Homework #3 Solutions

Problems

• Section 1.6: 10, 20, 24, 28, 36
• Section 1.7: 2, 6, 16, 20
• Section 1.8: 2, 8, 14, 20, 22, 28

1.6.10. Solve for t using natural logarithms if \(10 = 6e^{0.5t} \).

Solution: We isolate t:

\[
\frac{10}{6} = e^{0.5t}
\]

\[
\ln\left(\frac{10}{6}\right) = \ln(e^{0.5t}) = 0.5t
\]

\[
t = \frac{\ln\left(\frac{10}{6}\right)}{0.5} = 2 \ln\left(\frac{5}{3}\right)
\]

Evaluating this numerically, \(t \approx 1.022 \).

1.6.20. The function \(P = 3.2e^{0.03t} \) represent exponential growth or decay. What is the initial quantity? What is the growth rate? State if the growth rate is continuous.

Solution: The initial quantity is 3.2, and the (continuous) growth rate is 0.03.

1.6.24. Write the function \(P = 2e^{-0.5t} \) in the form \(P = P_0a^t \). Does the function represent exponential growth or decay?

Solution: The continuous growth rate \(k \) is \(-0.5\), so the growth factor \(a \) is \(e^{-0.5} \approx 0.607 \). Since \(k < 0 \), this function represents decay.

1.6.28. Put the function \(P = 10(1.7)^t \) in the form \(P = P_0e^{kt} \).

Solution: In this case, the growth factor \(a \) is 1.7, so \(k = \ln(1.7) \approx 0.531 \).
1.6.36. The gross world product is \(W = 32.4(1.036)^t \), where \(W \) is in trillions of dollars and \(t \) is years since 2001. Find a formula for gross world product using a continuous growth rate.

Solution: The growth factor is \(a = 1.036 \), so the continuous growth rate is \(k = \ln(1.036) \approx 0.0354 \). Hence, the new formula is

\[
W = 32.4e^{0.0354t}.
\]

1.7.2. The half-life of nicotine in the blood is 2 hours. A person absorbs 0.4 mg of nicotine by smoking a cigarette. Fill in the following table with the amount of nicotine in the blood after \(t \) hours. Estimate the length of time until the amount of nicotine is reduced to 0.04 mg.

Solution:

<table>
<thead>
<tr>
<th>(t) (hours)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotine (mg)</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.05</td>
<td>0.025</td>
<td>0.0125</td>
</tr>
</tbody>
</table>

A formula describing the amount of nicotine at time \(t \) is \(N(t) = 0.4(2)^{-t/2} \). Then 0.04 = 0.4(2)^{-t/2}, so 0.1 = 2^{-t/2}, and \(-t/2 = \log_2(0.1)\). Finally, \(t = -2\log_2(0.1) \approx 6.64 \) hours.

1.7.6. Suppose 1000 is invested in an account paying interest at a rate of 5.5% per year. How much is in the account after 8 years if the interest is compounded

(a) Annually?

(b) Continuously?

Solution (a): The growth rate is 0.055, so the amount is \(1000(1.055)^8 \approx 1534.69 \).

Solution (b): The continuous growth rate is 0.055, so the amount is \(1000e^{0.055(8)} \approx 1552.71 \).

1.7.16. The antidepressant fluoxetine (or Prozac) has a half-life of about 3 days. What percentage of a dose remains in the body after one day? After one week?

Solution: We write a function \(P(t) \) that gives the proportion of Prozac remaining after time \(t \). Since the half-life is 3 days, \(P(t) = 2^{-t/3} \). Then \(P(1) = 2^{-1/3} \approx 0.794 = 79.4\% \) is the percentage remaining after 1 day, and \(P(7) = 2^{-7/3} \approx 0.198 = 19.8\% \) is the percentage remaining after 7 days.
1.7.20. The number of people living with HIV infections increased worldwide approximately exponentially from 2.5 million in 1985 to 37.8 million in 2003.

(a) Give a formula for the number of HIV infections, \(H \), (in millions) as a function of years, \(t \), since 1985. Use the form \(H = H_0 e^{kt} \). Graph the function.

(b) What was the yearly continuous percent change in the number of HIV infections between 1985 and 2003?

Solution (a): We have that \(H_0 = 2.5 \). In 2003, \(t = 2003 - 1985 = 18 \), so we have \(37.8 = 2.5e^{18k} \). Then \(k = \ln \left(\frac{37.8}{2.5} \right) / 18 \approx 0.151 \), so the formula is

\[H(t) = 2.5e^{0.151t}. \]

The graph of this function is as follows:

Solution (b): The continuous percentage change is 15.1% per year.

1.8.2. If \(f(x) = x^2 + 1 \), find and simplify:

(a) \(f(t + 1) \)

(b) \(f(t^2 + 1) \)

(c) \(f(2) \)

(d) \(2f(t) \)

(e) \([f(t)]^2 + 1 \)

Solution (a): \(f(t + 1) = (t + 1)^2 + 1 = t^2 + 2t + 1 + 1 = t^2 + 2t + 2. \)

Solution (b): \(f(t^2 + 1) = (t^2 + 1)^2 + 1 = t^4 + 2t^2 + 2. \)

Solution (c): \(f(2) = 2^2 + 1 = 5. \)
Solution (d): \[2f(t) = 2(t^2 + 1) = 2t^2 + 2.\]

Solution (e): \[[f(t)]^2 + 1 = (t^2 + 1)^2 + 1 = t^4 + 2t^2 + 2.\]

1.8.8. Find the following if \(f(x) = 2x^2\) and \(g(x) = x + 3:\)

(a) \(f(g(x))\)
(b) \(g(f(x))\)
(c) \(f(f(x))\)

Solution (a): \(f(g(x)) = 2(x + 3)^2 = 2x^2 + 12x + 18.\)

Solution (b): \(g(f(x)) = 2x^2 + 3.\)

Solution (c): \(f(f(x)) = 2(2x^2)^2 = 8x^4.\)

1.8.14. Use the variable \(u\) for the inside function to express each of the following as a composite function:

(a) \(y = (5t^2 - 2)^6\)
(b) \(P = 12e^{-0.6t}\)
(c) \(C = 12\ln(q^3 + 1)\)

Solution (a): Set \(u = 5t^2 - 2\), so \(y = u^6.\)

Solution (b): Set \(u = -0.6t\), so \(P = 12e^u.\)

Solution (c): Set \(u = q^3 + 1\), so \(C = 12\ln u.\)

1.8.20. Estimate \(g(f(2))\) from the graphs of \(f\) and \(g.\)

Solution: First, from the graph of \(f\) above \(x = 2, f(2) \approx 0.4.\) Then from the graph of \(g\) above \(x = 0.4, g(0.4) \approx 1.2.\)
1.8.22. Using Table 1.36, create a table of values for \(f(g(x)) \) and for \(g(f(x)) \).

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(f(x))</th>
<th>(g(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>-3</td>
</tr>
</tbody>
</table>

Solution: We calculate each value: for example, for \(f(g(-1)) \), we first look up \(g(-1) = -2 \). Then \(f(g(-1)) = f(-2) \), so we look that up to find \(f(-2) = 1 \). Hence, \(f(g(-1)) = 1 \).

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(f(g(x)))</th>
<th>(g(f(x)))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1.8.28. The Heaviside step function, \(H \), is graphed in Figure 1.79. Graph the following functions:

(a) \(2H(x) \)
(b) \(H(x) + 1 \)
(c) \(H(x + 1) \)
(d) \(-H(x) \)
(e) \(H(-x) \)

Solution: Below are the graphs: