HH∗(A,M) is a right module for the algebra HH∗(A).�is module struc-

ture can be seen both combinatorially and on the derived level. In the latter context, we
observe that RHomAe(A,A) acts on the A factor inM⊗LAe A. Passing to homology, and recall-
ing from above that the composition product on RHomAe(A,A) induces the cup product in
HH∗(A), this action induces a cap product HH∗(A,M)⊗HH∗(A)→ HH∗(A,M)making
HH∗(A,M) a right module for HH∗(A).
Combinatorially, for a chain z ∈ CHp+q(A,M) ≅ M ⊗ Ap+q and a cochain f ∈ CHp(A),

evaluation of f on the first p A factors of z gives a chain z ∩ f , and this map descends to
homology to give the same right action of HH∗(A) on HH∗(A,M). WhenM = A, this cap
product is part of a calculus structure on (HH∗(A),HH∗(A)) that formalizes the interaction
of differential forms and (poly)vector fields on a manifold [].

.. Rothenberg-Steenrod constructions

In the case where A = C∗G for G a topological monoid, Félix et al. [] determine several
results which generalize the Rothenberg-Steenrod spectral sequence [, §.][] to equiv-
alences of chain complexes and of differential graded coalgebras, phrased in terms of bar
constructions.

Definition .. ([]) A G-fibration consists of a surjective fibration π ∶ E → X and a
continuous right action µE ∶ E ×G → E such that, for all x ∈ X, Ex ⋅G ⊂ Ex , and for all z ∈ Z,
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the map a ↦ za is a weak homotopy equivalence from G to Eπ(z). ∎

In particular, the Moore path space fibration PX → X, with G = ΩX, is a G-fibration.
�e principal results of interest in our case are as follows [,�m .,�m ., Prop. .]:

�eorem .. Suppose that π ∶ E → X is a G-fibration. �en there is a natural quasi-
isomorphism of differential graded coalgebras B(C∗E ,C∗G , k)

≃Ð→ C∗X. ∎

�eorem .. For any path connected space X, the DGC C∗X is weakly DGC-equivalent
to the bar construction B(k,C∗ΩX , k). ∎

Proposition .. LetG be a topological group and let F be a rightG-space.�en the DGC
C∗(F ×G EG) is weakly DGC-equivalent to B(C∗F ,C∗G , k). ∎

. String Topology and Hochschild Constructions

.. String Topology Operations

We describe some of the conventions and fundamental operations in string topology. LetM
be a closed, smooth, k-oriented manifold of dimension d, and let LM =Map(S,M) be the
space of free loops inM, taking S = R/Z = ∆/∂∆ as our model for S.
ForM any space, note that S acts on LM, with the action map ρ ∶ S × LM → LM given

by ρ(t, γ)(s) = γ(s + t).�en ρ induces a map

Hp(S)⊗Hq(LM) ×Ð→ Hp+q(S × LM) ρ∗Ð→ Hp+q(LM).

For α ∈ Hp(LM), define ∆(α) = ρ∗([S]×α), where [S] ∈ H(S) is the fundamental class of
S determined by the quotient map ∆ → ∆/∂∆.�en ∆ is a degree- operator on H∗(LM).
Since degree considerations force µ∗([S] × [S]) ∈ H(S) to be , ∆ is identically .
With a different choice [S]′ for the fundamental class, so that [S]′ = λ[S] for λ ∈ k×,

then the corresponding operator ∆′ is λ∆. In particular, choosing the opposite orientation
for the cycle ∆ → ∆/∂∆, t ↦  − t, yields the operator −∆.
We postpone detailed discussion of the Chas-Sullivan loop product on H∗(LM) until

Section .., where we give a homotopy-theoretic construction using�om spectra due to
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Cohen and Jones []. For now, we record that the loop product arises from a combination of
the degree-(−d) intersection product onH∗(M) and of the Pontryagin product onH∗(ΩM)
induced by concatenation of based loops. Consequently, the loop product also exhibits a
degree shi� of −d:

○ ∶ Hp(LM)⊗Hq(LM)→ Hp+q−d(LM).

In order that ○ define a graded algebra structure, we shi� H∗(LM) accordingly:

Definition .. Denote Σ−dH∗(LM) as H∗(LM), called the loop homology of M, so that
Hq(LM) = Hq+d(LM). ∎

Under this degree shi�, ∆ gives a degree- operator onH∗(LM).�e key result of Chas
and Sullivan is that ○ and ∆ interact to give a BV algebra structure onH∗(LM). As discussed
in Section A.., this BV algebra structure gives a canonical Gerstenhaber algebra structure,
and the resulting Lie bracket, denoted {−,−}, is called the loop bracket.�e loop bracket can
also be defined more directly using operations on�om spectra [, ].

.. Relations to Hochschild Constructions

�ere are already substantial connections known between the homology and cohomology of
the free loop space LX of a space X and the Hochschild homology and cohomology of the
DGAs C∗ΩX and C∗X. We state the key results that we employ below and survey the other
relevant results.

�emain result wewill use is due toGoodwillie [, §V] and Burghelea and Fiedorowicz [,
�eorem A].

�eorem .. For X a connected space, there is an isomorphism BFG ∶ HH∗(C∗ΩX) →
H∗LM of graded k-modules, such that BFG ○ B = ∆ ○ BFG. ∎

�e proofs of this statement essentially rely on modeling the free loop space LX as a
cyclic bar construction on ΩX, or a topological group replacement. Dually, Jones has shown
that, for X a simply connected space, HH∗(C∗X) ≅ H∗(LX), taking B to a cohomological
version of the ∆ operator []. Jones’s construction uses a cosimplicial model for LX, coming
from the cyclic cobar construction on the space X itself.
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In their homotopy-theoretic construction of string topology, Cohen and Jonesmodify this
cyclic cobar construction to produce a cosimplicial model for the�om spectrum LM−TM in
terms of the manifoldM and the Atiyah dualM−TM ofM []. Applying chains and Poincaré
duality to this cosimplicial model yields an isomorphism

H∗(LM) ≅ HH∗(C∗M)

of graded algebras, taking the loop product to the Hochschild cup product. As with Jones’s
earlier result, this isomorphism requiresM to be simply connected. When k is a field of with
char k = , Félix and�omas have identified a BV-algebra structure onHH∗(C∗M) and have
shown that it coincides with the string topology BV structure under this isomorphism [].

Koszul duality also provides a class of results relating the Hochschild cohomologies of
different DGAs and hence providing other characterizations of string topology. In particular,
Félix, Menichi, and�omas have shown that, for C a simply connected DGC with H∗(C) of
finite type, there is an isomorphismHH∗(C∗) ≅ HH∗(ΩC) of Gerstenhaber algebras, where
C∗ is the k-linear dual of C and where ΩC is the cobar algebra of C []. When C = C∗M
for a simply connected manifold M, C∗ ≅ C∗M and ΩC ≃ C∗ΩM, so HH∗(C∗M) ≅
HH∗(C∗ΩM) as Gerstenhaber algebras. Combining this result with the isomorphism of
Cohen and Jones gives an isomorphism of graded algebras HH∗(C∗ΩM) ≅ H∗(LM), again
in the simply connected case.

Proceeding more directly from the C∗ΩM perspective above, Abbaspour, Cohen, and
Gruher have characterized the string topology of an aspherical d-manifoldM = K(G , ) in
terms of the group homology of the discrete group G []. In particular, in this setting G is a
Poincaré duality group, and they established a multiplication on the shi�ed group homology
H∗+d(G , kGc), coming from a G-equivariant convolution product on H∗(G; kGc). �ey
also established an isomorphismH∗(LM) ≅ H∗+d(G , kGc) of graded algebras. By classical
Hopf-algebra arguments, these group homology and cohomology groups are isomorphic
to the Hochschild homology and cohomology of the group algebra kG. When k is a field
with char k = , Vaintrob has shown that HH∗(kG) has a BV algebra structure and that this
isomorphism is one of BV algebras [].

Consequently, our main result�eorem .. can be viewed as a generalization of these
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results to the case where M is an arbitrary connected manifold and where k is a general
commutative ring for whichM is oriented.



Chapter 

Derived Poincare Duality

. Derived Local Coefficients

Now that we have appropriate constructions for Ext∗A(M ,N) and TorA∗(M ,N), as well as
explicit models for the chain complexes RHomA(M ,N) andM⊗LAN for A,M ,N k-cofibrant,
we establish a duality isomorphism between Ext and Tor when A = C∗ΩM. As we explain
below, these results are analogous to related duality results of Klein [] for topological groups
and of Dwyer, Greenlees, and Iyengar [] on connective ring spectra satisfying a form of
Poincaré duality.

We first generalize the notion of a local coefficient system on X. Suppose that X is
connected.�en by the Rothenberg-Steenrod constructions above,

H∗(X) ≅ H∗(B(k,C∗ΩX , k)) = TorC∗ΩX∗ (k, k).

Moreover, the Borel construction E(ΩX) ×ΩX πX provides a model for the universal cover
X̃ of X, with the right action by πX. Consequently,

B(k,C∗ΩX , k[πX])

provides a model for the right k[πX]-module C∗(X̃; k). Analogously, B(k[πX],C∗ΩX , k)
models C∗(X̃; k) with the le� πX-action.
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Suppose that E is a system of local coefficients in the usual sense, i.e., a right k[πX]-
module. Under the morphism C∗ΩX → H(ΩX) = k[πX] of DGAs, E is a C∗ΩX-module,
and

C∗(X;E) = E ⊗k[πX] C∗(X̃)

≃ E ⊗k[πX] B(k[πX],C∗ΩX , k) ≅ B(E ,C∗ΩX , k) ≃ E ⊗LC∗ΩX k.

Similarly,

C∗(X;E) = Homk[πX](C∗(X̃), E)

≃ HomC∗ΩX(B(k,C∗ΩX ,C∗ΩX), E) ≃ RHomC∗ΩX(k, E).

Passing to homology,

H∗(X;E) ≅ TorC∗ΩX∗ (E , k) and H∗(X;E) ≅ Ext∗C∗ΩX(k, E).

Hence, E ⊗LC∗ΩX k and RHomC∗ΩX(k, E) provide a generalization of homology and coho-
mology with local coefficients, where the coefficients are now C∗ΩX-modules and where
these theories take values in the derived category HoCh(k) of chain complexes over k.

Definition .. For a C∗ΩX-module E, let H●(X;E) = E ⊗LC∗ΩX k, and let H●(X;E) =
RHomC∗ΩX(k, E). Let H∗(X;E) and H∗(X;E) denote their homologies. ∎

When X is a Poincaré duality space, however, these “derived” versions of homology and
cohomology satisfy a “derived” version of Poincaré duality:

�eorem .. Suppose X is a k-oriented Poincaré duality space of dimension d. Let z ∈
TorC∗ΩX

d
(k, k) correspond to the fundamental class [X] ∈ Hd(X). For E a right C∗ΩM-

module, there is an evaluation map

evz,E ∶ H●(X;E)→ Σ−dH●(X;E)
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that is a weak equivalence. On homology, this produces an isomorphism

H∗(X;E)→ H∗+d(X;E).

When E is a k[πX]-module considered as a module over C∗ΩX, this isomorphism coincides
with the isomorphism coming from Poincaré duality for X with local coefficients E. ∎

We relate these results to analogous ones in other algebraic and topological contexts.
In group cohomology, it is well-known [] that, for a discrete Poincaré duality group G of
dimension d and a kG-module M, there exist isomorphisms ExtikG(k,M) ≅ TorkGd−i(k,M)
for all i ≥ , induced by cap product with a distinguished class z ∈ TorkGd (k, k).
Our approach to establishing this duality for C∗ΩX has been heavily influenced by Klein’s

results for topological groups [], which we summarize here. If G is a topological group
such that BG is a finitely dominatedG-complex of formal dimension d, then theG-spectrum

DG = S[G]hG = F(EG+, S[G])G

is weakly equivalent to S−d , and has a right G-action from the remaining action on S[G].
Consequently, for E a (naive) G-spectrum, there is a norm map DG ∧hG E → EhG , and under
the hypotheses on G, it is a weak equivalence of spectra. Considering DG ∧hG − and −hG as
the appropriate derived functors of DG ∧G − and −G = F(S,−)G in the category of G-spectra,
these results are a spectrum-level generalization of the classical Poincaré-duality results for
discrete groups.

�e arguments that establish this duality result for G-spectra rely on the notion of an
equivariant duality map []. In the category of basedG-spaces, this is a map d ∶ Sn → Y ∧G Z
for Y , Z cofibrant and homotopy finite such that for all G-spectra E, the map taking f ∶
Σ jY → E j+k to ( f ∧G Z) ○ Σ jd ∶ Sn+ j → E j+k ∧G Z induces isomorphisms E∗G(Y)→ EG∗−n(Z)
of cohomology groups.

Furthermore, Klein establishes that such equivariant duality maps can be detected from
a simpler criterion. Let π = π(G) and let G ⊂ G be the path-component of the identity, so
G is the kernel of the projection map G → π. To check whether Sn → Y ∧G Z is a G-duality
map, it suffices to check whether the composite Sn → Y ∧G Z → YG ∧π ZG is a π-equivariant
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duality map with respect to HZπ, the Eilenberg-Mac Lane π-spectrum of the integral group
ring Zπ.
We establish analogous characterizations of finiteness for A-modules, and we exhibit a

similar detection result when A is a chain DGA. Dwyer, Greenlees, and Iyengar [, §.]
also proceed essentially following these ideas of Klein to establish similar results for modules
over the ring spectrum Σ∞ΩX+ ∧ k, where k is a commutative ring spectrum.

. Duality for A-Modules

We review the notions of finiteness and duality in the category of A-modules coming from
the cofibrantly generated model category structure.

Definition .. Recall the generating cofibrationsA⊗in ∶ A⊗Sn− → A⊗Dn fromSection ..
An A-moduleM is finite free if there exists a finite sequenceM, . . . ,Mn of A-modules such
thatM = ,Mn = M, and for each j = , . . . , n there exists an n j such that

A⊗ Sn j− //

A⊗in j

��

M j−

��
A⊗ Dn j // M j

is a pushout square, so that M is built from  by a finite number of pushouts along the
A⊗ in j . M is finite if it is a retract (i.e., a direct summand) of a finite free A-module P, and
M is homotopy finite if there exists a zigzag of weak equivalences between M and a finite
A-module. ∎

Since a finite free A-module is constructed from  from a finite sequence of pushouts
along cofibrations A⊗ in j , it is also cofibrant. By the closure of cofibrations under retracts,
finite A-modules are also all cofibrant.

Definition .. Suppose that P andM are right A-modules and Q is a le� A-module. An
element z ∈ (P ⊗A Q)n defines a degree-n linear map evz,M ∶ HomA(P,M) → M ⊗A Q by
evz,M( f ) = ( f ⊗ idQ)(z). If z is a cycle, then evz,M is a cycle as well.�us, if z is a -cycle,
evz,M is a chain map of complexes.
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If insteadM is a le� A-module, we define evz,M ∶ HomA(Q ,M)→ P⊗AM by evz,M( f ) =
(idP ⊗ f )(z).
Passing to derived constructions, a class α ∈ H(P ⊗LA Q) induces a map

evα,M ∶ RHomA(P,M)→ M ⊗LA Q

well defined up to homotopy (and hence well-defined in the homotopy category). Such a class
α is a dualizing class with respect to M if evα,M is a weak equivalence, and α is a dualizing
class if it is one with respect to all (le� and right) A-modules. ∎

By definition, then, a dualizing class α ∈ H(P ⊗LA Q) induces isomorphisms

Ext∗A(P,M)→ TorA∗(M ,Q)

for all A-modulesM.

