Final Exam Topics

The final exam will be comprehensive, but will focus more on material from after the second midterm (Sections 4.3, 4.4, 5.1-5.3, 5.5, 6.1, 7.1, and 7.3). Review past homework, quizzes, and exams for more examples and applications of these concepts.

Chapter 1: Precalculus Skills

Section 1.1:

- Functions via tables, graphs, and formulas
- Domain and range of a function

Section 1.2:

- Linear functions, slope, difference quotient
- Point-slope formula for line through $\left(x_{1}, y_{1}\right)$ with slope $m: y-y_{1}=m\left(x-x_{1}\right)$
- Finding equation of line between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

Section 1.3:

- Average rate of change of f from a to $b: \frac{\Delta f}{\Delta x}=\frac{f(b)-f(a)}{b-a}$
- Graphical interpretation: slope of secant line of $f(x)$ from a to b
- Average velocity: $\Delta x / \Delta t$
- Relative change: $\Delta P / P_{0}$

Section 1.5:

- Exponential functions: constant relative rate of change
- Exponental properties: $a^{x} a^{y}=a^{x+y},\left(a^{x}\right)^{y}=a^{x y}, a^{0}=1$
- Formulas: $P(t)=P_{0} a^{t}$, a the growth factor; $P_{0}(1+r)^{t}, r$ the growth rate; $P_{0} e^{k t}, k$ the continuous growth rate (P_{0} is the initial amount)
- growth: $a>1, r>0, k>0$; decay: $0<a<1,-1<r<0, k<0$

Section 1.6:

- Logarithm as inverse to exponential: $\log _{a} y=x$ means $y=a^{x}$
- Natural logarithm $\ln =\log _{e}: \ln y=x$ means $y=e^{x}$
- Log properties: $\log _{a} x+\log _{a} y=\log _{a}(x y), \log _{a} x^{p}=p \log _{a} x, \log _{a} a=1, \log _{a} 1=0$ Section 1.7:
- Exponential growth and decay; doubling time (growth) and half-life (decay)

Section 1.8:

- Function composition: $(f \circ g)(x)=f(g(x))$
- Translate $f(x)$: vertical, $f(x)+c($ up $c)$; horizontal, $f(x-c)$ (to right c)
- Scaling: vertical stretch by $c, c f(x)$; horizontal compression by $c, f(c x)$
- Reflection: across x-axis, $-f(x)$; across y-axis, $f(-x)$

Section 1.9:

- y (directly) proportional to $x: y=k x, k$ constant
- y inversely proportional to $x: y=\frac{k}{x}$, or $x y=k$
- Power functions: $y=k x^{p}$

Chapter 2: Derivatives

Section 2.1:

- Instantaneous rate of change of f at $a: f^{\prime}(a)$ (number)
- Understand how we get $f^{\prime}(a)$ from average rates of change over shorter and shorter intervals
- Example: instantaneous velocity from average velocities
- Tangent line to $f(x)$ at $x=a: y=f^{\prime}(a)(x-a)+f(a)$, from point-slope formula
- Understand how the tangent line is the limit of secant lines (picture of lines)
- Estimate $f^{\prime}(a)$ from graphical or tabular data

Section 2.2:

- $f^{\prime}(x)$ is itself a function: tells slope of $f(x)$ at different places on graph
- $f^{\prime}(x)>0$ means $f(x)$ increasing; $f^{\prime}(x)<0$ means $f(x)$ decreasing
- Relate the graph of $f(x)$ to the graph of $f^{\prime}(x)$

Section 2.3:

- Leibniz notation: $f^{\prime}(x)=\frac{d f}{d x}, y^{\prime}(t)=\frac{d y}{d t}$
- Units and interpretation of the derivative: units of $f^{\prime}(x)=$ units of $f(x) /$ units of x
- Tangent line to $f(x)$ at $x=a$ is best linear approximation to $f(x)$ at a

Section 2.4:

- The second derivative $f^{\prime \prime}(x)$: derivative of function $f^{\prime}(x)$
- $f^{\prime \prime}(x)>0, y=f(x)$ concave up; $f^{\prime \prime}(x)<0, y=f(x)$ concave down

Chapter 3: Derivative Rules

Section 3.1:

- Power Rule: derivative of x^{n} is $n x^{n-1}$
- Find derivatives of $\frac{1}{x^{n}}, \sqrt[n]{x^{p}}$ using power rule
- Constant Multiple Rule: derivative of $c f(x)$ is $c f^{\prime}(x)$
- Sum Rule: derivative of $f(x)+g(x)$ is $f^{\prime}(x)+g^{\prime}(x)$

Section 3.2:

- Exponential Rule: derivative of e^{x} is e^{x}
- More exponentials: derivative of $e^{k x}$ is $k e^{k x}$, derivative of a^{x} is $(\ln a) a^{x}$
- Logarithm Rule: derivative of $\ln x$ is $\frac{1}{x}$

Section 3.3:

- Chain Rule: derivative of $f(g(x))$ is $f^{\prime}(g(x)) g^{\prime}(x)$
- Practice decomposing function $H(x)$ as $f(z), z=g(x)$

Section 3.4:

- Product Rule: derivative of $f(x) g(x)$ is $f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
- Quotient Rule: derivative of $\frac{f(x)}{g(x)}$ is $\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}$
- Recognize which rule or combination of rules to use for a given function

Chapter 4: Applications of Derivatives

Section 4.1:

- Definitions of local minima and maxima
- Critical points: p where $f^{\prime}(p)=0$ or where $f^{\prime}(p)$ is undefined
- First Derivative Test: local max/min from change in sign of $f^{\prime}(x)$ at critical point p
- Second Derivative Test: $f^{\prime}(p)=0, f^{\prime \prime}(p)<0$ mean local max, $f^{\prime \prime}(p)>0$, local min Section 4.2:
- Inflection point: change in sign of concavity at p
- Check where $f^{\prime \prime}(p)=0$ or does not exist, but not a guarantee

Section 4.3:

- Definitions of global maxima and minima
- Finding global extrema of $f(x)$ on a closed interval $[a, b]$: check critical points of f and endpoints a and b
- Finding global extrema of $f(x)$ on an open or infinite interval: check critical points of f and behavior of f as it approaches each end of the interval
Section 4.4:
- Profit is revenue minus cost: $P=R-C$
- Revenue is price \times quantity: $R(q)=q p(q)$
- "Marginal" means "derivative of" (e.g., marginal revenue, cost, or profit)
- Find quantity q maximizing revenue: Solve $R^{\prime}(q)=0$ for q
- Find q maximizing profit: Solve $R^{\prime}(q)=C^{\prime}(q)$ (marginal revenue $=$ marginal cost)

Chapters 5 and 6: Definite Integrals

Section 5.1:

- Distance traveled is time \times velocity
- Graphical over- and underestimates of distance traveled or total change
- Refining estimates by taking smaller time steps

Section 5.2:

- Left and right Riemann sums of f from a to b
- Notation and formulas: n (number of subdivisions), Δt or $\Delta x=\frac{b-a}{n}$ (length of each subdivision), $t_{i}=a+i \Delta t$ (endpoints of subdivisions, i ranging from 0 to n)
- Definite integral $\int_{a}^{b} f(x) d x$: value is limit of Riemann sums as $n \rightarrow \infty$
- Definite integral as area under curve $y=f(x)$ from a to b
- Approximate the value of a definite integral with Riemann sums

Section 5.3:

- Integrals as area: area above x-axis is positive; area below the x-axis, negative
- Relate total area of a region to definite integrals
- Area enclosed by $y=f(x)$ and x-axis: find limits with $f(x)=0$
- Area enclosed by $f(x)$ and $g(x): \int_{a}^{b} f(x)-g(x) d x$, find limits with $f(x)=g(x)$; Section 5.5:
- Fundamental Theorem of Calculus: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$ (total change in f) Section 6.1:
- Average value of f from a to $b: \frac{1}{b-a} \int_{a}^{b} f(x) d x$
- Average rate of change from average value of instantaneous rate of change

Chapter 7: Antiderivatives

Section 7.1:

- Definition of specific, general (" $+C^{\prime \prime}$) antiderivative of $f(x)$; indefinite integral
- Antiderivative of x^{n} is $\frac{1}{n+1} x^{n+1}, n \neq-1$
- Antiderivative of $e^{k x}$ is $\frac{1}{k} e^{k x}$; Antiderivative of $\frac{1}{x}$ is $\ln x$

Section 7.3:

- Evaluate definite integrals with antiderivatives and the Fundamental Theorem

