Final Practice Problems

1. Find derivatives of the following functions:
(a) $f(x)=2 x^{3}+4 x^{2}-3 x+5$
(b) $g(t)=\frac{t^{4}}{4}+\frac{1}{t^{3}}-\frac{2}{t^{6}}$
(c) $r(u)=e^{u^{2} \ln u}$
(d) $Q(z)=\frac{e^{z}}{2+\sqrt{z}}$
(e) $m(y)=2^{3 y-y^{2}}$
2. Compute the values of the following definite integrals:
(a) $\int_{-1}^{4} 2 x+1 d x$
(b) $\int_{1}^{3} x^{3}-6 x^{2}+12 x-8 d x$
(c) $\int_{0}^{10} e^{0.2 t} d t$
3. Find the general antiderivatives of the following functions:
(a) $f(x)=6 x^{2}-4 x+3$
(b) $g(t)=e^{t / 6}-\frac{1}{t^{3}}$
(c) $h(z)=\frac{3}{z}+\frac{1}{\sqrt[3]{z}}$
4. We are building a rectangular garden of area $1800 \mathrm{~m}^{2}$. On three of the sides, we will use fence that costs $\$ 20$ per meter, and on the last side we will use fence that costs $\$ 60$ per meter. Let x be the length of the side of the garden with the more expensive fence.

(a) Find an expression for the cost C of the fence in terms of x.
(b) Find the value of x that minimizes the cost of the fence.
(c) At the minimum cost, what are the dimensions of the garden, and how much does the entire fence cost?
5. Let $f(x)=\frac{1}{4} x^{4}-x^{3}-2 x^{2}+3$.
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) Find the critical points of $f(x)$.
(c) Characterize each critical point as a local minimum, local maximum, or neither. Justify your answers.
(d) Find the intervals on which $f(x)$ is increasing and on which $f(x)$ is decreasing.
(e) Find the global maximum and minimum values of $f(x)$ on the interval $[-2,4]$, and the x-values where they occur.
(f) Find the inflection points of $f(x)$. Justify your answers.
6. Find the area of the region enclosed by the curves $y=x^{2}$ and $y=8 \sqrt{x}$.
7. Let $f(x)=x^{3}-\frac{1}{x^{2}}$.
(a) Find the general antiderivative $G(x)$ of $f(x)$.
(b) Find the antiderivative $G(x)$ of $f(x)$ satisfying $G(2)=\frac{5}{2}$.
8. Let $g(x)=x^{4 / 3}$.
(a) Find $g^{\prime}(x)$.
(b) Find the equation of the tangent line to the graph $y=x^{4 / 3}$ at $x=8$.
(c) Use the tangent line to approximate $(8.03)^{4 / 3}$.
9. A water pipe bursts. The flow through the burst pipe wall is given, in liters per second, by $F(t)$, where t is the time in seconds since the pipe burst. A table of these flow rates is given below:

$$
\begin{array}{cccccc}
t(\mathrm{~s}) & 0 & 1 & 2 & 3 & 4 \\
F(t)(\mathrm{l} / \mathrm{s}) & 40 & 30 & 24 & 18 & 14
\end{array}
$$

Using the average of a left-hand and a right-hand Riemann sum, estimate the volume of water that escapes the pipe during the first 4 seconds.
10. We sell bushels of apples from our farm in Riverhead, NY. We discover that if we sell a bushel at $\$ 20$, we can sell 2000 bushels, but if we decrease the price to $\$ 18$, we sell 2400 .
(a) Find the price $p(q)$ as a function of the quantity sold, q.
(b) Find the revenue $R(q)$ as a function of q.
(c) Find the quantity q that maximizes the revenue. What is the price we should charge to sell that quantity?
(d) We calculate our costs to be $C(q)=5000+10 q$. Find the quantity that maximizes the profit that we make. What is the price we should charge, and what is our profit?
11. Below is the graph of a function $g(x)$ on the interval $[1,5]$.

(a) Find $\int_{1}^{4} g(x) d x$.
(b) Find $\int_{2}^{5} g(x) d x$.
(c) Find $\int_{1}^{5} g(x) d x$.
(d) Find the total area of the shaded region enclosed by the curve and the x-axis.
(e) Find the average value of $g(x)$ from $x=1$ to $x=5$.
12. Let $z(t)=\frac{36}{(2 z+1)^{2}}$.
(a) Find the left-hand Riemann sum of $z(t)$ from 0 to $\frac{3}{2}$ with $n=3$.
(b) Find the right-hand Riemann sum of $z(t)$ from 0 to $\frac{3}{2}$ with $n=3$.
(c) Use these Riemann sums to estimate $\int_{0}^{3 / 2} z(t) d t$.
(d) An antiderivative of $z(t)$ is $w(t)=-\frac{18}{2 z+1}$. Compute the exact value of $\int_{0}^{3 / 2} z(t) d t$. What is the error in your estimate from part (c)?