Finite A-modules satisfy a form of strong duality that is a generalization of the duality for
finitely generated projective modules over an (ordinary) ring (cf. Brown [, §.]). As noted
in Section A.., forM ∈ A-Mod,M∗ = HomA(M ,A) is inMod-A, with the right A-module
structure given explicitly by ( f a)(m) = (−)∣m∣∣a∣ f (m)a. Similarly, ifM ∈ Mod-A is a right
module,M∗ ∈ A-Mod, with (a f )(m) = a f (m).

Proposition .. Suppose P is a finite right A-module.

(a) P∗ is a finite le� A-module.
(b) Let N be a right A-module. �en the map ϕN ∶ N ⊗A P∗ → HomA(P,N), given by

ϕ(n ⊗ f )(p) = n f (p), is an isomorphism.
(c) Let N be a le� A-module. �en the map ϕ′N ∶ P ⊗A N → HomA(P∗,N), given by

ϕ′(p ⊗ n)( f ) = (−)∣ f ∣(∣p∣+∣n∣) f (p)n for homogeneous f ∈ P∗, n ∈ N , and p ∈ P, is an
isomorphism.

(d) �e map ϕ′′ ∶ P → (P∗)∗ of right A-modules given by ϕ′′(u)(x) = u(x) is an isomor-
phism.

Proof: For P finite free with A-generators x, . . . , xn, P∗ is finite free on generators given by
the duals x∗i of the xi , with x∗n attached first, then x∗n−, and so on down to x∗ in reverse order.
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Evaluation against the Casimir element z = ∑i xi ⊗ x∗i in P ⊗A P∗ gives an explicit inverse
to ϕ and ϕ′, and ϕ′′ is ϕ′ when N = A. Since these maps split over finite direct sums, the
isomorphisms hold when P is a summand of a finite free module. ∎

�ese arguments also show that if P is a homotopy finite A-module, there is a (finite)
A-module Q and a dualizing class α ∈ H(P ⊗LA Q), evaluation against which induces weak
equivalences RHomA(P,M) ≃ M ⊗LA Q for all A-modulesM.
Following Klein, we now wish to know a more basic criterion to determine whether a

given class α as above is a dualizing class.

Notation .. For A a chain DGA, let Ã = HA, and let π ∶ A → Ã be the surjective map
taking a ∈ A to the class [a], and taking a ∈ An to  for n > .
For a le� (resp., right) A-moduleM, let M̃ be the Ã-module π∗Ã⊗AM (resp.,M⊗A π∗Ã).

Let πM ∶ M → π∗M̃ be the surjective map of A-modules given by πM(m) = []⊗m. ∎

Suppose thatM is a le� A-module.�en a computation shows that the graded k-module
H∗M admits a le� action by the graded ring H∗A, with [a] ⋅ [m] = [am] for classes [a] ∈
H∗(A) and [m] ∈ H∗M. In particular, then, each H jM is a le� Ã-module.

�eorem .. SupposeM ,N are cofibrant, homotopy finite A-modules. Take z ∈ H(M ⊗A
N), and let z = (πM⊗π πN)∗(z) ∈ H(M̃⊗Ã Ñ).�en z is a dualizing class if z is a dualizing
class for the Ã-module Ã.

Proof: It suffices to reduce to the case when M ,N are finite. Since M ,N are cofibrant and
homotopy finite, there exist finiteA-modules F andG with homotopy equivalences f ∶ M → F
and g ∶ N → G. Letw = ( f⊗g)(z). Note that F̃ and G̃ are finite Ã-modules, since⊗ commutes
with colimits, and that f and g induce homotopy equivalences f̃ ∶ M̃ → F̃ and g̃ ∶ Ñ → G̃
of Ã-modules, with f̃ πM = πF f and g̃πN = πG g. Hence, w = (πF ⊗π πG)(w) = ( f̃ ⊗ g̃)(z).
Consequently, the diagrams

HomÃ(F̃ , Ã)
evw ,Ã //

≃HomÃ( f̃ ,Ã)
��

Ã⊗Ã G̃

HomÃ(M̃ , Ã)
evz ,Ã // Ã⊗Ã Ñ

≃ id⊗g̃

OO
HomA(F , E)

evw ,E //

≃HomA( f ,E)
��

E ⊗A G

HomA(M , E)
evz ,E // E ⊗A N

≃ id⊗g

OO
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commute. �erefore, if evz ,A is a weak equivalence, so is evw ,A, and if evw ,E is a weak
equivalence, so is evz,E .

Consequently, suppose throughout thatM ,N are finite. Let E be a right Ã-module, and
consider the diagram

HomA(M , E∗π)
evz ,π∗E //

≅

��

π∗E ⊗A N

HomA(M , HomÃ(π∗Ã, E))
≅

��
HomÃ(M ⊗A π∗Ã, E)

evz ,E // E ⊗Ã (π∗Ã⊗A N)

≅

OO

E ⊗ÃHomÃ(M̃ , Ã)

ϕ′E ≅

OO

E⊗evz ,Ã
≃

// E ⊗Ã Ñ

where the le�-hand vertical maps are isomorphisms from π∗E ≅ HomÃ(π∗Ã, E) and from
the adjoint associativity isomorphism, and where the right-hand vertical isomorphisms are
obvious. A computation shows the top and bottom rectangles commute. Since M̃ is finite,
M̃∗ = HomÃ(M̃ , Ã) is finite as well, and so the weak equivalence evz ,Ã ∶ M̃∗ → Ñ is a
homotopy equivalence. Hence, E ⊗ evz ,Ã is a weak equivalence, so therefore evz ,E and then
evz,π∗E are weak equivalences as well.

Now let E be an A-module. For each j ∈ Z, define the A-submodule K jE of E by

(K jE)i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ei , i > j + ,

ker d ⊂ E j+, i = j + ,

, i ≤ j,

with the differential induced from that on E. Since A is non-negatively graded, ker d ⊂ E j+ is
an A-module, and so K jE is in fact an A-module. Furthermore, by construction, Hi(K jE) =
Hi(E) for i > j and is  for i ≤ j.

Define the A-module PjE to be E/K jE, with projection map π j ∶ E → PjE. (Note that K jE
and PjE are essentially the good truncations [, §..] of E.) By direct computation, or by



.. DUALITY FOR A-MODULES 

the long exact sequence in homology,Hi(PjE) = HiE for i ≥ j and is  for i > j. Furthermore,
the K jE give a sequence of increasing submodules of A, and the inclusions K jE ↪ K j−E
induce surjections p j ∶ PjE → Pj−E.
Define F jE = ker p j, so that (F jE) j+ = E j+/ker d and (F jE) j = ker d ⊂ E j. Consequently,

H∗(F jE) ≅ Σ jH jE, and in fact the projection map F jE → Σ jH jE is a weak equivalence of
A-modules. Hence evz,F jE is a weak equivalence. Additionally, since  → F jE → PjE →
Pj−E →  is exact, the exactness of HomA(M ,−) and − ⊗A N and the naturality of evz yield
a morphism of short exact sequences

 // HomA(M , F jE)
ev

��

// HomA(M , PjE)
ev

��

// HomA(M , Pj−E)
ev

��

// 

 // F jE ⊗A N // PjE ⊗A N // Pj−E ⊗A N // 

and therefore a long exact sequence in homology:

Exti+A (M , Pj−E)
ev∗

��

// ExtiA(M , F jE)
ev∗

��

// ExtiA(M , PjE)
ev∗

��

// ExtiA(M , Pj−E)
ev∗

��

// Exti−A (M , F jE)
ev∗

��
TorAi+(Pj−E ,N) // TorAi (F jE ,N) // TorAi (PjE ,N) // TorAi (Pj−E ,N) // TorAi−(F jE ,N)

Now let E be a bounded-below A-module, so that E = ⊕i≥NEi for some sufficiently small N .
�en KN−E = E, so PN−E = , and thus evz,PN−E is a weak equivalence. Using the five lemma
inductively on the map of long exact sequences above, each evz,PjE is a weak equivalence.

Suppose that E′ is a le� A-module that is bounded below.�en for a fixed i ∈ Z, the map

(π j ⊗ E′)i ∶ (E ⊗A E′)i → (PjE ⊗A E′)i

is an isomorphism for all j sufficiently large. Consequently, for such j, Hi(π j ⊗A E′) is an
isomorphism.

Similarly, suppose that E′ is a le� A-module with a set {xγ}γ∈Γ of A-generators that is
bounded above in degree by L.�en for a given i, and for f ∈ HomA(E′, E)i , the f (xγ) lie
in degree no higher than i + L. Since the f (xγ) determine f on all of E′ by A-linearity, for
j ≥ i + L, HomA(E′, E)i → HomA(E′, PjE)i is an isomorphism. �en for all j sufficiently
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large, Hi(HomA(E′, π j)) is also an isomorphism.
If E′ is finite, it is bounded below, and is finitely generated over A, so that the π j yield

the above isomorphisms in Hi for j sufficiently large. Since M and N are both assumed
finite, Hi(N ⊗ π j) and Hi(HomA(M , π j)) are isomorphisms for j sufficiently large. By the
naturality of evz with respect to the coefficient module, these isomorphisms imply Hi(evz,E)
is an isomorphism for all i, and hence that evz,E is a weak equivalence.
Finally, let E be an arbitrary A-module. �en E = colim j→−∞ K jE, where each K jE is

bounded below. Since N ⊗A − is a le� adjoint, it commutes with this colimit, as does the
computation of H∗, so H∗(N ⊗A E) ≅ colim jH∗(N ⊗A K jE). Similarly, HomA(M ,−) com-
mutes with colimits since M is finite, so H∗(HomA(M , E)) ≅ colim jH∗(HomA(M ,K jE)).
Since evz,K jE is an isomorphism for all j, the naturality of evz induces an isomorphism on the
colimits, and evz,E is a weak equivalence for all E. ∎

. Reinterpretation of Poincaré Duality

Suppose now that X is a finite CW-complex satisfying Poincaré duality of formal dimension
d with respect to all k[πX]-modules. �us, for a given such module E, capping with a
fundamental class [X] ∈ Hd(X; k) induces isomorphisms

H∗(X;E)→ H∗+d(X;E)

where, as usual, we view cohomology as being nonpositively graded. We reinterpret these
properties in the context of the duality statements presented in the previous section.
First, we show that k is homotopy finite as a C∗ΩX module. More generally, adapting

results of Félix et al. [, Prop. .] and Dwyer, Greenlees, and Iyengar [, Prop. .] shows
the following:

Proposition .. Suppose that p ∶ E → X is aG-fibration.�en there exists a cofibrant right
C∗G-moduleM and a quasi-isomorphism m ∶ M → C∗E such that m ∶ M ⊗C∗G k → C∗X is
also a quasi-isomorphism. ∎

Corollary .. When X is a finite CW-complex, k is a homotopy finite C∗ΩX-module.
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Proof: Consider the path-loop ΩX-fibration PX → X.�en C∗PX → k is a quasi-isomorph-
ism of C∗ΩX-modules, and the construction of Proposition .. yields a finite, semifree
C∗ΩX-module M and a quasi-isomorphism M → C∗PX. Hence, M and k are weakly
equivalent. ∎

Corollary .. When X is finite, B∗(k,C∗ΩX ,C∗ΩX) is a homotopy finite and cofibrant
C∗ΩX-module weakly equivalent to k. ∎

We now return to the proof of�eorem ...

Proof (�eorem ..): Recall that for a right k[πX]-module E, the homology and cohomol-
ogy groupsH∗(X;E) andH∗(X;E)with local coefficients E are defined to be the homologies
of E ⊗k[πX] C∗X̃ and Homk[πX](C∗X̃ , E), respectively.
Let A = C∗ΩX, so Ã = H(ΩX) ≅ k[πX]. Let

M = B(k,A,A) and N = B(A,A, k),

so that M and N are cofibrant, weakly equivalent to k, and thus homotopy finite (since
k is). Since X ≃ B(ΩX), E(ΩX) ×ΩX πX is a model for a universal cover X̃ of X with a
right πX-action. Consequently, C∗X̃ is weakly equivalent to M̃ = B(k,A, Ã) by Prop. ...
Similarly, C∗X̃ with the le� πX-action is weakly equivalent to Ñ = B(Ã,A, k).
Observe that C∗X is weakly equivalent to B(k,A, k) ≃ M ⊗A N ≃ M̃ ⊗Ã Ñ . Let [X] ∈

Hd(X) be a choice of fundamental class for X. �en let z ∈ Hd(M ⊗A N) be the class
corresponding to [X], and let z = (πM ⊗π πN)∗(z) ∈ Hd(M̃ ⊗Ã Ñ). Note that z also
corresponds to [X]. Let E be an Ã-module.�en z induces

evz ,E ∶ HomÃ(M̃ , E)→ E ⊗Ã Σ−d Ñ .

Since evz ,E corresponds to cap product, this map is the Poincaré duality isomorphism for
the local coefficient module E, so ψz ,E is a weak equivalence.

In particular, taking E = Ã, z is a dualizing class for the module Ã, so applying�e-
orem .., z is a dualizing class for all A-modules. In particular, evz,E ∶ HomA(M , E) →
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E ⊗A Σ−dN is a weak equivalence for all E, and it induces an isomorphism Ext∗A(k, E) →
TorA∗+d(E , k).
Rephrasing this in terms of “derived” homology and cohomology with local coefficients,

cap product with [X] induces a weak equivalence ev[X] ∶ H●(X;E) → Σ−dH●(X;E) and
hence an isomorphism H∗(X;E)→ H∗+d(X;E). ∎



Chapter 

Hochschild Homology and Cohomology

. Hochschild Homology and Poincaré Duality

Now that we have established a Poincaré duality isomorphism H∗(X;E) → H∗+d(X;E) for
X a k-oriented Poincaré duality space of dimension d and E an arbitrary C∗ΩX-module, we
use it to construct an isomorphism between HH∗(C∗ΩX) and HH∗+d(C∗ΩX).

�eorem .. For X as above, derived Poincaré duality and the Hopf-algebraic properties
of C∗ΩX produce a sequence of weak equivalences

CH∗(C∗ΩX) ≃ // H●(X; Ad(ΩX))
≃ ev[X]

��
CH∗+d(C∗ΩX) ≃ // H●+d(X; Ad(ΩX))

where CH∗ and CH∗ denote the Hochschild chains and cochains and where Ad(ΩX) is
C∗ΩX as a module over itself by conjugation, to be defined more precisely in Definition ...
In homology, this gives an isomorphism D ∶ HH∗(C∗ΩX) → HH∗+d(C∗ΩX) of graded
k-modules. ∎

Corollary .. �e composite of D and the Goodwillie isomorphism produces an additive
isomorphism HH∗(C∗ΩX) ≅ H∗+d(LX). ∎
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In order to prove this result, we produce the horizontal isomorphisms relating the
Hochschild homology and cohomology of C∗ΩX to Ext∗C∗ΩX and Tor

C∗ΩX
∗ . In fact, these

equivalences hold for the algebra C∗G of chains on a topological group G, and we develop
them in that generality.

. Applications to C∗G

When A is a Hopf algebra with strict antipode S, then the Hochschild homology and coho-
mology of A can be expressed in terms of Ext∗A(k,−) and TorA∗(−, k), using the isomorphisms
of Prop. A... In particular, letM be an A-A-bimodule, considered canonically as a right
Ae-module.�en the Hochschild chains and cochains are isomorphic to

CH∗(A,M) = M ⊗Ae B(A,A,A) ≅ M ⊗Ae B(ad∗ Ae ,A, k) ≅ B(ad∗ M ,A, k),

CH∗(A,M) = HomAe(B(A,A,A),M) ≅ HomAe(B(k,A, ad∗ Ae),M)

≅ HomA(B(k,A,A), HomAe(ad∗ Ae ,M)) ≅ HomA(B(k,A,A), ad∗ M),

which represent TorA∗(ad∗ M , k) and Ext∗A(k, ad∗ M). �ese isomorphisms generalize the
classical isomorphisms [, Ex. ..] HH∗(kG ,M) ≅ H∗(G , ad∗M) and HH∗(kG ,M) ≅
H∗(G , ad∗M) when A is the group ring of a discrete group G. (Since kG is cocommutative,
ad = ad, so these pullbacks coincide.)
Suppose now that G is a topological group, A = C∗G, and S = C∗i. Recall from Propo-

sition .. that S = id, that S ∶ A → Aop is a DGA isomorphism, and that S satisfies the
antipode identity for the DGH C∗G only up to chain homotopy equivalence. Nevertheless, we
show that we can relate the Hochschild homology and cohomology of C∗G to Ext∗C∗G(k,−)
and TorC∗G∗ (−, k).
Recall from Section A.. that, since C∗G is a DGH and S is an anti-automorphism of

C∗G, ad = (⊗ S)∆ and ad = (⊗ S)τ∆ give DGAmorphisms from A to Ae . Hence, pulling
back along ad gives an adjoint A-module structure to A-A-bimodules.

�is adjoint A-module structure plays a key role in relating the Hochschild homology
and cohomology of C∗G to its Ext and Tor groups. In particular, since it is a pullback of
an Ae-module, it behaves well with respect to both the formation of tensor products and
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Hom-complexes, and hence with respect to the Hom-⊗ adjunction. As an intermediate result
towards�eorem .., we will therefore establish the following homotopy equivalences of
Ae-modules.

�eorem .. B(ad∗ C∗Ge ,C∗G , k) and B(C∗G ,C∗G ,C∗G) are homotopy equivalent as
le� C∗Ge-modules, and B(k,C∗G , ad∗ C∗Ge) and B(C∗G ,C∗G ,C∗G) are homotopy equiv-
alent as right C∗Ge-modules. ∎

As a consequence of this theorem, we immediately obtain relations between Hochschild
constructions and Ext and Tor over C∗G:

Corollary .. For M ∈ A-Mod-A, considered canonically as a right Ae-module, there are
weak equivalences

Λ●(G ,M) ∶ M ⊗Ae B(A,A,A)
≃Ð→ B(ad∗ M ,A, k),

Λ●(G ,M) ∶ HomAe(B(A,A,A),M) ≃Ð→ HomA(B(k,A,A), ad∗ M).

WhenG andM are understood, we omit them from the notation. Passing to homology, these
induce isomorphisms

Λ∗(G ,M) ∶HH∗(A,M)→ TorA∗(ad∗ M , k) and

Λ∗(G ,M) ∶HH∗(A,M)→ Ext∗A(k, ad∗ M).

Proof: Since ad∗ M ≅ M⊗Ae ad∗ Ae , the homotopy equivalence B(ad∗ Ae ,A, k)→ B(A,A,A)
of�eorem .. yield a weak equivalence Λ●(G ,M),

M ⊗Ae B(A,A,A) ≃ M ⊗Ae B(ad∗ Ae ,A, k) ≅ B(ad∗ M ,A, k),

which induces the isomorphism Λ∗(G ,M) ∶ HH∗(A,M) → TorA∗(ad∗ M , k). Likewise,
since ad∗ M ≅ HomAe(ad∗ Ae ,M), the homotopy equivalence B(k,A, ad∗ Ae)→ B(A,A,A)
of�eorem .. yields a weak equivalence Λ●(G ,M),

HomAe(B(A,A,A),M) ≃ HomAe(B(k,A, ad∗ Ae),M) ≅ HomA(B(k,A,A), ad∗ M),
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which induces the isomorphism Λ∗(G ,M) ∶ HH∗(A,M)→ Ext∗A(k, ad∗ M).
When G andM are clear from context, we may drop them from the notation. ∎

�e C∗G-module ad∗ M is actually not quite the definition we have in mind for the
statement of�eorem ... We introduce this slightly more natural adjoint module:

Definition .. Let Gop be the group G with the opposite multiplication. Suppose that X is
a space with a le� action aX byG×Gop. Pullback along (id×i)δ ∶ G → G×Gopmakes X a le�
G-space by “conjugation,” with (g , x) ↦ gxg−. Let AdL(X) be C∗X with the corresponding
le� C∗G-module structure.

Similarly, we may produce a right C∗G-module structure AdR(X) on C∗X. We denote
these modules simply as Ad(X) when the module structure is clear from context. ∎

Note that these Ad(X) modules arise from first converting the G × Gop-action into
a G-action and then applying C∗. Consequently, these modules arise more naturally in
topological contexts, although they are not as immediately compatible with tensor product
and Hom-complex constructions.

Let K be another group. Note that if X has a right K-action commuting with the le�
G ×Gop-action, then Ad(X) is a C∗G-C∗K-bimodule.
With the application of standard simplical techniques, the introduction of these Ad

modules immediately provides a key intermediate step towards�eorem ... First, we recall
the two-sided bar construction in the topological setting.

Definition .. Let X be a le� G-space and Y a right G-space. �en the two-sided bar
construction B●(X ,G ,Y) is a simplicial space. Let B(Y ,G , X) be its geometric realization
∣B●(Y ,G , X)∣. ∎

Proposition .. �e maps EZ induce B(C∗Y ,C∗G ,C∗X) → C∗(B(Y ,G , X)) a weak
equivalence.

Proof: Take n ≥ . Observe that Bn(C∗Y ,C∗G ,C∗X) = C∗Y ⊗ C∗G⊗n ⊗ C∗X, and that

EZ ∶ C∗Y ⊗ C∗G⊗n ⊗ C∗X → C∗(Y ×Gn × X) = C∗(Bn(Y ,G , X))
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is a chain homotopy equivalence. Denote this map by EZn. By the form of the face and
degeneracy maps di and si for B●(Y ,G , X) and for B●(C∗Y ,C∗G ,C∗X), it follows that
C∗(di)EZn = EZn−di and C∗(si)EZn = EZn+si for all n and  ≤ i ≤ n. Hence, the EZ∗
assemble to a chain homotopy equivalence

EZ ∶ TotB∗(C∗Y ,C∗G ,C∗X)→ TotC∗(B●(Y ,G , X)).

Finally, since there is a weak equivalence from TotC∗(E●) to C∗(∣E●∣) for any simplicial space
E●, [, §V.]the composite gives the desired weak equivalence. ∎

Note also that if Y or X has an action by another group H commuting with that of G,
then the weak equivalence above is one of C∗H-modules.

Corollary .. In the notation above, taking Y = ∗ and X = G ×Gop with the standard le�
and right G ×Gop actions yields a weak equivalence of right C∗(G ×Gop)-modules

B(k,C∗G , Ad(G ×Gop))→ C∗(B(∗,G ,G ×Gop))

Taking X = Y = G yields a weak equivalence of right C∗(G)e-modules

B(C∗G ,C∗G ,C∗G)→ EZ∗C∗(B(G ,G ,G)). ∎

We now relate the two topological bar constructions B(∗,G ,G ×Gop) and B(G ,G ,G).

Proposition .. �ere are homeomorphisms of right G × Gop-spaces ϕR ∶ B(∗,G ,G ×
Gop)⇆ B(G ,G ,G) ∶ γR and of le� G ×Gop-spaces ϕL ∶ B(G ×Gop,G , ∗)⇆ B(G ,G ,G) ∶ γL.

Proof: As G is a Hopf-object with antipode in Top with its usual symmetric monoidal
structure, these homeomorphisms come from the simplicial Hopf-object isomorphisms of
Prop. A... In particular, they define simplicial maps ϕR● ∶ B●(∗,G ,G×Gop)⇆ B●(G ,G ,G) ∶
γR● by

ϕRn(g, . . . , gn , (g , g′)) = (g′(g⋯gn)−, g, . . . , gn , g),

γRn(g′, g, . . . , gn , g) = (g, . . . , gn , (g , g′g⋯gn))
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Since (g, . . . , gn , (g , g′)) ⋅ (h, h′) = (g, . . . , gn , (gh, h′g′)) and (g′, g, . . . , gn , g) ⋅ (h, h′) =
(h′g′, g, . . . , gn , gh), they are maps of right G ×Gop-spaces. Applying geometric realization
gives the G ×Gop-equivariant homeomorphisms ϕR and γR.

Similarly, we obtain simplicial isomorphisms ϕL● ∶ B●(G ×Gop,G , ∗)⇆ B●(G ,G ,G) ∶ γL●
by

ϕLn((g , g′), g, . . . , gn) = (g , g, . . . , gn , (g⋯gn)−g′),

γLn(g , g, . . . , gn , g′) = ((g , g⋯gng′), g, . . . , gn)

As above, these are isomorphisms simplical le� G ×Gop-spaces, and hence their geometric
realizations give the G ×Gop-equivariant homeomorphisms ϕR and γR. ∎

Combining these results, we obtain the following sequence of weak equivalences:

Proposition .. �ere are weak equivalences

EZ∗B(k,C∗G , Ad(G ×Gop))
EZ≃

��

B(C∗G ,C∗G ,C∗G)
EZ≃

��
EZ∗C∗(B(∗,G ,G ×Gop))

C∗(ϕ)
≅

//
EZ∗C∗(B(G ,G ,G))

C∗(γ)
oo

of right C∗Ge-modules as indicated. ∎

. Comparison of Adjoint Module Structures

We now relate the Ad(X) C∗-module structure to the ad∗ pullback modules we employ
in�eorem ... To do so, we employ the machinery of A∞-algebras, and in particular
morphisms between modules over an A∞-algebra. We review the details of this theory in
Appendix A..

We apply this theory to the adjoint modules discussed above. As before, let X be a
(G ×Gop)-space. Note that C∗(Gop) and (C∗G)op are isomorphic DGAs, and the homotopy
equivalence EZG ,Gop ∶ C∗G⊗C∗Gop → C∗(G×Gop) is amorphismofDGAs. SinceC∗X is a le�
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C∗(G×Gop)-module, EZ∗C∗X is a le� C∗Ge-module, and so ad∗ EZ∗C∗X = (EZ ad)∗C∗X
is another le� C∗G-module structure on C∗X.
As will be shown below, these two C∗G-module structures on C∗X factor through the le�

C∗(G × G)-action C∗(aX)EZG×G ,X(C∗(id×i) ⊗ id). Hence, we consider such C∗(G × G)-
modules more generally.

Proposition .. For G ,K groups and A = C∗(G × K), ψ = EZG ,KAWG ,K ∶ A→ A is a DGA
morphism.

Proof: Recall that the multiplication in A is given by µ = C∗((mG ×mK)t())EZG×K ,G×K . We
check that ψµ = µ(ψ ⊗ ψ):

ψµ = EZG ,KAWG ,KC∗((mG ×mK)t())EZG×K ,G×K
= C∗(mG ×mK)EZG×G ,K×KAWG×G ,K×KC∗(t())EZG×K ,G×K
= C∗(mG ×mK)EZG×G ,K×K(EZG ,G ⊗ EZK ,K)τ()(AWG ,K ⊗ AWG ,K)

= C∗(mG ×mK)C∗(t())EZG ,K ,G ,K(AWG ,K ⊗ AWG ,K)

= C∗((mG ×mK)t())EZG×K ,G×K(EZG ,KAWG ,K ⊗ EZG ,KAWG ,K) = µ(ψ ⊗ ψ).

Furthermore, since EZ ○ AW = id on -chains, ψη = η, so ψ is a DGA morphism. ∎

In light of the interpretation given above of morphisms of A∞-modules between ordinary
A-modules, the following proposition states that pullback along EZG ,KAWG ,K respects the
action of C∗(G × K) only up to a system of higher homotopies.

Proposition .. Let A = C∗(G × K), and suppose thatM is a le� A-module, with action
aM . �en (EZG ,KAWG ,K)∗M is also a le� A-module, which we denote (L, aL). �ere is a
quasi-isomorphism f ∶ L → M of A∞-modules over A, with f ∶ L → M equal to idM .

Proof: We construct the levels fn of this A∞-module morphism inductively using the theory
of acyclic models [, Ch. ]. Let H = idk and let H = H, the natural homotopy with
dH +Hd = EZ ○ AW − id. By induction, we construct certain natural maps Hn of degree n
of the form

HnX ,...,Xn ∶ C∗(X × X)⊗⋯⊗ C∗(Xn− × Xn)→ C∗(X ×⋯ × Xn)



 CHAPTER . HOCHSCHILD HOMOLOGY AND COHOMOLOGY

for spaces X, . . . , Xn. Suppose thatHn has been constructed. Write EZ, for EZX×X ,X×X
and so forth. Define

Ĥn+, = EZ,⋯(n+)(id⊗Hn),

Ĥn+,i = C∗(t(i i+))Hn(id⊗i−⊗(C∗(t())EZ(i−)(i),(i+)(i+))⊗ id⊗n−i),  < i < n,

Ĥn+,n+ = EZ⋯(n),(n+)(n+)(Hn ⊗ EZn+,n+AWn+,n+).

Let Ĥn+ = ∑n+i=(−)i+Ĥn+,i . A computation shows that dĤn+ = Ĥn+d, so Ĥn+ is a natural
chain map of degree n. By the naturality of Ĥn+, acyclic models methods apply to show that
Ĥn+ = dHn+ − (−)n+Hn+d for some natural map Hn+ of degree n + , as specified above.
Since

dH, +H,d = EZ,AW, − id = Ĥ,, − Ĥ,, = Ĥ,

the base case n =  also satisfies the property that dHn+−(−)n+Hn+d = Ĥn+. Consequently,
such natural Hn maps exist for all n ≥ .
For n ≥ , let fn+ = a(C∗((mn−G × mn−K )tσn)HnG ,K ,...,G ,K ⊗ id), where σn ∈ Sn takes

(, . . . , n) to (, , . . . , n − , , . . . , n). By the construction of the Hn, these fn are seen to
satisfy the conditions needed for the A∞-module morphism.

Since f = id, which is a quasi-isomorphism of chain complexes, f is a quasi-isomorphism
of A∞-modules. ∎

Corollary .. �ere is a quasi-isomorphism q ∶ (EZ ad)∗(C∗X)→ Ad(X) of A∞-mod-
ules over C∗G.

Proof: Note that a = C∗(aX)EZG×Gop ,X(C∗(id×i)⊗id) givesC∗(X) a le�C∗(G×G)-module
structure such that the module structure of Ad(X) is given by a(C∗δ ⊗ id). Furthermore,
the C∗G-action a′ of (EZ ad)∗(C∗X) is given by

a′ = C∗(aX)EZG×Gop ,X(EZG ,Gop ⊗ id)(id⊗C∗i ⊗ id)(AWG ,G ⊗ id)(C∗δ ⊗ id)

= C∗(aX)EZG×Gop ,X(C∗(id×i)⊗ id)(EZG ,G ⊗ id)(AWG ,G ⊗ id)(C∗δ ⊗ id)

= a((EZG ,GAWG ,GC∗δ)⊗ id).
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�e proposition above then applies to the C∗(G ×G)-module structures a and (EZ ○AW)∗a
on C∗X to yield an A∞ quasi-isomorphism. Pulling this morphism back along the DGA
morphism C∗δ ∶ C∗G → C∗(G ×G) yields the desired quasi-isomorphism of A∞-modules
over C∗G. ∎

Consequently, this quasi-isomorphism of A∞-modules over C∗G induces a quasi-iso-
morphism of chain complexes B(k,C∗G , (EZ ad)∗(C∗X))→ B(k,C∗G , Ad(X)). A similar
argument shows that there exists a quasi-isomorphism (EZ ad)∗C∗X → Ad(X) of right
A∞-modules for X with a right G ×Gop-action. Connecting these isomorphisms yields the
following:

�eorem .. B(k,C∗G , ad∗ C∗Ge) and B(C∗G ,C∗G ,C∗G) are homotopy equivalent as
right C∗Ge-modules.

Proof: Proposition .., Corollary .., and the quasi-isomorphism EZ ∶ C∗Ge → C∗(G ×
Gop) combine to produce the following diagram of weak equivalences and isomorphisms of
right C∗(G)e-modules:

B(k,C∗G , ad∗ C∗Ge)
≃ B(id,id,EZ)

��

B(C∗G ,C∗G ,C∗G)

EZ≃

��

EZ∗B(k,C∗G , (EZ ad)∗C∗(G ×Gop))
B(id,id,q)≃

��
EZ∗B(k,C∗G , Ad(G ×Gop))

EZ≃

��
EZ∗C∗(B(∗,G ,G ×Gop))

C∗(ϕ)
≅

//
EZ∗C∗(B(G ,G ,G))

C∗(γ)
oo

Consequently, B(k,C∗G , ad∗ C∗Ge) and B(C∗G ,C∗G ,C∗G) are related by a zigzag of weak
equivalences of C∗Ge-modules. Since they are both semifree, and hence cofibrant, C∗Ge-
modules, the remarks in Section .. imply that they are in fact homotopy equivalent. ∎

We now complete the proof of�eorem ...
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Proof (�eorem ..): By Corollary .., Corollary .., and the naturality of this extended
functoriality of Ext and Tor with respect to evaluation, we obtain the diagram

CH∗(C∗ΩX) ≃ // H●(X; ad C∗ΩXe))
ev[X]≃

��

q∗
≃

// H●(X; Ad(ΩX))
ev[X]≃

��
CH∗+d(C∗ΩX) ≃ // H●+d(X; ad C∗ΩXe))

q∗
≃

// H●+d(X; Ad(ΩX))

of weak equivalences.�e outside of the diagram then provides the diagram of�eorem ...∎

We note also that these techniques extend the multiplication map µ ∶ Ad(G)⊗Ad(G)→
Ad(G) to an A∞ map on Ad(G) that is compatible with the comultiplication on C∗G:

Proposition .. �ere is a morphism of A∞-modules µ̃ ∶ ∆∗(Ad(G)⊗Ad(G))→ Ad(G)
with µ̃ = µ ∶ C∗G ⊗ C∗G → C∗G.

Proof: Define µ̃ as the following composite of A-module and A∞-A-module morphisms,
where f is the A∞-module morphism from Prop. ..:

∆∗(Ad(G)⊗Ad(G)) EZÐ→ ∆∗EZ∗(C∗(Gc ×Gc)) = C∗(δ)∗(EZ ○ AW)∗(C∗(Gc ×Gc))
fÐ→ C∗(δ)∗(C∗(Gc ×Gc)) = C∗(δ∗(Gc ×Gc))
C∗(m)ÐÐÐ→ C∗(Gc)

Since f = id, µ̃ = C∗(m) ○ EZ = µ. ∎

We use this multiplication map in Chapter  to related the D isomorphism to a suitable
notion of cap product in Hochschild homology and cohomology.



Chapter 

BV Algebra Structures

. Multiplicative Structures

As before, now let M be a closed, k-oriented manifold of dimension d. We now investi-
gate whether the isomorphism between H∗+d(LM) and HH∗(C∗ΩM) established in Corol-
lary .. is one of rings, taking the Chas-Sullivan product on H∗+d(LM) to the Hochschild
cup product on HH∗(C∗ΩM). To do so, we must examine a homotopy-theoretic construc-
tion of the Chas-Sullivan product on the spectrum LM−TM and relate it to the ring spectrum
structure of the topological Hochschild cohomology of the suspension spectrum S[ΩM].
Again treatingΩM as a topological groupG, we use the function spectrum FG(EG+, S[Gc]) as
an intermediary, and we adapt some of the techniques of Abbaspour, Cohen, and Gruher []
and Cohen and Klein [] to compare the ring spectrum structures. Smashing with the
Eilenberg-Mac Lane spectrum and passing back to the derived category of chain complexes
over k then recovers our earlier chain-level equivalences.

. Fiberwise Spectra and Atiyah Duality

We review some of the fundamental constructions and theorems in the theory of fiberwise
spectra discussed in [].

Definition .. Let X be a topological space, and let Top /X be the category of spaces over
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X. Let RX be the category of retractive spaces over X: such a space Y has maps sY ∶ X → Y
and rY ∶ Y → X such that rY sY = idX . Both categories are enriched over Top. Furthermore,
there is a forgetful functor uX ∶ RX → Top /X with a le� adjoint vX given by vX(Y) = Y ∐ X,
with X → Y ∐ X the inclusion. We o�en denote vX(Y) as Y+ when X is clear from context.
Given Y ∈ Top /X, its unreduced fiberwise suspension SXY is the doublemapping cylinder

X ∪ Y × I ∪ X; note this determines a functor SX ∶ Top /X → Top /X. Given Y ∈ RX , its
(reduced) fiberwise suspension ΣXY is SXY ∪SXX X. �is construction also determines a
functor ΣX ∶ RX → RX .

Given Y , Z ∈ RX , define their fiberwise smash product Y ∧X Z as the pushout of X ←
Y ∪X Z → Y ×X Z, where the map Y ∪X Z → Y ×X Z takes y to (y, sZrY y) and z to (sY rZz, z).
�e fiberwise smash product then defines a functor ∧X ∶ RX × RX → RX making RX a
symmetric monoidal category, with unit S × X. Furthermore, ΣXY ≅ (S × X) ∧X Y . ∎

�e notion of fiberwise reduced suspension is key in constructing spectra fibered over X.

Definition .. A fibered spectrum E over X is a sequence of objects E j ∈ RX for j ∈ N
together with maps ΣXE j → E j+ in RX .

Given Y ∈ RX , its fiberwise suspension spectrum is the spectrum Σ∞X Y with jth space
defined by Σ jXY , with the structure maps given by the identification ΣX(Σ

j

XY) ≅ Σ
j+
X Y . ∎

Spectra fibered over X form a model category, with notions of weak equivalences, cofibra-
tions, and fibrations arising as in the context of traditional spectra (i.e., spectra fibered over a
point ∗). Given a spectrum E fibered over X, one can produce covariant and contravariant
functors from Top /X to spectra as follows.

Definition .. Let E be a spectrum fibered over X, and take Y ∈ Top /X. Assume E to
be fibrant in the model structure of such fibered spectra. Define the spectrum H●(Y ;E)
to be the homotopy cofiber of the map Y → Y ×X E. Define H●(Y ;E) levelwise to be the
space HomTop /X(Y c , E j) in level j, where Y c is a functorial cofibrant replacement for Y in
the category Top /X.
Since both of these constructions are functorial in Y , they determine functors H●(−;E)

and H●(−;E) which we call homology and cohomology with E-coefficients. ∎
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We use these notions of spectrum-valued homology and cohomology functors to express
a form of Poincaré duality. First, however, we must explain how to twist a fibered spectrum
over X by a vector bundle over X.

Definition .. Let E be a spectrum fibered over X and let ξ be a vector bundle over X.
Define the twist of E by ξ, ξE, levelwise by (ξE) j = S ξ ∧X E j, where S ξ is the sphere bundle
over X given by one-point compactification of the fibers of ξ. By introducing suspensions
appropriately, the twist of E by a virtual bundle ξ is defined analogously. ∎

Poincaré or Atiyah duality can now be expressed in the following form:

�eorem .. Let N be a closed manifold of dimension d with tangent bundle TN , and let
−TN denote the virtual bundle of dimension −d representing the stable normal bundle of N .
Let E be a spectrum fibered over N .�en there is a weak equivalence of spectra

H●(N ; −TNE) ≃ H●(N ;E). (..)

Furthermore, this equivalence is natural in E. ∎

.. �e Chas-Sullivan Loop Product

We recall a homotopy-theoretic construction of the Chas-Sullivan loop product from [] in
terms of umkehr maps on generalized�om spectra, and we then illustrate how this loop
product is expressed in [] using fiberwise spectra and fiberwise Atiyah duality.

Let M be a smooth, closed d-manifold, and note that LM is a space over M via the
evaluation map at  ∈ S, ev ∶ LM → M. Let L∞M be the space of maps of the figure-eight,
S ∨ S, intoM.�en

L∞M
∆̃ //

ev
��

LM × LM
ev× ev

��
M

∆ // M ×M
is a pullback square. Furthermore, the basepoint-preserving pinch map S → S ∨ S induces
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a map γ of spaces overM:
L∞M

γ //

ev
��

LM

ev
��

M M

Since the map ∆̃ is the pullback of a finite-dimensional embedding of manifolds, it induces a
collapse map

∆! ∶ (LM × LM)+ → L∞Mν∆ ,

where ν∆ here is the pullback along ev of the normal bundle ν∆ to the embedding ∆ ∶ M →
M ×M.�is normal bundle is isomorphic to TM, the tangent bundle toM.�is collapse
map is compatible with the formation of the�om spectra of a stable vector bundle ξ on
LM × LM. Taking ξ = −TM × −TM, and noting that ∆∗(−TM × −TM) = −TM ⊕ −TM,
this gives an umkehr map

∆! ∶ (LM × LM)−TM×−TM → L∞M−TM .

Composing ∆! with the smash product map LM−TM ∧ LM−TM → (LM × LM)−TM×−TM and
the map γ−TM ∶ L∞M−TM → LM−TM induced by γ gives a homotopy-theoretic construction
of the loop product

○ ∶ LM−TM ∧ LM−TM → LM−TM .

A k-orientation of M induces a�om isomorphism LM−TM ∧Hk ≅ Σ−dΣ∞LM+ ∧Hk, so
passing to spectrum homotopy groups gives the loop product on homology with the expected
degree shi�.

We now consider this loop product from the perspective of fiberwise spectra. Since
ev ∶ LM → M makes LM a space overM, LM+ = LM ∐M is a retractive space overM, and
iterated fiberwise suspensions of LM over M produce a fiberwise spectrum Σ∞MLM+ over
M. Recall from Definition .. that for a spectrum E fibered over X and a space Y over X,
H●(Y ;E) = (Y ×X E) ∪ CY and H●(Y ;E) is the spectrum of maps MapX(Y , E f ) of Y over
X into a fibrant replacement for E.

Proposition .. ([]) As spectra, LM−TM ≃ H●(M; −TMΣ∞MLM+). By fiberwise Atiyah
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duality,
LM−TM ≃ H●(M; Σ∞MLM+).

Since LM is a fiberwise A∞-monoid overM, Σ∞MLM+ is a fiberwise A∞-ring spectrum, and
so the spectrum of sections H●(M; Σ∞MLM+) is also a ring spectrum.�e Chas-Sullivan loop
product on LM−TM arises as the induced product on LM−TM .

Proof: We check that LM−TM ≃ H●(M; −TMΣ∞MLM+). Let ν be an (L − d)-dimensional
normal bundle forM.�e ( j+L)th space of LM−TM is then the�om space LMev∗(ν)⊕є j , the
one-point compactification of ev∗(ν)⊕є j.�e ( j+L)th space of −TMΣ∞MLM+ is S j∧Sν∧MLM+,
which is seen to be the fiberwise compactification of LMev∗(ν)⊕є j overM. ApplyingH●(M;−)
attaches the cone CM to this space along theM-section of basepoints added by the fiberwise
compactification, thus making a space homotopy equivalent to LMev∗(ν)⊕є j .

Fiberwise Atiyah duality then shows that LM−TM ≃ H●(M; Σ∞MLM+).

We compare each step of the original LM−TM construction of the loop product to the ring
spectrum structure on H●(M; Σ∞MLM+). First, since Σ∞MLM+ ∧Σ∞MLM+ ≅ Σ∞M×ML(M ×M)+
as spectra fibered overM ×M, the square

LM−TM ∧ LM−TM
∧ //

≃

��

(L(M ×M))−T(M×M)

≃

��
Γ(Σ∞MLM+) ∧ Γ(Σ∞MLM+) ∧ // Γ(Σ∞M×ML(M ×M)+)

commutes. Next, pullback along ∆ induces a map of spectra

∆● ∶ H●(M ×M , Σ∞M×ML(M ×M)+)→ H●(M , Σ∞M×ML(M ×M)+).

�e universal property of the pullback L∞M induces a homeomorphismMapM×M(M , L(M×
M)+) ≅MapM(M , L∞M+), and thus an equivalence

H●(M , Σ∞M×ML(M ×M)+) ≃ H●(M , Σ∞ML∞M+).
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Hence, the umkehr map diagram

(LM × LM)−T(M×M) ∆! //

≃

��

L∞M−TM

≃

��
H●(M , Σ∞M×ML(M ×M)+) ∆● // H●(M , Σ∞ML∞M+)

commutes. Finally, by the naturality of fiberwise Atiyah duality in the spectrum argument,
the diagram

L∞M−TM
γ−TM //

≃

��

LM−TM

≃

��
H●(M , Σ∞ML∞M+)

γ● // H●(M , Σ∞MLM+)

commutes. ∎

.. Ring Spectrum Equivalences

For notational simplicity, let G be a topological group replacement for ΩX. Furthermore, if
Y is an unbased space, we follow Klein [] in letting S[Y] denote the fibrant replacement of
the suspension spectrum of Y+.�us, the jth space of S[Y] is Q(S j ∧Y+), where Q = Ω∞Σ∞

is the stable homotopy functor. Furthermore, we let E f denote a fibrant replacement for a
spectrum E fibered over a space Z; if the fibers are suspension spectra Σ∞Y+, then the fibers
of E f may be taken to be S[Y].
We establish spectrum-level analogues of the Goodwillie isomorphism BFG and the

isomorphism Λ∗(G ,M).

Proposition .. �ere are equivalences of spectra Γ ∶ S[LM] → S[G] ∧G EG+ and Λ● ∶
S[G] ∧G EG+ → THHS(S[G]).

Proof: We first establish the equivalence Γ. Since G ≃ ΩM, M ≃ BG. Furthermore, LM ≃
LBG over this equivalence, and so Σ∞LM+ ≃ Σ∞LBG+. Next, the well-known homotopy
equivalence LBG ≃ Gc ×G EG shows that

Σ∞LBG+ ≃ Σ∞(Gc ×G EG)+.



