Solutions to Final Practice Problems

1. Find derivatives of the following functions:
(a) $f(x)=2 x^{3}+4 x^{2}-3 x+5$

Solution: $f^{\prime}(x)=6 x^{2}+8 x-3$.
(b) $g(t)=\frac{t^{4}}{4}+\frac{1}{t^{3}}-\frac{2}{t^{6}}$

Solution: We rewrite $g(t)$ as $\frac{t^{4}}{4}+t^{-3}-2 t^{-6}$. Then $g^{\prime}(t)=\frac{1}{4}\left(4 t^{3}\right)-3 t^{-4}-2(-6) t^{-7}=$ $t^{3}-3 t^{-4}+12 t^{-7}$. Rewriting with fractions,

$$
g^{\prime}(t)=t^{3}-\frac{3}{t^{4}}+\frac{12}{t^{7}}
$$

(c) $r(u)=e^{u^{2} \ln u}$

Solution: Using the chain rule and the product rule,

$$
r^{\prime}(u)=\left(u^{2} \ln u\right)^{\prime} e^{u^{2} \ln u}=\left(2 u \ln u+u^{2} \frac{1}{u}\right) e^{u^{2} \ln u}=(2 u \ln u+u) e^{u^{2} \ln u}
$$

(d) $Q(z)=\frac{e^{z}}{2+\sqrt{z}}$

Solution: Using the quotient rule,

$$
Q^{\prime}(z)=\frac{e^{z}(2+\sqrt{z})-e^{z} \frac{1}{2 \sqrt{z}}}{(2+\sqrt{z})^{2}}=\frac{e^{z}(4 \sqrt{z}+2 z-1)}{2 \sqrt{z}(2+\sqrt{z})^{2}}
$$

(e) $m(y)=2^{3 y-y^{2}}$

Solution: Using the chain rule and the derivative rule for a^{x},

$$
m^{\prime}(y)=(\ln 2)(3-2 y) 2^{3 y-y^{2}}
$$

2. Compute the values of the following definite integrals:
(a) $\int_{-1}^{4} 2 x+1 d x$

Solution: An antiderivative of $2 x+1$ is $x^{2}+x$, so

$$
\int_{-1}^{4} 2 x+1 d x=x^{2}+\left.x\right|_{-1} ^{4}=(16+4)-(1-1)=20 .
$$

(b) $\int_{1}^{3} x^{3}-6 x^{2}+12 x-8 d x$

Solution: An antiderivative of $x^{3}-6 x^{2}+12 x-8$ is $\frac{1}{4} x^{4}-2 x^{3}+6 x^{2}-8 x$, so

$$
\begin{aligned}
\int_{1}^{3} x^{3}-6 x^{2}+12 x-8 d x=\frac{1}{4} x^{4} & -2 x^{3}+6 x^{2}-\left.8 x\right|_{1} ^{3} \\
& =\left(\frac{81}{4}-54+54-24\right)-\left(\frac{1}{4}-2+6-8\right)=0
\end{aligned}
$$

(c) $\int_{0}^{10} e^{0.2 t} d t$

Solution: An antiderivative for $e^{0.2 t}$ is $\frac{1}{0.2} e^{0.2 t}=5 e^{0.2 t}$. Then

$$
\int_{0}^{10} e^{0.2 t} d t=\left.5 e^{0.2 t}\right|_{0} ^{10}=5 e^{2}-5 \approx 31.945
$$

3. Find the general antiderivatives of the following functions:
(a) $f(x)=6 x^{2}-4 x+3$

Solution: Using the power rule, the general antiderivative of $6 x^{2}-4 x+3$ is $2 x^{3}-$ $2 x^{2}+3 x+C$.
(b) $g(t)=e^{t / 6}-\frac{1}{t^{3}}$

Solution: Writing $g(t)=e^{t / 6}-t^{-3}$, the general antiderivative of $g(t)$ is

$$
\frac{1}{1 / 6} e^{t / 6}-\frac{1}{-2} t^{-2}+C=6 e^{t / 6}-\frac{1}{2 t^{2}}+C
$$

(c) $h(z)=\frac{3}{z}+\frac{1}{\sqrt[3]{z}}$

Solution: Write $h(z)=3 \frac{1}{z}+z^{-1 / 3}$. Then the general antiderivative of $h(z)$ is

$$
3 \ln z+\frac{1}{2 / 3} z^{2 / 3}+C 3 \ln z+\frac{3}{2} z^{2 / 3}+C .
$$

4. We are building a rectangular garden of area $1800 \mathrm{~m}^{2}$. On three of the sides, we will use fence that costs $\$ 20$ per meter, and on the last side we will use fence that costs $\$ 60$ per meter. Let x be the length of the side of the garden with the more expensive fence.

(a) Find an expression for the cost C of the fence in terms of x.

Solution: Let y be the length of the other side of the garden. Then the area of the garden is $x y$, so $x y=1800$, and $y=\frac{1800}{x}$. The cost of one x side is $\$ 60$ per meter and the cost of the other x side and the two y sides is $\$ 20$, so the total cost of the fence in terms of x is

$$
C(x)=(60+20) x+2(20) y=80 x+40 \frac{1800}{y}=80 x+\frac{72,000}{x}
$$

(b) Find the value of x that minimizes the cost of the fence.

Solution: We find the global minimum value of $C(x)$. First, we find $C^{\prime}(x)$:

$$
C^{\prime}(x)=80-\frac{72,000}{x^{2}}
$$

Setting $C^{\prime}(x)=0,80-\frac{72,000}{x^{2}}=0$, so $80 x^{2}=72,000$. Dividing by $80, x^{2}=900$, so $x=30$ (we take only the positive solution). We note that for $x<30, C^{\prime}(x)$ is negative, and for $x>30$, it is positive, so $x=30$ actually corresponds to a global minimum.
(c) At the minimum cost, what are the dimensions of the garden, and how much does the entire fence cost?
Solution: When $x=30, y=\frac{1800}{30}=60$. Therefore, the cost is

$$
C(30)=80(30)+40(60)=4800
$$

5. Let $f(x)=\frac{1}{4} x^{4}-x^{3}-2 x^{2}+3$.
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Solution: Taking the derivative, $f^{\prime}(x)=x^{3}-3 x^{2}-4 x$ and $f^{\prime \prime}(x)=3 x^{2}-6 x-4$.
(b) Find the critical points of $f(x)$.

Solution: We solve $f^{\prime}(x)=0$, so $x^{3}-3 x^{2}-4 x=0$. Factoring, $x(x+1)(x-4)=0$, so $x=0, x=-1$, and $x=4$ are the critical points of $f(x)$.
(c) Characterize each critical point as a local minimum, local maximum, or neither. Justify your answers.

Solution: We first try the second derivative test, so we evaluate $f^{\prime \prime}(x)$ at each critical point:

$$
f^{\prime \prime}(-1)=5, \quad f^{\prime \prime}(0)=-4, \quad f^{\prime \prime}(4)=20
$$

Therefore, $f(x)$ has a local maximum at $x=0$ and local minima at $x=-1$ and $x=4$.
(d) Find the intervals on which $f(x)$ is increasing and on which $f(x)$ is decreasing.

Solution: We use the characterization of the critical points above.

- Since the leftmost critical point, $x=-1$, is a local minimum, $f(x)$ is decreasing for $x<-1$ and increasing on $-1<x<0$.
- Since the next critical point is a local maximum, $f(x)$ is decreasing on $0<x<4$.
- Since the last critical point is a local minimum, $f(x)$ is increasing for $x>4$.

Hence, the intervals of increase are $(-1,0)$ and $(4, \infty)$, and the intervals of decrease are $(-\infty,-1)$ and $(0,4)$.
(e) Find the global maximum and minimum values of $f(x)$ on the interval $[-2,4]$, and the x-values where they occur.

Solution: We check the value of $f(x)$ itself at the critical points and at the endpoint $x=-2$ (the other endpoint, $x=4$, is already listed as a critical point):

$$
\begin{aligned}
f(-2) & =\frac{16}{4}-(-8)-8+3=7, & f(-1) & =\frac{1}{4}-(-1)-2+3=\frac{9}{4} \\
f(0) & =0+0+0+3=3, & f(4) & =\frac{4^{4}}{4}-64-32+3=-29
\end{aligned}
$$

The lowest value, -29 , occurs at $x=4$, and so is the global minimum value. The highest value, 7 , occurs at $x=-2$, and so is the global maximum value.
(f) Find the inflection points of $f(x)$. Justify your answers.

Solution: To find the inflection points, we solve $f^{\prime \prime}(x)=0$. Then $3 x^{2}-6 x-4=0$, so we use the quadratic formula:

$$
x=\frac{6 \pm \sqrt{36+48}}{6}=1 \pm \sqrt{\frac{7}{3}} .
$$

The points $1-\sqrt{\frac{7}{3}}$ and $1+\sqrt{\frac{7}{3}}$ lie between the critical points $-1,0$, and 4 . Since the sign of the second derivative switches at each critical point, the concavity does change at each of these x values, so both x values above give inflection points.
6. Find the area of the region enclosed by the curves $y=x^{2}$ and $y=8 \sqrt{x}$.

Solution: We find where $y=x^{2}$ and $y=8 \sqrt{x}$ intersect. To do so, we set the y-values equal to each other, which gives $x^{2}=8 \sqrt{x}$. Squaring both sides, $x^{4}=64 x$. This has $x=0$ as a solution. If we instead assume $x \neq 0$, dividing by x gives $x^{3}=64$, so $x=\sqrt[3]{64}=4$. Hence, the two curves intersect at $x=0$ and $x=4$.

We note that $8 \sqrt{x}$ is greater than x^{2} between 0 and 4: for example, at $x=1,8 \sqrt{x}=8$, but $x^{2}=1$. We can also see that from a sketch of the two curves:

Therefore, $8 \sqrt{x}$ is the upper curve of the region, and x^{2} is the lower curve. The area is then given by

$$
\int_{0}^{4} 8 \sqrt{x}-x^{2} d x=8 \frac{2}{3} x^{3 / 2}-\left.\frac{1}{3} x^{3}\right|_{0} ^{4}=8 \frac{2}{3}(8)-\frac{64}{3}-(0-0)=\frac{64}{3}
$$

7. Let $f(x)=x^{3}-\frac{1}{x^{2}}$.
(a) Find the general antiderivative $G(x)$ of $f(x)$.

Solution: Since $f(x)=x^{3}-x^{-2}$, the general antiderivative of $f(x)$ is

$$
G(x)=\frac{1}{4} x^{4}-\frac{1}{-1} x^{-1}+C=\frac{1}{4} x^{4}+\frac{1}{x}+C
$$

(b) Find the antiderivative $G(x)$ of $f(x)$ satisfying $G(2)=\frac{5}{2}$.

Solution: We find the value of C that makes $G(2)=\frac{5}{2}$:

$$
\frac{5}{2}=G(2)=\frac{2^{4}}{4}+\frac{1}{2}+C=4+\frac{1}{2}+C
$$

Then $C=\frac{5}{2}-4-\frac{1}{2}=-2$, so the specific antiderivative is $\frac{1}{4} x^{4}+\frac{1}{x}-2$.
8. Let $g(x)=x^{4 / 3}$.
(a) Find $g^{\prime}(x)$.

Solution: Using the power rule, $g^{\prime}(x)=\frac{4}{3} x^{1 / 3}$.
(b) Find the equation of the tangent line to the graph $y=x^{4 / 3}$ at $x=8$.

Solution: The tangent line goes through the point $(8, g(8))=(8,16)$ on the graph. Its slope is $g^{\prime}(8)=\frac{4}{3} 8^{1 / 3}=\frac{8}{3}$. From the point-slope formula, the line is given by

$$
y=16+\frac{8}{3}(x-8)
$$

(c) Use the tangent line to approximate $(8.03)^{4 / 3}$.

Solution: We plug $x=8.03$ into the equation for the tangent line to get

$$
y=16+\frac{8}{3}(8.03-8)=16+0.08=16.08
$$

Therefore, we estimate that $(8.03)^{4 / 3} \approx 16.08$.
9. A water pipe bursts. The flow through the burst pipe wall is given, in liters per second, by $F(t)$, where t is the time in seconds since the pipe burst. A table of these flow rates is given below:

$$
\begin{array}{cccccc}
t(\mathrm{~s}) & 0 & 1 & 2 & 3 & 4 \\
F(t)(\mathrm{l} / \mathrm{s}) & 40 & 30 & 24 & 18 & 14
\end{array}
$$

Using the average of a left-hand and a right-hand Riemann sum, estimate the volume of water that escapes the pipe during the first 4 seconds.
Solution: For these Riemann sums, the time interval between data points is $\Delta t=1$. Hence, the left-hand sum is

$$
\sum_{i=0}^{3} F(i) \cdot 1=40+30+24+18=112
$$

and the right-hand sum is

$$
\sum_{i=1}^{4} F(i) \cdot 1=30+24+18+14=86
$$

We typically get the best estimate from taking the average of the left- and right-hand sums, which in this case is $\frac{112+86}{2}=99$. Therefore, we estimate that 99 liters of water escapes in the first 4 seconds.
10. We sell bushels of apples from our farm in Riverhead, NY. We discover that if we sell a bushel at $\$ 20$, we can sell 2000 bushels, but if we decrease the price to $\$ 18$, we sell 2400 .
(a) Find the price $p(q)$ as a function of the quantity sold, q.

Solution: We note that when the price decrease by 2, the quantity increase by 400. Therefore,

$$
\frac{p-20}{q-2000}=\frac{\Delta p}{\Delta q}=\frac{-2}{400}=-\frac{1}{200}
$$

We isolate p by multiplying by $q-2000$ on both sides and adding 20 :

$$
p(q)=20-\frac{1}{200}(q-2000)=20-\frac{1}{200} q+10=30-\frac{1}{200} q .
$$

(b) Find the revenue $R(q)$ as a function of q.

Solution: The revenue is given by the price times the quantity, so it is

$$
R(q)=q p(q)=q\left(30-\frac{1}{200} q\right)=30 q-\frac{1}{200} q^{2}
$$

(c) Find the quantity q that maximizes the revenue. What is the price we should charge to sell that quantity?

Solution: To maximize the revenue, we compute $R^{\prime}(q)$, set it to 0 , and solve for q :

$$
R^{\prime}(q)=30-\frac{1}{200}(2 q)=30-\frac{1}{100} q
$$

Then $30-\frac{1}{100} q=0$, so $q=30(100)=3000$. Since $R^{\prime \prime}(q)=-\frac{1}{100}$, this corresponds to a local maximum, and is in fact a global maximum since $R(q)$ describes a concavedown parabola. The price at this quantity is $p(3000)=30-\frac{1}{200}(3000)=15$ dollars.
(d) We calculate our costs to be $C(q)=5000+10 q$. Find the quantity that maximizes the profit that we make. What is the price we should charge, and what is our profit?

Solution: To maximize profits, we now solve $R^{\prime}(q)=C^{\prime}(q)$ for q. Since $C^{\prime}(q)=10$,

$$
30-\frac{1}{100} q=10
$$

so $q=100(30-10)=2000$. The price to sell this quantity is $p(2000)=30-$ $\frac{1}{200}(2000)=20$ dollars per bushel. The revenue is then $(2000)(20)=40,000$ dollars, and the cost at this quantity is $C(2000)=25,000$, so the profit is $40,000-25,000=$ 15,000 dollars.
11. Below is the graph of a function $g(x)$ on the interval $[1,5]$.

(a) Find $\int_{1}^{4} g(x) d x$.

Solution: The value of this integral is the signed area from $x=1$ to $x=4$. The area above the x-axis from 1 to 2 contributes 5 , while the area below the x-axis from 2 to 4 contributes -4 , for a total of $5+(-4)=1$.
(b) Find $\int_{2}^{5} g(x) d x$.

Solution: The value of this integral is the signed area from $x=2$ to $x=5$. The area below the x-axis from 2 to 4 contributes -4 , while the area above the x-axis from 4 to 5 contributes 3 , for a total of $(-4)+3=-1$.
(c) Find $\int_{1}^{5} g(x) d x$.

Solution: The value of this integral is the signed area from $x=1$ to $x=5$, so is $5+(-4)+3=4$.
(d) Find the total area of the shaded region enclosed by the curve and the x-axis.

Solution: The total shaded area is the (unsigned) area of the three regions, which is $5+4+3=12$.
(e) Find the average value of $g(x)$ from $x=1$ to $x=5$.

Solution: The average value of $g(x)$ on $[1,5]$ is

$$
\frac{1}{5-1} \int_{1}^{5} g(x) d x=\frac{1}{4}(4)=1
$$

using the computation from part (c).
12. Let $z(t)=\frac{36}{(2 z+1)^{2}}$.
(a) Find the left-hand Riemann sum of $z(t)$ from 0 to $\frac{3}{2}$ with $n=3$.

Solution: For this left-hand Riemann sum, $a=0, b=\frac{3}{2}$, and $n=3$, so $\Delta t=\frac{1}{2}$. Then $t_{i}=0+i \frac{1}{2}=\frac{i}{2}$, so the sum is

$$
\sum_{i=0}^{2} z\left(t_{i}\right) \Delta t=\frac{1}{2}\left(z(0)+z\left(\frac{1}{2}\right)+z(1)\right)=\frac{1}{2}\left(\frac{36}{1}+\frac{36}{4}+\frac{36}{9}\right)=\frac{49}{2}
$$

(b) Find the right-hand Riemann sum of $z(t)$ from 0 to $\frac{3}{2}$ with $n=3$.

Solution: For this right-hand Riemann sum, $a=0, b=\frac{3}{2}$, and $n=3$, so $\Delta t=\frac{1}{2}$. Then $t_{i}=0+i \frac{1}{2}=\frac{i}{2}$, so the sum is

$$
\sum_{i=1}^{3} z\left(t_{i}\right) \Delta t=\frac{1}{2}\left(z\left(\frac{1}{2}\right)+z(1)+z\left(\frac{3}{2}\right)\right)=\frac{1}{2}\left(\frac{36}{4}+\frac{36}{9}+\frac{36}{16}\right)=\frac{61}{8}
$$

(c) Use these Riemann sums to estimate $\int_{0}^{3 / 2} z(t) d t$.

Solution: We average the values of these Riemann sums:

$$
\frac{1}{2}\left(\frac{49}{2}+\frac{61}{8}\right)=\frac{1}{2}\left(\frac{257}{8}\right)=\frac{257}{16}=16.0625 .
$$

(d) An antiderivative of $z(t)$ is $w(t)=-\frac{18}{2 z+1}$. Compute the exact value of $\int_{0}^{3 / 2} z(t) d t$. What is the error in your estimate from part (c)?

Solution: Give this antiderivative,

$$
\int_{0}^{3 / 2} z(t) d t=-\left.\frac{18}{2 z+1}\right|_{0} ^{3 / 2}=-\frac{18}{4}+18=\frac{27}{2}=13.5 .
$$

The error is $16.0625-13.5=2.5625$.

