Solutions to Midterm #1 Practice Problems

1. Below is the graph of a function y = r(x).

Sketch graphs of the following functions:

- **2.** The equation 7x 11y = 16 describes a line in the *xy*-plane.
- (a) Find the slope of the line.

Solution: Solve for y: 11y = 7x - 16, so $y = \frac{7}{11}x - \frac{16}{11}$. Hence, the slope is $\frac{7}{11}$.

(b) What is the *y*-intercept of the line?

Solution: From the equation above in slope-intercept form, the *y*-intercept is $-\frac{16}{11}$.

(c) What is the *x*-intercept of the line?

Solution: Set y = 0 in the equation of the line. Then 7x = 16, so $x = \frac{16}{7}$ is the *x*-intercept.

(d) Is the point (7,3) on this line?*Solution*: We check that x = 7 and y = 3 satisfies the equation:

$$7(7) - 11(3) = 49 - 33 = 16$$

It does, so the point is on the line.

3. QwikWidgets, Inc., manufactures widgets (as you might expect). On a given production run, they can make 10,000 two-inch stainless-steel widgets for \$1200 and 50,000 for \$4400. Assume that their costs change linearly with their production size.

(a) Once their widget-producing machines are up and running, how much does it cost to produce an extra widget? (This is called the *marginal cost* of production.)*Solution*: We compute the average rate of change in the cost of widgets:

$$m = \frac{\Delta C}{\Delta w} = \frac{4400 - 1200}{50000 - 10000} = \frac{3200}{40000} = \frac{8}{100} = 0.08.$$

Hence, each widget costs \$0.08 to make.

- (b) How much would it cost QwikWidgets only to turn on the widget-making machines, without actually making any widgets at all?
 Solution: The 10,000 widgets cost \$0.08 × 10,000 = \$800, so the remaining cost, 1200 800 = \$400, is the cost of starting up the factory.
- (c) Write a formula for the cost of making w widgets on a given production run. *Solution*: The cost is C(w) = 0.08w + 400, in dollars.
- (d) How much would it cost to manufacture 100,000 widgets? Solution: The cost would be C(100,000) = 0.08(100,000) + 400 = 8400 dollars.

4. Below is a graph of the population P(t) of wolves in a forest *t* years after the year 2000.

- (a) Over which time intervals is the graph increasing? decreasing? concave up? concave down? *Solution*: The graph is increasing on [5,8] and decreasing on [0,5]. It is concave up on [0,8] and is concave down nowhere.
- (b) What is the average rate of change of the population from 2000 to 2002? Solution: P(2000) = 1000 and P(2002) = 400, so the average rate of change is $m = \frac{400 - 1000}{2002 - 2000} = \frac{-600}{2} = -300$ wolves per year.
- (c) What is the percentage change in the population from 2007 to 2008? *Solution*: P(2007) = 400 and P(2008) = 700, so the relative change is $\frac{700 - 400}{400} = \frac{300}{400} = \frac{3}{4}$. The corresponding percentage change is 75%.

- 5. Savvy Sally invests \$5000 in a mutual fund and receives a steady interest rate of 8%.
- (a) If the interest is compounded annually, write a function V(t) giving the value of Sally's investment after *t* years. *Solution*: The value function is $V(t) = 5000(1.08)^t$.
- (b) What is the formula for V(t) if the interest is instead compounded quarterly? *Solution*: The quarterly interest rate is 8/4 = 2%, so the formula in this case is $V(t) = 5000(1.02)^{4t}$.
- (c) What is the formula for V(t) if the interest is instead compounded continuously? *Solution*: The value under continuous compounding is $V(t) = 5000e^{0.08t}$.
- 6. In each equation, solve for *x* symbolically.
- (a) $25 = 3^x$

Solution: The *x* is in the exponent, so we use a logarithm to extract it: $\log_3(25) = \log_3(3^x) = x$, so $x = \log_3(25)$.