.. FIBERWISE SPECTRA AND ATIYAH DUALITY 

Passing to fibrant replacements then gives S[LM] ≃ S[Gc] ∧G EG+.
Take B(G ,G , ∗) = ∣B●(G ,G , ∗)∣ as a model for EG.�en

Wn = S[Gc] ∧G Bn(G ,G , ∗)+

determines a simplicial spectrum with ∣W●∣ = S[Gc] ∧G EG+. Likewise,

Vn = S[G] ∧G×Gop Bn(G ,G ,G)+

determines a simplicial spectrum such that ∣V●∣ ≃ THHS(S[G]). Hence, we show there is an
isomorphism χ● ∶W●

≅Ð→ V● of simplicial spectra. In fact, this map is the composite of the
isomorphism

S[Gc] ∧G Bn(G ,G , ∗)+ ≅ S[G] ∧G×Gop Bn(G ×Gop,G , ∗)+

and S[G] ∧G×Gop ϕL● , where ϕL● is the simplicial homeomorphism B●(G × Gop,G , ∗) →
B●(G ,G ,G) of Proposition ... Explicitly, the χn are given by

χn(a ∧ [g ∣ ⋯ ∣ gn]) = (g⋯gn)a ∧ [g ∣ ⋯ ∣ gn]. ∎

We also produce spectrum-level analogues of the weak equivalences among C∗+d(LM),
RHom∗

C∗G(k, Ad(G)), and CH∗(C∗G). Westerland has shown [] that FG(EG+, Σ∞Gc+) is
a ring spectrum for G a general topological group, and the topological Hochschild cohomol-
ogy THHS(S[G]) of the ring spectrum S[G] is likewise well-known to be a ring spectrum
itself.�e composite isomorphism should be equivalent to Klein’s [] equivalence of spectra
(LX)−τX ≃ THHS(S[ΩX]) for a Poincaré duality space (X , τX), although we make more of
the ring structure explicit here.
We first relate LM−TM and FG(EG+, S[Gc]) as ring spectra.

Proposition .. �ere is an equivalence of ring spectra Ψ ∶ LM−TM → FG(EG+, S[Gc]).

Proof: Recall from Proposition .. that the spectrum

LM−TM ≃ H●(M; −TMΣ∞MLM) ≃ H●(M; Σ∞MLM).
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Since LM ≃ LBG over the equivalenceM ≃ BG, H●(M; Σ∞MLM) and H●(BG; Σ∞BGLBG) are
equivalent spectra. Since LBG ≃ Gc ×G EG, this is equivalent to H●(BG; Σ∞BG(Gc ×G EG)+).
�e jth level of the target spectrum Σ∞BG(Gc ×G EG)+ is the space

(S j × BG) ∧BG ((Gc ×G EG) ∐ BG) ≅ (S j ∧Gc+) ×G EG .

Since the H● construction implicitly performs a fibrant replacement on its target, the jth
space of the spectrum H●(BG; Σ∞BG(Gc ×G EG)+) is MapBG(BG ,Q(S j ∧Gc+) ×G EG).

For a G-space Y , to pass from MapBG(BG ,Y ×G EG) to MapG(EG ,Y), we form the
pullback diagram

Y

��

Y

��
G // (Y ×G EG) ×BG EG //

��

Y ×G EG

��
G // EG

/G //

σ̃

ZZ

BG

σ

[[

Note that (Y ×G EG)×BG EG has a le�G-action coming from the right EG factor. By pullback,
σ ∈MapBG(BG ,Y ×G EG) determines a section σ̃ ∈MapEG(EG , (Y ×G EG) ×BG EG), with
σ̃(e) = (σ([e]), e). Since σ̃(ge) = (σ([ge]), ge) = g ⋅ (σ([e]), e), σ̃ is G-equivariant.

Since EG is a freeG-space, (Y×GEG)×BGEG is homeomorphic toY×EG by ([y, e], e)↦
(y, e). Furthermore, Y × EG has a le� G-action given by ∆∗G(i∗Y × EG), where the pullback
i∗ by the inverse map i for G converts the right G-space Y into a le� G-space. Since

g ⋅ ([y, e], e) = ([yg−, ge], ge)↦ (yg−, ge) = g ⋅ (y, e),

this homeomorphism is G-equivariant with the above le� G-action on (Y ×G EG) ×BG EG.
Hence, σ̃ corresponds to a G-equivariant section σ ′ ∈MapEG(EG ,Y × EG). Since Y × EG is
a product, σ ′ is determines by the projections πEG ○ σ ′ = idEG and πY ○ σ ′, both of which are
G-equivariant maps. Consequently, we obtain the homeomorphismMapBG(BG ,Y ×G EG) ≅
MapG(EG ,Y).

Applying this correspondence levelwise with Y = Q(S j ∧Gc+), this space of sections is
homeomorphic to MapG(EG ,Q(S j ∧Gc+)), the jth space of FG(EG+, S[Gc]).
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We now show that under these equivalences, the product on LM−TM coincides with
that on FG(EG+, S[Gc]). From above, the product on LM−TM is equivalent to that on
H●(M; Σ∞MLM+), given by

H●(M; Σ∞MLM+)∧
∧Ð→ H●(M ×M; Σ∞M×M(LM × LM)+)

∆●MÐ→ H●(M; Σ∞M(L∞M)+)
γ∗Ð→ H●(M; Σ∞M(LM)+).

Since LM ≃ LBG over M ≃ BG, and since LBG ≃ Gc ×G EG as fiberwise monoids over
BG [, App. A], this sequence is equivalent to

H●(BG; Σ∞BG(Gc ×G EG)+)∧
∧Ð→ H●(B(G ×G), Σ∞B(G×G)((Gc ×Gc) ×G×G E(G ×G))+)

B(∆G)●ÐÐÐ→ H●(BG , Σ∞BG(∆∗G(Gc ×Gc) ×G EG)+)
µ∗Ð→ H●(BG , Σ∞BG(Gc ×G EG)+)

Finally, passing to equivariant maps into the fibers, this sequence is equivalent to

FG(EG+, S[Gc])∧
∧Ð→ FG×G(E(G ×G)+, S[Gc ×Gc])

E(∆G)∗○∆∗GÐÐÐÐÐ→ FG(EG+, S[∆∗G(Gc ×Gc)]))
S[µ]∗ÐÐ→ FG(EG+, S[Gc]).

�is is the descripton given by Westerland [] of the ring structure of FG(EG+, S[Gc]). ∎

We now relate FG(EG+, S[Gc]) and THHS(S[G]) as ring spectra.

Proposition .. �ere is an equivalence of ring spectra Λ●(G) ∶ FG(EG+, S[Gc]) →
THHS(S[G]).

Proof: We first show that FG(EG+, S[Gc]) ≃ THHS(S[G]) as spectra. As above, take
B(G ,G , ∗) as a model of EG with the usual le� G-action. Let

Zn =MapG(Bn(G ,G , ∗), S[Gc])

be the corresponding cosimplicial spectrum; then FG(EG+, S[Gc]) = TotZ●. Similarly, the
endomorphismoperad FS(S[G]∧●, S[G]) of S[G] is an operadwithmultiplication on account
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of the unit and multiplication maps of S[G], and so by results of McClure and Smith [], it
admits a canonical cosimplicial structure. Furthermore, its totalization is THHS(S[G]). Let

Y n =Map(Gn , S[G]),

which is equivalent to FS(S[G]∧n , S[G]).�en TotY● ≃ THHS(S[G]). Consequently, we
need only exhibit an isomorphism ψ● ∶ Z● → Y● of cosimplicial spectra.
Since Gc = ad∗G, the equivariance adjunction between G-spaces and G × Gop-spaces

followed by pullback along the simplicial homeomorphism γL● of Proposition .. gives that

MapG(B●(G ,G , ∗), S[Gc]) ≅MapG×Gop(B●(G ,G ,G), S[G])

as cosimplicial spectra. Finally, by the freeness of each Bq(G ,G ,G) as a (G ×Gop)-space,

MapG×Gop(B●(G ,G ,G), S[G]) ≅Map(G●, S[G]),

also as cosimplicial spectra. Explicitly, for a ∈ Z p, we have that

ψp(a)([g ∣ ⋯ ∣ gp]) = a([g ∣ ⋯ ∣ gp])(g⋯gp).

We now show this equivalence is one of ring spectra. Since the cosimplicial structure of
Y● comes from an operad with multiplication, it has a canonical cup-pairing Y p ∧Y q → Y p+q

coming from the operad composition maps and the multiplication. �erefore, TotY● ≃
THHS(S[G]) is an algebra for an operad C weakly equivalent to the little -cubes operad.
Hence, THHS(S[G]) is an E-ring spectrum, and a fortiori an A∞-ring spectrum.
We can also describe the product on FG(EG+, S[Gc]) cosimplicially.�e diagonalmap ∆G

gives a canonical G-equivariant diagonal map ∆ ∶ B●(G ,G , ∗) → B●(G ,G , ∗) × B●(G ,G , ∗);
on realizations, this gives the G-equivariant map E(∆G) ∶ EG → EG × EG. �is diagonal
map induces a sequence of cosimplicial maps

MapG(Bq(G ,G , ∗), S[Gc]) ∧MapG(Bq(G ,G , ∗), S[Gc])

→MapG×G(Bq(G ,G , ∗) × Bq(G ,G , ∗), S[Gc ×Gc])→MapG(Bq(G ,G , ∗), S[Gc])
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when composed with pullback along ∆G and with S[µ]. �ese assemble to a cosimplicial
multiplication map TotZ● ∧TotZ● → TotZ●, which produces the strictly associative product
map on FG(EG+, S[Gc]).

�is cosimplicial map induces a canonical cup-pairing ∪ ∶ Z p ∧Zq → Z p+q, and as a result
there is a map TotZ● ∧ TotZ● → TotZ● for each u with  < u < . Each such map is also
homotopic to the strict multiplication on TotZ●. Furthermore, these maps assemble into an
action of the little -cubes operad on TotZ●, making it an A∞-ring spectrum.

Consequently, we need to show that the isomorphism ψ● ∶ Z● → Y● of cosimplicial
spectra induces an isomorphism of these two cup-pairings. We do that explicitly using the
definition of ψ● and these cup-pairings. If a ∈ Z p and b ∈ Zq, then

(a ∪ b)(g[g ∣ ⋯ ∣ gp+q]) = a(g[g ∣ ⋯ ∣ gp])b(g g⋯gp[gp+ ∣ ⋯ ∣ gp+q])

= ga([g ∣ ⋯ ∣ gp])g⋯gpb([gp+ ∣ ⋯ ∣ gp+q])(g⋯gp)−g−.

Hence,

(ψp(a) ∪ ψq(b))([g ∣ ⋯ ∣ gp+q]) = ψ(a)([g ∣ ⋯ ∣ gp])ψ(b)([gp+ ∣ ⋯ ∣ gp+q])

= a([g ∣ ⋯ ∣ gp])(g⋯gp)b([gp+ ∣ ⋯ ∣ gp+q])(gp+⋯gp+q)

= (a ∪ b)([g ∣ ⋯ ∣ gp+q])(g⋯gp+q)

= ψp+q(a ∪ b)([g ∣ ⋯ ∣ gp+q]).

Consequently, ψp(a) ∪ ψq(b) = ψp+q(a ∪ b), so ψ induces an isomorphism of cup-pairings,
as desired. We conclude that the A∞-ring structures on FG(EG+, S[Gc]) and THHS(S[G])
are equivalent. ∎

Naturally, we want to connect these equivalences of spectra to the quasi-isomorphisms of
k-chain complexes determined above. Smashing these spectra with Hk, the Eilenberg-Mac
Lane spectrum of k, and using the smallness of EG as aG-space whenM is a Poincaré duality
space,

FG(EG+, S[Gc]) ∧Hk ≃ FG(EG+, S[Gc] ∧Hk) ≃ FG+∧Hk(EG+ ∧Hk, S[Gc] ∧Hk)
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and THHS(S[G]) ≃ THHHk(S[G] ∧Hk).�us,

LM−TM ∧Hk ≃ FS[G]∧Hk(EG+ ∧Hk, S[Gc] ∧Hk) ≃ THHHk(S[G] ∧Hk).

Furthermore, sinceM is k-oriented, LM−TM ∧Hk ≃ Σ−dS[LM] by the�om isomorphism.
We relate these spectrum-level constructions back to the chain-complex picture above.

By results of Shipley [], there is a zigzag of Quillen equivalences between the model
categories of Hk-algebras and DGAs over k; the derived functors between the homotopy
categories are denoted Θ ∶ Hk-alg→ DGA/k andH ∶ DGA/k → Hk-alg. Furthermore, this
correspondence induces Quillen equivalences between A-Mod andHA-Mod for A a DGA
over k, and between B-Mod and ΘB-Mod for B an Hk-algebra.
We also have that Θ(S[G]∧Hk) is weakly equivalent to C∗(G; k), and so their categories

of modules are also Quillen equivalent, since Ch(k) exhibits Quillen invariance for mod-
ules [, .]. Consequently, the categories of modules over S[G]∧Hk and over C∗(G; k) are
Quillen equivalent. Since EG+ ∧Hk is equivalent to C∗(EG; k) ≃ k, the equivalence above
gives the quasi-isomorphisms

C∗+d(LM) ≃ RHomC∗ΩM(k, Ad(ΩM)) ≃ CH∗(C∗ΩM)

we developed above. In paticular, we recover the derived Poincaré duality map as the com-
posite of the Atiyah duality map and the�om isomorphism. Applying H∗, we recover the
isomorphisms

H∗+d(LM) ≃ Ext∗C∗ΩM(k, Ad(ΩM)) ≃ HH∗(C∗ΩM).

We summarize these results in the following theorem:

�eorem .. Any model for RHomC∗ΩM(k, Ad(ΩM)) is an algebra up to homotopy (i.e.,
a monoid in HoCh(k)) coming from the ring spectrum structure of FΩM(EΩM+, S[ΩMc]).
Furthermore, this algebra is equivalent to the A∞-algebra CH∗(C∗ΩM), and in homology
induces the loop product on H∗+d(LM).

�erefore, the isomorphism BFG ○ D ∶ HH∗(C∗ΩM) → H∗+d(LM) is one of graded
algebras, taking the Chas-Sullivan loop product to the Hochschild cup product. ∎
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In particular, the model HomA(B(k,A,A), Ad(G)) for A = C∗G has an A∞-algebra
structure arising from theA-coalgebra structure of B(k,A,A) [] and from themorphism µ̃ ∶
∆∗(Ad⊗Ad)→ Ad of A∞-modules over A of Proposition ...�is A∞-algebra structure
should be equivalent to that of CH∗(A,A) under the equivalences of Chapter .

. Gerstenhaber and BV Structures

.. Relating the Hochschild and Ext/Tor cap products

We introduce the notion of a cap-pairing between simplicial and cosimplicial spaces (or
spectra), modeled on the cap product of Hochschild cochains on chains, in analogy with the
cup-pairing of McClure and Smith.

Definition .. Let X● be a cosimplicial space, and let Y● and Z● be simplicial spaces. A
cap-pairing c ∶ (X●,Y●)→ Z● is a family of maps

cp,q ∶ X p × Yp+q → Zq

satisfying the following relations:

cp,q(d i f , x) = cp−,q( f , dix),  ≤ i ≤ p,

cp,q(d p f , x) = dcp−,q+( f , x),

cp−,q( f , dp+ix) = di+cp−,q+( f , x),  ≤ i < q,

cp,q(s i f , x) = cp+,q( f , six),  ≤ i ≤ p,

cp,q( f , sp+ix) = sicp+,q−( f , x),  ≤ i < q.

Note all of these relations hold in Zq.
A morphism of cap-pairings from c ∶ (X●,Y●) → Z● to c′ ∶ (X′●,Y ′●) → Z′● is a triple

consisting of a cosimplicial map µ ∶ X → X′ and simplicial maps µ ∶ Y → Y ′ and µ ∶ Z → Z′

such that
µ ○ cp,q = c′p,q ○ (µ × µ) for all p, q.

Analogous constructions pertain to simplicial and cosimplicial spectra. ∎
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Just as a cup-pairing ϕ ∶ (X●,Y●)→ Z● induces a family ofmaps TotX●×TotY● → TotZ●,
a cap-pairing induces a map TotX● × ∣Y●∣→ ∣Z●∣:

Proposition .. Let c ∶ (X●,Y●)→ Z● be a cap-pairing.�en for each u with  < u < , c
induces a map

c̄u ∶ TotX● × ∣Y●∣→ ∣Z●∣.

A morphism (µ, µ, µ) ∶ c → c′ of cap-pairings induces a commuting diagram

TotX● × ∣Y●∣
Tot µ×∣µ ∣

��

c̄u // ∣Z●∣
∣µ ∣

��
TotX′● × ∣Y ′● ∣

c̄′u // ∣Z′●∣

Proof: �is follows from the same prismatic subdivision techniques used [] to produce the
maps ϕ̄u ∶ TotX● × TotY● → TotZ● from a cup-pairing ϕ ∶ (X●,Y●)→ Z●. For n ≥ , define

Dn =
⎛
⎝
n

∐
p=
∆p × ∆n−p

⎞
⎠
/ ∼,

where ∼ denotes the identifications (d p+s, t) ∼ (s, dt) for s ∈ ∆p and t ∈ ∆n−p−. For each u,
let σn(u) ∶ Dn → ∆n be defined on (s, t) ∈ ∆p × ∆n−p by

σn(u)(s, t) = (us, . . . , usp−, usp + ( − u)t, ( − u)t, . . . , ( − u)tn−p).

�en for  < u < , σn(u) is a homeomorphism. We use σn(u) to define the map c̄u.
Take f ∈ TotX● and (s, y) ∈ ∣Y●∣, and recall that f is a sequence ( f, f, . . . ) of functions
fn ∶ ∆n → Xn commuting with the cosimplicial structure maps of ∆● and X●. Suppose
s ∈ ∆p+q and y ∈ Yp+q, and that σn(u)−(s) = (s′, s′′) ∈ ∆p × ∆q ⊂ Dp+q.�en

c̄u( f , (s, y)) = (s′′, cp,q( f (s′), y)) ∈ ∆q × Zq .

�e properties in the definition of the cap-pairing ensure that this map is well-defined: the
second face-coface relation shows that this map is well-defined if a different representative is
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taken for σn(u)−(s), and the other relations show that the map is well-defined for different
representatives of (s, y) ∈ ∣Y●∣.

�e naturality of these constructions in the simplicial and cosimplicial objects then shows
that a morphism of cap-pairings induces such a commuting diagram. ∎

We now apply this cap-pairing framework to the simplicial and cosimplicial spectra
above.

Proposition .. S[Gc] ∧G EG+ is a right module for the ring spectrum FG(EG+, S[Gc]).
Under the equivalences above, this module structure is equivalent to the THHS(S[G])-
module structure of THHS(S[G]).

Proof: We first explain the module structure of S[Gc] ∧G EG+ in terms of a cap-pairing
between cosimplicial and simplicial spectra. Recall that FG(EG+, S[Gc]) = TotZ●, where
Zn = MapG(Bn(G ,G , ∗), S[Gc]), and that S[Gc] ∧G EG+ ≃ ∣W●∣, where Wn = S[Gc] ∧G
Bn(G ,G , ∗)+.�e cap-pairing is then a collection of compatible maps

cp,q ∶ Z p ∧Wp+q →Wq

given on elements a ∈ Z p and s ∧ g[g ∣ . . . ∣ gp+q] ∈Wp+q by

cp,q(a, (s ∧ g[g ∣ . . . ∣ gp+q])) = sa(g[g ∣ . . . ∣ gp]) ∧ g g⋯gp[gp+ ∣ . . . ∣ gp+q].

As with the cup-pairing on Z●, this map comes from the simplicial diagonal on B∗(G ,G , ∗)
composed with the Alexander-Whitney approximation, and then applying the map to the le�
factor of the diagonal.

We show that this cap-pairing is compatible with the cup-pairing on Z● giving rise to the
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ring structure on FG(EG+, S[Gc]), and in fact makes S[Gc] ∧G EG+ a right FG(EG+, S[Gc])-
module. Take a ∈ Z p, b ∈ Zq, and c = s ∧ g[g ∣ . . . ∣ gp+q+r] ∈Wp+q+r.�en

cq,r(b, cp,q+r(a, c)) = cq,r(b, sa(g[g ∣ . . . ∣ gp]) ∧ g g⋯gp[gp+ ∣ . . . ∣ gp+q+r])

= sa(g[g ∣ . . . ∣ gp])b(g g⋯gp[gp+ ∣ . . . ∣ gp+q])

∧ g g⋯gp+q[gp+q+ ∣ . . . ∣ gp+q+r])

= s(a ∪ b)(g[g ∣ . . . ∣ gp+q]) ∧ g g⋯gp+q[gp+q+ ∣ . . . ∣ gp+q+r]

= cp+q,r(a ∪ b, c)

Similarly, the right THHS(S[G])-module structure of THHS(S[G]) via the Hochschild
cap product can be described in terms of these cap pairings. As above, we have that TotY● ≃
THHS(S[G]), where Y n = Map(Gn , S[G]), and that ∣Vn∣ ≃ THHS(S[G]), where Vn =
S[G] ∧G×Gop Bn(G ,G ,G)+. Levelwise, Vn = S[G] ∧ (Gn)+.�en there is a cap-pairing

hp,q ∶ Y p ∧ Vp+q → Vq

given by

hp,q( f , a ∧ [g ∣ . . . ∣ gp+q]) = a f ([g ∣ ⋯ ∣ gp]) ∧ [gp+ ∣ . . . ∣ gp+q].

�is cap-pairing thus comes from evaluating the p-cochain on the first p factors of the
(p + q)-chain. A simple calculation shows that this cap-pairing is compatible with the cup-
pairing on Y● and therefore induces the desired right THHS(S[G])-module structure on
THHS(S[G]).

We now show that the isomorphisms of simplicial and cosimplicial spectra ψ● ∶ Z● → Y●

and χ● ∶ W● → V● are compatible with the cap-pairings c and h. Hence, we check that
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hp,q ○ (ψp ∧ χp+q) = χqcp,q:

hp,q(ψp( f ) ∧ χp+q(a ∧ [g ∣ ⋯ ∣ gp+q]))

= (g⋯gp+q)−aψp( f )([g ∣ ⋯ ∣ gp]) ∧ [gp+ ∣ ⋯ ∣ gp+q]

= (g⋯gp+q)−a f ([g ∣ ⋯ ∣ gp])g⋯gp ∧ [gp+ ∣ ⋯ ∣ gp+q]

= χq((g⋯gp)−a f ([g ∣ ⋯ ∣ gp])g⋯gp ∧ [gp+ ∣ ⋯ ∣ gp+q])

= χq(a f ([g ∣ ⋯ ∣ gp]) ∧ g⋯gp[gp+ ∣ ⋯ ∣ gp+q])

= χq(cp,q( f ∧ (a ∧ [g ∣ ⋯ ∣ gp+q]))).

Since this holds, the right action of FG(EG+, S[Gc]) on S[Gc] ∧G EG+ is equivalent to that
of THHS(S[G]) on THHS(S[G]). ∎

Under the equivalences of Section .., these module structures should be equivalent to
Klein’s module structure of S[LM] over the A∞-ring spectrum LM−TM [].

Again applying −∧Hk and passing to the derived category of chain complexes, we obtain
that Ad(ΩM)⊗LC∗ΩM k is a right A∞-module for the A∞-algebra RHomC∗ΩM(k, Ad(ΩM)),
and that this module structure is equivalent to that of the Hochschild cochains acting on the
Hochschild chains.

We now relate these cap products to the evaluation map and to the isomorphism D.

Proposition .. View η ∶ k → Ad(ΩM) as a map of C∗ΩM-modules, inducing a map η∗ ∶
TorC∗ΩM∗ (k, k)→ TorC∗ΩM∗ (Ad, k).�en for z ∈ TorC∗ΩM∗ (k, k), f ∈ Ext∗C∗ΩM(k, Ad(ΩM)),

evz( f ) = (−)∣ f ∣∣z∣η∗(z) ∩ f .

Proof: By the form of the cap-pairing on the spectrum level, the cap product

Ext∗C∗ΩM(k, Ad(ΩM))⊗ TorC∗ΩM∗ (Ad(ΩM), k)→ TorC∗ΩM∗ (Ad(ΩM), k)
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is given by the sequence of maps

Ext∗C∗ΩM(k, Ad)⊗ TorC∗ΩM∗ (Ad, k) ≅Ð→ Ext∗C∗ΩM(k, Ad)⊗ TorC∗ΩM∗ (Ad, ∆∗(k ⊗ k))
evÐ→ TorC∗ΩM∗ (Ad, ∆∗(Ad⊗k)) ≅Ð→ TorC∗ΩM∗ (∆∗(Ad⊗Ad), k) µ̃∗Ð→ TorC∗ΩM∗ (Ad, k),

where µ̃ is the morphism of A∞-modules over C∗ΩM given in Prop. ... By introducing
an extra k factor via ∆k and then collapsing it via λ, ev ∶ Ext∗C∗ΩM(k, Ad)⊗TorC∗ΩM∗ (k, k)→
TorC∗ΩM∗ (Ad, k) is similarly given by

Ext∗C∗ΩM(k, Ad)⊗ TorC∗ΩM∗ (k, k) ≅Ð→ Ext∗C∗ΩM(k, Ad)⊗ TorC∗ΩM∗ (k, ∆∗(k ⊗ k))
evÐ→ TorC∗ΩM∗ (k, ∆∗(Ad⊗k)) ≅Ð→ TorC∗ΩM∗ (∆∗(k ⊗Ad), k) λ∗Ð→ TorC∗ΩM∗ (Ad, k)

�en for a given f ∈ Ext∗C∗ΩM(k, Ad(ΩM)), the sequence of squares

Tor(k, k) //

η∗
��

Tor(k, ∆∗(k ⊗ k)) ev( f )//

η∗
��

Tor(k, ∆∗(Ad⊗k)) //

η∗
��

Tor(∆∗(k ⊗Ad), k)
η∗

��
Tor(Ad, k) // Tor(Ad, ∆∗(k ⊗ k))ev( f )// Tor(Ad, ∆∗(Ad⊗k)) // Tor(∆∗(Ad⊗Ad), k)

commutes. Since µ is unital, µ(η ○Ad) = λ ∶ ∆∗(k ⊗Ad)→ Ad as maps of chain complexes.
Hence, applying TorC∗ΩM∗ (−, k) to the composite

∆∗(k ⊗Ad) η⊗AdÐÐ→ ∆∗(Ad⊗Ad) µ̃Ð→ Ad

gives TorC∗ΩM∗ (λ, k). Taking into account the swap between the Ext and Tor tensor factors
for the cap product, this establishes the identity evz( f ) = (−)∣ f ∣∣z∣η∗(z) ∩ f . ∎

Proposition .. �e isomorphism D ∶ HH∗(C∗ΩM)→ HH∗+d(C∗ΩM) is given by

D( f ) = (−)∣ f ∣dzH ∩ f ,
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where zH ∈ HHd(C∗ΩM) is the image of [M] ∈ TorC∗ΩM
d

(k, k) under the maps

TorC∗ΩM∗ (k, k) Tor(η,k)ÐÐÐÐ→ TorC∗ΩM∗ (Ad(ΩM), k) Λ−∗Ð→ HH∗(C∗ΩM).

Proof: By construction, D( f ) = Λ−∗ (ev[M](Λ∗ f )). By the above proposition,

Λ−∗ (ev[M](Λ∗ f )) = (−)∣ f ∣dΛ−∗ (η∗[M] ∩ Λ∗ f )

= (−)∣ f ∣dΛ−∗ (η∗[M]) ∩ f = (−)∣ f ∣dzH ∩ f . ∎

Proposition .. B(zH) = .

Proof: Observe that we have the following commutative diagram:

H∗(M)
c∗

��

≅ // HH∗(C∗ΩM , k)
Λ∗
≅

// TorC∗ΩM∗ (k, k)
Tor(η,k)

��
H∗(LM) BFG

≅
// HH∗(C∗ΩM ,C∗ΩM) Λ∗

≅
// TorC∗ΩM∗ (Ad(ΩM), k)

where c ∶ M → LM is the map sending x ∈ M to the constant loop at x. �en B(zH) =
BFG(∆(c∗[M])). �e trivial action of S on M induces a degree- operator ∆ on H∗(M)
that is identically . Since c is S-equivariant with respect to these actions, ∆ ○ c∗ = c∗ ○∆ = ,
so B(zH) = . ∎

.. �e BV structures on HH∗(C∗ΩM) and String Topology

Now that we have shown that D arises as a cap product in Hochschild homology, we may
employ an algebraic argument of Ginzburg [], with sign corrections by Menichi [], to
show that this gives HH∗(C∗ΩM) the structure of a BV algebra.
For any DGA A, the cup product on HH∗(A) is graded-commutative, so the right cap-

product action of HH∗(A) on HH∗(A) also defines a le� action, with a ⋅ z = (−)∣a∣∣z∣z ∩ a
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for z ∈ HH∗(A) and a ∈ HH∗(A). Hence, each a ∈ HH∗(A) defines a degree-∣a∣ operator ia
on HH∗(A) by ia(z) = a ⋅ z.�en D(a) = a ⋅ zH = ia(zH).
Similarly, for each a ∈ HH∗(A), there is a “Lie derivative” operator La on HH∗(A) of

degree ∣a∣ + , and there is the Connes B operator of degree . It is well known that these
operations make (HH∗(A),HH∗(A)) into a calculus, an algebraic model of the interaction
of differential forms and polyvector fields on a manifold. Tamarkin and Tsygan [] in fact
extend this calculus structure to a notion of∞-calculus on the Hochschild chains and cohains
of A, which descends to the usual calculus structure on homology, and they provide explicit
descriptions of the operations on the chain level.�e Lie derivative in this calculus structure
is the graded commutator

La = [B, ia],

which for a, b ∈ HH∗(A) satisfies the relations

i[a,b] = (−)∣a∣+[La , ib] and La∪b = La ib + (−)∣a∣iaLb ,

where [a, b] is the usual Gerstenhaber Lie bracket in HH∗(A).

�eorem .. HH∗(C∗ΩM) is a BV algebra under the Hochschild cup product and the
operator κ = −D−BD.�e Lie bracket induced by this BV algebra structure is the standard
Gerstenhaber Lie bracket.