- (b) $x^5 = 79$ Solution: Here, the *x* is in the base, so we take 5th-roots: $x = \sqrt[5]{79}$.
- (c) $3 = \ln(2x+5)$

Solution: We exponentiate both sides of the equation at the base $e: e^3 = e^{\ln(2x+5)} = 2x + 5$. We then isolate x:

$$x = \frac{e^3 - 5}{2}$$

- 7. Define functions f(x) = 2x 3 and $g(x) = x^2 x$. Find formulas for:
- (a) f(g(x))Solution: $f(g(x)) = f(x^2 - x) = 2(x^2 - x) - 3 = 2x^2 - 2x - 3$.
- (b) g(f(x))Solution: $g(f(x)) = g(2x-3) = (2x-3)^2 - (2x-3) = 4x^2 - 14x + 12.$
- (c) g(g(x))Solution: $g(g(x)) = g(x^2 - x) = (x^2 - x)^2 - (x^2 - x) = x^4 - 2x^3 + x$.
- (d) f(f(x))Solution: f(f(x)) = f(2x - 3) = 2(2x - 3) - 3 = 4x - 9.

8. Foolish Frank invests in penny stocks. The value of his investment is given by

$$V(t) = 4500e^{-0.12t}$$

where *t*, in years, is the age of the investment.

- (a) How much did Frank invest initially? *Solution*: Frank initially invested \$4500.
- (b) What is the continuous growth rate of Frank's investment? *Solution*: The continuous growth rate is -0.12.
- (c) Find the time *t* when Frank's investment reaches \$1000. You do not need a decimal value for this *t*, but it should be an expression you could evaluate on a calculator.

Solution: We set V(t) = 1000, so $1000 = 4500e^{-0.12t}$. Then $e^{-0.12t} = \frac{1000}{4500}$, so $-0.12t = \ln\left(\frac{1000}{4500}\right)$. Hence, $t = \frac{\ln\frac{1000}{4500}}{-0.12}$.

(Depending on which logarithm properties are used, other forms of this answer are also acceptable.)

9. Below are tables of values for functions h(x), j(x), and k(x) at different values of x.

x	$^{-2}$	-1	0	1	2
h(x)	48	24	12	6	3
j(x)	48	40	31	21	10
k(x)	48	41	34	27	20

- (a) Is h(x) linear, exponential, or neither? Write a formula for h(x), if possible. *Solution*: Checking the successive average rates of change, we obtain -24 and -12 as the first two rates, so the function is not linear. Checking the successive ratios between values, we obtain $\frac{1}{2}$ each time, so the function could be exponential. A formula for h is $h(x) = 12\left(\frac{1}{2}\right)^x$.
- (b) Is j(x) linear, exponential, or neither? Write a formula for j(x), if possible. *Solution*: The successive average rates of change start out as -8 and -9, which are not the same, so the function is not linear. The successive ratios between values start out as $\frac{40}{48} = \frac{5}{6}$ and $\frac{31}{40}$, which are different, so the function is also not exponential.

- (c) Is k(x) linear, exponential, or neither? Write a formula for k(x), if possible. Solution: The average rates of change between adjacent values are constant at -7, so the function could be linear. A formula for k is k(x) = 34 - 7x.
- 10. You acquire a 50-gram sample of iodine-131, which has a half-life of 8 days.
- (a) Write a function f(t) that represents the amount of iodine left after t days. *Solution*: One formula for f is $f(t) = 50(2)^{-t/8}$. Putting this exponential into the continuous-growth-rate form, we also have $f(t) = 50e^{-\frac{\ln 2}{8}t}$.
- (b) How long will it take for the sample to decay to 1 gram of iodine-131? Write an expression you could evaluate on your calculator. *Solution*: If 1 gram remains, then f(t) = 1, so $50(2)^{-t/8} = 1$. Then $2^{-t/8} = \frac{1}{50}$. Taking logs, $-t/8 = \log_2\left(\frac{1}{50}\right) = -\log_2 50$, after simplifying the logarithm. Finally,

$$t = 8\log_2 50.$$