Proof: Recall that D(a) = a ⋅ zH , so B(a ⋅ zH) = −κ(a) ⋅ zH .�en

D([a, b]) = i[a,b](zH)

= (−)∣a∣+(La ib − (−)(∣a∣−)∣b∣ibLa)(zH)

= (−)∣a∣+(Bia ib − (−)∣a∣iaBib − (−)(∣a∣−)∣b∣ibBia + (−)(∣a∣−)∣b∣+∣a∣ib iaB)(zH)

= (−)∣a∣+B((a ∪ b) ⋅ zH) + a ⋅ B(b ⋅ zH) + (−)∣a∣∣b∣+∣b∣+∣a∣b ⋅ B(a ⋅ zH)

= (−)∣a∣κ(a ∪ b) ⋅ zH − (a ∪ κ(b)) ⋅ zH − (−)∣a∣∣b∣+∣b∣+∣a∣(b ∪ κ(a)) ⋅ zH
= ((−)∣a∣κ(a ∪ b) − (−)∣a∣κ(a) ∪ b − a ∪ κ(b)) ⋅ zH

so therefore
[a, b] = (−)∣a∣κ(a ∪ b) − (−)∣a∣κ(a) ∪ b − a ∪ κ(b).



.. GERSTENHABER AND BV STRUCTURES 

Since HH∗(C∗ΩM) is a Gerstenhaber algebra under ∪ and [ , ], this identity shows that it is
a BV algebra under ∪ and κ. ∎

�eorem .. Under the isomorphism BFG ○ D ∶ HH∗(C∗ΩM) → H∗+d(LM), the BV
algebra structure above coincides with the BV algebra structure of string topology.

Proof: Wehave seen that the isomorphismHH∗(C∗ΩM) ≅ H∗+d(LM) coming from spectra
coincides with the composite isomorphism BFG ○ D, and so the latter takes the Hochschild
cup product to the Chas-Sullivan loop product. Furthermore,

BFG ○ D ○ κ = −BFG ○ B ○ D = −∆ ○ BFG ○ D,

so BFG ○ D takes κ to −∆, the negative of the BV operator on string topology.
Tamanoi gives an explicit homotopy-theoretic construction of the loop bracket and BV

operator in string topology []. In his Section , he notes that the bracket associated to
the usual ∆ operator is actually the negative −{−,−} of the loop bracket, as defined using
�om spectrum constructions. Consequently, −∆ should be the correct BV operator on
H∗(LM), since the sign change carries through to give {−,−} as the bracket induced from
the BV algebra structure. �en the Hochschild Lie bracket [−,−] does correspond to the
loop bracket under this isomorphism.
We conclude that BFG ○D is an isomorphism of BV algebras from (HH∗(C∗ΩM),∪, κ)

to the string topology BV algebra (H∗+d(LM), ○,−∆). ∎

We also compare this result to the previous BV algebra isomorphisms between string
topology and Hochschild homology. We note that Vaintrob’s argument in [] relies on
Ginzburg’s algebraic argument without Menichi’s sign corrections. With those sign changes
in place, the argument appears to carry through to produce −D−BD as the appropriate
BV operator on Hochschild cohomology, and thus to give −∆ as the BV operator on string
topology.
As noted above, Felix and�omas also construct a BV algebra isomorphism between

H∗(LM) and HH∗(C∗M) whenM is simply connected and when k is a field of character-
istic  []. �ey invoke results of Menichi on cyclic cohomology [] and of Tradler and
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Zeinalian [, ] to state that their BV operator on HH∗(C∗M) induces the Gerstenhaber
Lie bracket. In light of the sign change above and the isomorphism of Gerstenhaber algebras
HH∗(C∗M) ≅ HH∗(C∗ΩM) of Felix, Menichi, and�omas for M simply connected, it
would be of interest to trace through these isomorphisms to check the sign of the induced
bracket in their context.



Appendix A

Algebraic Structures

A. Chain Complexes and Differential Graded Algebra

A.. Chain Complexes

Recall that k denotes a fixed commutative ring.

Definition A.. Let Ch(k) denote the category of unbounded chain complexes of k-mod-
ules, with differential of degree −, where the morphisms are chain maps of complexes. Given
a homogeneous element a of a complex, let ∣a∣ denote its degree. Given chain complexes A, B,
define their tensor product A⊗k B by

(A⊗k B)n =⊕
j∈Z
A j ⊗k Bn− j,

with differential dA⊗B = dA ⊗ idB + idA⊗dB, and define the complex Homk(A, B) of k-linear
maps from A to B by

Homk(A, B)n =∏
j∈Z
Homk(A j, B j+n),

with differential D f = dB f − (−)∣ f ∣ f dA. Note that the chain maps M → N are precisely
the -cycles in Homk(M ,N), and that f , g ∈ Homk(M ,N) are homotopic if and only if
f − g = Dh for some h. When k is clear from context, we write⊗ for⊗k and Hom for Homk .∎
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We follow the Koszul convention that if two homogeneous elements a, b of some chain
complex are transposed, we introduce a factor (−)∣a∣∣b∣. �us, since ∣d∣ = −, d(a ⊗ b) =
(d ⊗ id+ id⊗d)(a ⊗ b) = da ⊗ b + (−)∣a∣a ⊗ db. Note that the differential is written only as
d when the complex is clear from context.

Let k also denote the chain complex with k in degree  and  elsewhere.�en there are
obvious isomorphisms λA ∶ k ⊗ A→ A and ρA ∶ A⊗ k → A for each chain complex A, so k is
a unit for ⊗.

Definition A.. For n ∈ Z, let Sn be the chain complex consisting of k in degree n and 
elsewhere. Given A ∈ Ch(k), let the suspension ΣA of A be the complex A⊗ S, with the
differential arising from the tensor product. ∎

Under the natural identifications Sn ≅ S⊗n, ΣnA ≅ A⊗ Sn.�is suspension construction
is of importance in the construction of a cofibrantly generated model structure on Ch(k)
and related categories, as discussed in Sections . and A..

Definition A.. For A, B chain complexes, define the algebraic twist map τA,B ∶ A⊗ B →
B ⊗ A by τA,B(a ⊗ b) = (−)∣a∣∣b∣b ⊗ a. If A, B are clear from context, τA,B is written τ. ∎

�en (Ch(k),⊗, k)with the τmorphisms and the internal Hom-objects above is a closed
symmetric monoidal category (see [, §VII.]).�e notation below based on the symmetric
group simplifies the process of manipulating composites of τ morphisms.

Notation A.. Suppose that σ ∈ Sn is a permutation on n letters {, . . . , n}. Denote by
τn,σ , or τσ if n is understood, the unique morphism X ⊗⋯ ⊗ Xn → Xσ−() ⊗⋯ ⊗ Xσ−(n)

composed of the τX i ,X j and taking the ith factor in the source to the σ(i)th factor in the
target. Consequently, for ρ, σ ∈ Sn, τρ ○ τσ = τρσ . ∎

A.. Differential Graded Algebras, Coalgebras, and Hopf Algebras

Definition A.. A differential graded algebra (or DGA) is a monoid in Ch(k), i.e., a chain
complex A ∈ Ch(k) with a “multiplication” chain map µ ∶ A⊗ A→ A and a “unit” chain map
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η ∶ k → A such that the associativity and unitality diagrams

A⊗ A⊗ A
µ⊗id //

id⊗µ
��

A⊗ A
µ

��
A⊗ A

µ // A

k ⊗ A
η⊗id //

λ
$$JJJJJJJJJJ A⊗ A
µ

��

A⊗ k
id⊗µoo

ρ
zztttttttttt

A

all commute. If A is concentrated in nonnegative (resp., nonpositive) degrees, it is called a
chain algebra (resp., cochain algebra). A differential graded coalgebra (orDGC) is a comonoid
in Ch(k), i.e., a chain complex C with a coassociative comultiplication ∆ ∶ C → C ⊗ C and a
counit є ∶ C → k.
A morphism ϕ ∶ A→ B of DGAs is a chain map such that ϕµA = µB(ϕ⊗ϕ) and ϕηA = ηB,

and similarly for morphisms of DGCs. ∎

Notation A.. We introduce a convention known as Sweedler notation []. Suppose C is
a DGC, and take c ∈ C. We write the coproduct of c as ∆(c) = ∑c c() ⊗ c(), with the index c
indicating a sum over the relevant summands of ∆(c). By the coassociativity of ∆,

(id⊗∆)(∆(c)) =∑
c

c() ⊗ c(,) ⊗ c(,) =∑
c

c(,) ⊗ c(,) ⊗ c() = (∆⊗ id)(∆(c)).

We instead denote this twice-iterated coproduct unambiguously as ∆(c) = ∑c c()⊗c()⊗c().
Higher iterates ∆n(c) are denoted similarly, with components c(), . . . , c(n+). ∎

Example A.. In Sweedler notation, the counital condition id = ρ(id⊗є)∆ = λ(є ⊗ id)∆
becomes

c =∑
c

c()є(c()) =∑
c

є(c())c().
∎

Proposition A.. If A, B are DGAs, then A⊗B is a DGAwith multiplication (µA⊗ µB)τ()

and unit λ(ηA⊗ηB). If C ,D are DGCs, then C⊗D is a DGCwith comultiplication τ()(∆C⊗
∆D) and counit (єC ⊗ єD)λ−. ∎

Note that τA,B ∶ A⊗ B → B ⊗ A is an isomorphism of DGAs, and similarly τC ,D is an
isomorphism of DGCs.
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Definition A.. A k-module chain complexA is a differential gradedHopf algebra (orDGH)
if it has maps µ ∶ A⊗ A → A, η ∶ k → A, ∆ ∶ A → A⊗ A, є ∶ A → k such that (A, µ, η) is
a differential graded algebra, (A, ∆, є) is a differential graded coalgebra, and ∆ and є are
maps of DGAs (with the product DGA structure on A⊗ A). If A has a linear isomorphism
S ∶ A→ Amaking the diagrams

A⊗ A id⊗S // A⊗ A
∆

$$III
III

I

A

µ ::uuuuuuu

µ $$III
III

I
є // k

η // A

A⊗ A S⊗id // A⊗ A
∆

::uuuuuuu

commute, that is, ∆(id⊗S)µ = ∆(S ⊗ id)µ = ηє, then such an S is called an antipode for A.∎

A.. Modules over a DGA

Suppose that A is a DGA. Recall that A is then a monoid in Ch(k), the category of chain
complexes of k-modules.

Definition A.. A le� A-module is a chain complexM with a unital le� action of A, i.e.,
a chain map a ∶ A ⊗ M → M such that a(id⊗a) = a(µ ⊗ id) and a(η ⊗ id) = λ. Right
A-modules are defined analogously. Morphisms of A-modules are chain maps compatible
with the action of A. Denote the categories of le� and right A-modules as A-Mod andMod-A,
respectively.

If B is another DGA, then an A-B-bimodule is a complexM with a le� action of A and a
right action of B that commute, and the category of such bimodules is denoted A-Mod-B. ∎

�e observation that DGAs are precisely monoids in the closed symmetric monoidal
category Ch(k) allows monoid-theoretic constructions of tensor products and complexes of
A-linear maps for A-modules.

Definition A.. Take M ,N ∈ A-Mod and P ∈ Mod-A. Note that aP ⊗ idM and idP ⊗aM
give two chain maps P ⊗ A⊗M → P ⊗M, and define the tensor product P ⊗AM of P and
M over A to be the cokernel of their difference.



A.. CHAIN COMPLEXES AND DIFFERENTIAL GRADED ALGEBRA 

Similarly, define chainmaps a∗M , aN∗ ∶ Hom(M ,N)→ Hom(A⊗M ,N) by a∗M( f ) = f aM
and aN∗( f ) = aN(idA⊗ f ) for f ∈ Hom(M ,N). Define the complex HomA(M ,N) of A-line-
ar maps to be ker(a∗M−aN∗). (A complex of A-linear maps for right A-modules is constructed
similarly.) ∎

More concretely, let I be the subcomplex of P ⊗M generated by pa ⊗m − p ⊗ am, for
all p ∈ P, a ∈ A,m ∈ M.�en P ⊗AM = P ⊗M/I. Also, f ∈ HomA(M ,N) is a k-linear map
fromM to N with f (am) = (−)∣a∣∣ f ∣a f (m) for all a ∈ A,m ∈ M.
Note also that if B and C are DGAs, then ⊗A gives a functor from B-Mod-A× A-Mod-C

to B-Mod-C, and HomA(−,−) gives functors from (A-Mod-B)op × A-Mod-C to B-Mod-C
and from (B-Mod-A)op × C-Mod-A to C-Mod-B.

A.. Pullbacks of Modules, Opposite Algebras, and Enveloping Alge-

bras

Definition A.. Suppose A, B are two DGAs and f ∶ A→ B is a morphism of DGAs. We
define functors f ∗ ∶ B-Mod → A-Mod and f ∗ op ∶ Mod-B → Mod-A. For M ∈ B-Mod with
action aM ∶ B ⊗M → M, define f ∗M ∈ A-Mod to be the chain complex M with A-action
aM( f ⊗ id). Similarly, for N ∈ Mod-B with action aN , define f ∗ opN ∈ Mod-A to be the chain
complex N with A-action aN(id⊗ f ).�e “op” notation is typically dropped when it is clear
from context.�ese functors also apply to the appropriate categories of bimodules. ∎

�is pullback construction is adjoint to related base-change functors for f that associate
B-modules to A-modules:

Definition A.. For f ∶ A → B as above, define functors f!, f∗ ∶ A-Mod → B-Mod by
f!M = f ∗B ⊗AM and f∗M = HomA( f ∗B,M). ∎

Proposition A.. For f ∶ A→ B as above, ( f!, f ∗) and ( f ∗, f∗) are adjoint pairs of Ch(k)-
enriched functors.

Proof: Note that f ∗M ≅ f ∗B ⊗B M ≅ HomB( f ∗B,M). By adjoint associativity,

HomA(N , f ∗M) ≅ HomA(N , HomB( f ∗B,M)) ≅ HomB( f ∗B ⊗A N ,M) = HomB( f!N ,M)

HomA( f ∗M ,N) ≅ HomA( f ∗B ⊗B M ,N) ≅ HomB(M , HomA( f ∗B,N)) = HomB(M , f∗N)
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yielding the desired adjunctions. ∎

Definition A.. Let (A, µ, η) be a DGA. Define the opposite algebra (Aop, µop, ηop) by
Aop = A as chain complexes, µop = µτ and ηop = η. For a DGC (C , ∆, є), define the op-
posite coalgebra (Cop, ∆op, єop) by Cop = C, ∆op = τ∆, and єop = є.
Define the enveloping algebra Ae to be the product DGA A ⊗ Aop, and similarly for

coalgebras. ∎

Observe that M ∈ A-Mod with action aM ∶ A⊗M → M is a right Aop-module via aMτ.
Similarly, right A-modules are equivalent to le� Aop-modules. Hence. M ∈ A-Mod-B, with
action aM ∶ A⊗M ⊗ B → M may be regarded as a le� or right module in four distinct ways:
• M is a le� A⊗ Bop-module via the action aMτ(),
• M is a le� Bop ⊗ A-module via aMτ()τ() = aMτ(),
• M is a right Aop ⊗ B-module via aMτ(),
• M is a right B ⊗ Aop-module via aMτ()(id⊗τ()) = aMτ().

�e second and fourth module structures are obtained by pullback along the DGA isomor-
phism τ. Note that when B = A, this characterizes A-A-bimodules as le� and right modules
over Ae . Call these module structures the canonical module structures associated to the
A-B-bimoduleM.

A.. Hopf Algebras and Adjoint Actions

Suppose now that A is a DGH with an algebra anti-automorphism S ∶ A → A, so that
S ∶ A→ Aop is an isomorphism of DGAs. Also assume that S = id.

Definition A.. For є = , , define adє = (id⊗S)τє∆ ∶ A→ A⊗Aop. Note that ad and ad
are both DGA morphisms, since ∆ and τ are. ForM ∈ A-Mod-A, ad∗є M is defined using the
canonical Ae-module structure. ∎

Suppose now that S is an antipode for A. �en the coinvariant module k ⊗A ad∗ Ae is
isomorphic to A as Ae-modules.
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Proposition A.. If A is a DGH with antipode S, then ϕ ∶ ad∗ Ae ⊗A k → A given by
(a ⊗ a′)⊗ λ ↦ λaa′ is an isomorphism of le� Ae-modules, and ϕ′ ∶ k ⊗A ad∗ Ae → A given
by λ ⊗ (a ⊗ a′) = (−)∣a∣∣a′∣λa′a is an isomorphism of right Ae-modules. ∎

In fact, these isomorphisms are induced from isomorphisms of Ae-resolutions for these
modules, which we state below.

Proposition A.. Let A be a DGH with antipode S.�ere are simplicial isomorphisms

γL,● ∶ B●(A,A,A)⇆ B●(ad∗ Ae ,A, k) ∶ ϕL,n
γR,● ∶ B●(A,A,A)⇆ B●(k,A, ad∗ Ae) ∶ ϕR,n

which descend to isomorphisms on the corresponding realizations. When S = id, there are
isomorphisms (γL,● , ϕL,● ) and (γR,● , ϕR,● ) in the opposite є-cases as well.

Proof: We first exhibit an isomorphism γL,● ∶ B●(A,A,A)→ B●(ad∗ Ae ,A, k) and its inverse:

γL,n (a[a ∣ ⋯ ∣ an]a′) = ±(a ⊗ (a⋯an)()a′)[a() ∣ ⋯ ∣ a()n ]

ϕL,n ((b ⊗ b′)[b ∣ ⋯ ∣ bn]) = ±b[b() ∣ ⋯ ∣ b()n ]S((b⋯bn)())b′.

It is straightforward to verify that these are isomorphisms of simplicial Ae-modules and thus
determine isomorphisms of the associated bar complexes.

Next, we show an isomorphism γR,● ∶ B●(A,A,A)→ B●(k,A, ad∗ Ae) and its inverse:

γR,n (a′[a ∣ ⋯ ∣ an]a) = ±[a() ∣ ⋯ ∣ a()n ](a ⊗ a′S((a⋯an)()))

ϕR,n ([b ∣ ⋯ ∣ bn](b ⊗ b′)) = ±b′(b⋯bn)()[b() ∣ ⋯ ∣ b()n ]b

When S = id, we have the isomorphisms

γL,n (a[a ∣ ⋯ ∣ an]a′) = ±(a ⊗ (a⋯an)()a′)[a() ∣ ⋯ ∣ a()n ]

ϕL,n ((b ⊗ b′)[b ∣ ⋯ ∣ bn]) = ±b[b() ∣ ⋯ ∣ b()n ]S((b⋯bn)())b′,
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which assemble to an isomorphism γL,● ∶ B●(A,A,A)→ B●(ad∗ Ae ,A, k), and isomorphisms

γR,n (a′[a ∣ ⋯ ∣ an]a) = ±[a() ∣ ⋯ ∣ a()n ](a ⊗ a′S((a⋯an)()))

ϕR,n ([b ∣ ⋯ ∣ bn](b ⊗ b′)) = ±b′(b⋯bn)()[b() ∣ ⋯ ∣ b()n ]b,

which produce an isomorphism γR,● ∶ B●(A,A,A)→ B●(k,A, ad∗ Ae). ∎

Relating these simplicial isomorphisms back to Prop. A.., note that, for example, that
ad∗ Ae ⊗A k is the cokernel of d − d ∶ B(ad∗ Ae ,A, k)→ B(ad∗ Ae ,A, k), and that A is the
cokernel of d − d ∶ B(A,A,A)→ B(A,A,A). Hence, the simplicial isomorphisms induces
isomorphisms on these cokernels.

In fact, these simplicial isomorphisms hold for a Hopf objectH in an arbitrary symmetric
monoidal category (C ,⊗, I), with a monoid anti-automorphism S ∶ H → H. For example, we
apply this result to a topological group G considered as a Hopf object in the category Top in
Proposition ...

A.. Gerstenhaber and Batalin-Vilkovisky Algebras

We recall from [] the standard definitions of a Gerstenhaber algebra and a Batalin-Vilkovisky
algebra.

Definition A.. A Lie bracket of degree m on a graded k-module V is a Lie bracket on
ΣmV , that is, a bilinear map [−,−] ∶ V ⊗ V → V satisfying graded anti-commutativity

[u, v] = −(−)(∣u∣−m)(∣v∣−m)[v , u]

and the graded Jacobi identity

[u, [v ,w]] = [[u, v],w] + (−)(∣u∣−m)(∣v∣−m)[v , [u,w]]

on homogeneous elements u, v ,w ∈ V .
A Gerstenhaber algebra is a graded k-module A together with a graded-commutative
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multiplication and a degree- Lie bracket that are compatible via the Poisson relation

[a, bc] = [a, b]c + (−)∣b∣(∣a∣−)b[a, c].

on homogeneous elements a, b, c ∈ A,

A Batalin-Vilkovisky (BV) algebra is a graded k-module A together with a graded-com-
mutative multiplication and a degree- operator ∆ with ∆ = , so that ∆ is a differential
operator of order  on A:

∆(abc) = ∆(ab)c + (−)∣a∣a∆(bc) + (−)(∣a∣−)∣b∣b∆(ac)

− (∆a)bc − (−)∣a∣a(∆b)c − (−)∣a∣+∣b∣ab(∆c). ∎

Getzler shows algebraically that a BV algebra has a canonically defined Gerstenhaber
algebra structure, with the bracket given by

[a, b] = (−)∣a∣∆(ab) − (−)∣a∣(∆a)b − a(∆b).

Conversely, if ∆ is such that this induced bracket is a Gerstenhaber algebra, then it makes A
a BV algebra.

�ese two structures are related more geometrically, as well: F. Cohen shows an equiva-
lence of categoried beteen the categories of Gerstenhaber algebras and of algebras over the
homology of the little discs operad [], and Getzler extends this to show an equivalence
of categories between BV algebras and the homology of the framed little discs operad [,
Prop. .].�ere is a map of operads giving each unframed little disc the canonical framing,
with the marked point at the top of the disc, and pullback in homology along this operad
map then gives a BV algebra the canonical Gerstenhaber algebra structure above.

We also note that, since the equation governing a BV algebra is linear in ∆, it holds when
∆ is replaced with λ∆ for λ ∈ k. Furthermore, the induced Gerstenhaber Lie bracket acquires
the same scalar λ. Taking λ = −, for example, if (A, ⋅, ∆) is a BV algebra, then so is (A, ⋅,−∆).
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A. Cofibrantly Generated Model Categories

Recall fromHovey [, §§., .] the notions of a cofibrantly generatedmodel category and the
projective model structure on Ch(k), as well as the language and axioms of model categories.
(In particular, note that Hovey requires a model category to have functorial factorizations of
morphisms.) We use the following notation for classes of morphisms associated to cofibrantly
generated model categories.

Notation A.. Let I be a class of morphisms in a cocomplete category C. Let I-proj and
I-inj denote the class of morphisms with the le� and right li�ing properties with respect to
all morphisms in I, respectively, and denote a morphism in either class as an I-projective
or an I-injective. Let I-cof (I-cofibrations) denote the class (I-inj)-proj. Let I-cell (relative
I-cell complexes) denote the class of maps formed by transfinite composition of pushouts
along elements of I. ∎

Under appropriate set-theoretic conditions on the elements of I, the morphisms of C
admits functorial factorizations via the small object argument, with the factors lying in I-cell
and I-inj. See Hovey [, §.] for more discussion of the set-theoretic issues involved.

Definition A.. Suppose C is a model category.�en C is said to be cofibrantly generated
if there are sets I and J of morphisms such that the domains of the morphisms of I and
J are small relative to I-cell and J-cell and if the classes of fibrations and trivial fibrations
are J-inj and I-inj. I and J are called the sets of generating cofibrations and generating trivial
cofibrations. ∎

In a cofibrantly generated model category, then, I-cof and J-cof are the classes of cofi-
brations and trivial cofibrations, and each of their morphisms is a retract of a relative I-cell
complex or relative J-cell complex.�e category Ch(k) of chain complexes over k, in partic-
ular, admits a cofibrantly generated model category structure as follows [, §.].

Definition A.. For n ∈ Z, let Sn denote the chain complex with k concentrated in degree
n, as in Definition A.., and let Dn denote the chain complex with Dnn = Dnn− = k and with
differential d ∶ Dnn → Dnn− equal to id. Let in ∶ Sn− → Dn be the chain map taking Sn−n− to
Dnn− by the identity. Let I = {in}n∈Z and let J = {→ Dn}n∈Z. ∎
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�eorem A.. Ch(k) is a cofibrantly generatedmodel category with I as its set of generating
cofibrations and J as its set of generating trivial cofibrations.�e weak equivalences are the
homology isomorphisms (i.e., quasi-isomorphisms), the fibrations are the surjections, and the
cofibrations are those maps with the le� li�ing property with respect to all trivial fibrations.∎

Furthermore, tensor product ⊗ and Hom-complexes give Ch(k) the structure of a sym-
metric monoidal model category [, §.], so that ⊗ and Hom are suitably compatible with
the model category structure.

A. A∞ Algebras and Modules

A.. A∞ Algebras and Morphisms

We recall briefly fromKeller [] the fundamental notions of such algebras and their modules,
although we treat chain complexes homologically instead of cohomologically and therefore
must reverse the signs of some degrees.

Definition A.. An A∞-algebra over k is a graded k-module A∗ with a sequence of graded
k-linear maps mn ∶ A⊗n → A of degree n −  for n ≥ . �ese maps satisfy the quadratic
relations

∑
r+s+t=n
s≥

(−)r+stmr++t(id⊗r ⊗ms ⊗ id⊗t) = 

for n ≥ , where r, t ≥  and s ≥ . ∎

�e first of these relations, mm = , shows that m is a differential, making A a chain
complex.�e second relation rearranges to

mm = m(m ⊗ id+ id⊗m),

shows that m ∶ A⊗ A → A is a chain map with respect to the differential m. �e third
identity rearranges to

m(id⊗m −m ⊗ id) = mm +m(m ⊗ id⊗ + id⊗m ⊗ id+ id⊗⊗m),



 APPENDIX A. ALGEBRAIC STRUCTURES

which shows thatm is associative only up to chain homotopy, withm the homotopy between
the two different m compositions.�e higher relations then describe additional homotopy
coherence data for the mn maps. Such data also describe a degree-(−) coderivation b of the
DGC B(k,A, k) with b = ; for more details on both of these perspectives, see [, §].
A differential graded algebra A determines an A∞-algebra with m = d, the differential

of A, m = µ, and mn =  for n ≥ . Conversely, any A∞-algebra with mn =  for n ≥  is a
DGA. All of the A∞-algebras we consider will actually be DGAs. Likewise, there is a notion
of a morphism of A∞-algebras, but any morphism we consider between these DGAs will be
an ordinary morphism of DGAs. In the coalgebra framework, a morphism of A∞-algebras
A→ A′ is equivalent to a morphism of DGCs B(k,A, k)→ B(k,A′, k).

A.. A∞Modules and Morphisms

We turn to the definition of modules over A∞ algebras and their morphisms.

Definition A.. A (le�) A∞-module over an A∞-algebra A is a graded k-moduleM with
action maps mMn ∶ A⊗(n−) ⊗M → M of degree n −  for n ≥ , satisfying the same relation as
in Definition A.., with the m j replaced with mMj where appropriate. ∎

�is definition is equivalent to giving a degree-(−)differential bM with bM =  compatible
with the le�B(k,A, k)-comodule structure onB(k,A,M). IfA is aDGAandM is an ordinary
A-module, then setting mM = dM , mM = aM , and mMn =  for n ≥  givesM the structure of
an A∞-module for A. All of the A∞-modules we consider will arise this way.
We do need to consider morphisms of A∞-module which do not arise from morphisms

of ordinary modules, however.

Definition A.. Let L,M be A∞-modules for an A∞-algebra A. A morphism f ∶ L → M of
A∞-modules over A is a sequence of maps fn ∶ A⊗n− ⊗ L → M of degree n −  satisfying the
relations

∑
r+s+t=n
s≥

(−)r+st fr+t+(id⊗r ⊗ms ⊗ id⊗t) = ∑
r+s=n
s≥

mr+(id⊗r ⊗ fs),

for n ≥ , where the mi represent the multiplication maps for the A∞-algebra A or the action
maps for L andM. ∎
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�is definition is equivalent to specifying a morphism of DG comodules B(L,A, k)→
B(M ,A, k). While this perspective is convenient for more theoretical work, the explicit
form of the maps and relations above is more suitable for checking that a proposed map is a
morphism of modules.

When A is a DGA and L andM are A-modules, the mi vanish for i ≥ , and we obtain
the simplified relations dM f = fdL and

dM fn + (−)n fndA⊗n−⊗L

= −aM(id⊗ fn−) +
n−

∑
r=

(−)r fn−(id⊗r ⊗µ ⊗ id⊗n−r−) + (−)n− fn−(id⊗n−⊗aL)

for n ≥ . In this case, f is a chain map L → M which commutes with the action of A only
up to a prescribed homotopy, f. Each subsequent fn+ gives a homotopy between different
ways of interleaving fn with the action of n −  copies of A. We will use these concepts in
Section . when comparing different adjoint module structures over C∗G.

Gugenheim and Munkholm [] note that Tor exhibits functoriality with respect to such
morphisms, and Keller [] notes that this functoriality also Ext∗A(−,−) also exhibits such
extended functoriality. We state the form of the results we need below:

Proposition A.. Let A be a DGA, and let L,M ,N be A-modules. Suppose that A, L, and
M are all cofibrant as chain complexes of k-modules. �en a morphism of A∞-modules
f ∶ L → M induces maps

TorA∗(N , f ) ∶ TorA∗(N , L)→ TorA∗(N ,M) and Ext∗A(N , f ) ∶ Ext∗A(N , L)→ Ext∗A(N ,M).

If the chain map f ∶ L → M is a quasi-isomorphism, these induced maps on Tor and Ext are
also isomorphisms.

Proof: Since f is an A∞-module morphism, it induces a morphism of B(k,A, k)-comodules
B(k,A, L)→ B(k,A,M). Since B(A,A, L) can be described as the cotensor product

B(A,A, k) ◻B(k,A,k) B(k,A, L),
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this morphism of comodules induces a chain map

B(A,A, L)→ B(A,A,M).

SinceA, L, andM are cofibrant over k, these bar constructions provide cofibrant replacements
for L and M as A-modules. Hence, applying the functors N ⊗A − and HomA(QN ,−) and
passing to homology induces the desired maps on Ext and Tor.
If f is a quasi-isomorphism, then B(A,A, f ) is a weak equivalence between cofibrant

A-modules and is therefore a homotopy equivalence. It therefore induces isomorphisms in
Ext and Tor. ∎
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