Solutions to Midterm \#2 Practice Problems

1. Compute the derivative of each function below. Simplify your answers where possible.
(a) $f(x)=x^{3}+\frac{1}{x^{3}}+\sqrt[3]{x}$

Solution: Since $f(x)=x^{3}+x^{-3}+x^{1 / 3}$, the derivative is $f^{\prime}(x)=3 x^{2}-3 x^{-4}+\frac{1}{3} x^{-2 / 3}$, which we can rewrite as

$$
f^{\prime}(x)=3 x^{2}-\frac{3}{x^{4}}+\frac{1}{3 x^{2 / 3}}
$$

(b) $h(t)=\left(4 t^{2}-t^{3}\right) e^{t}$

Solution:

Using the product rule,

$$
h(t)=\left(4 t^{2}-t^{3}\right)^{\prime} e^{t}+\left(4 t^{2}-t^{3}\right)\left(e^{t}\right)^{\prime}=\left(8 t-3 t^{2}\right) e^{t}+\left(4 t^{2}-t^{3}\right) e^{t}=\left(8 t+t^{2}-t^{3}\right) e^{t}
$$

(c) $L(u)=\ln (u) \ln (\ln u)$

Solution: We first observe that $L(u)$ is a product of $f(u)=\ln u$ and $g(u)=\ln (\ln u)$. Then $f^{\prime}(u)=\frac{1}{u}$, but we must use the chain rule to find $g^{\prime}(u)$. Let $z=\ln u$; then $g(u)=\ln z$, so

$$
g^{\prime}(u)=\frac{1}{z} \cdot z^{\prime}=\frac{1}{\ln u} \cdot \frac{1}{u} .
$$

Coming back to the derivative of $L(u)$, we compute that

$$
L^{\prime}(u)=f^{\prime}(u) g(u)+f(u) g^{\prime}(u)=\frac{1}{u} \ln (\ln u)+\ln u \frac{1}{\ln u} \cdot \frac{1}{u}=\frac{\ln (\ln u)+1}{u} .
$$

(d) $P(z)=\frac{e^{3 z}}{z^{3 / 2}}$

Solution: We use the quotient rule, with $f(z)=e^{3 z}$ and $g(z)=z^{3 / 2}$. Then $f^{\prime}(z)=3 e^{3 z}$ and $g^{\prime}(z)=\frac{3}{2} z^{1 / 2}$, so

$$
P^{\prime}(z)=\frac{f^{\prime}(z) g(z)-f(z) g^{\prime}(z)}{(g(z))^{2}}=\frac{3 e^{3 z} z^{3 / 2}-e^{3 z}\left(\frac{3}{2} z^{1 / 2}\right)}{\left(z^{3 / 2}\right)^{2}}
$$

We simplify the answer by factoring as much as possible out of the numerator and cancelling with the denominator:

$$
P^{\prime}(z)=\frac{\left(3 z^{3 / 2}-\frac{3}{2} z^{1 / 2}\right) e^{3 z}}{z^{3}}=\frac{3(2 z-1)\left(\frac{1}{2} z^{1 / 2}\right) e^{3 z}}{z^{3}}=\frac{3(2 z-1) e^{3 z}}{2 z^{5 / 2}}
$$

(e) $Q(w)=e^{w^{3}-2 w^{2}}$

Solution: The function $Q(w)$ is a composite of two functions: letting $z=g(w)=$ $w^{3}-2 w^{2}$ be a new, intermediate variable containing all the w s, we see that $Q(w)$ is the composite of $f(z)=e^{z}$ and $g(w)$. Hence, we use the chain rule to compute its derivative. First, we compute the derivatives of f and g :

$$
f^{\prime}(z)=e^{z} \quad g^{\prime}(w)=3 w^{2}-2(2 w)=3 w^{2}-4 w
$$

Then the derivative of $Q(w)$ is

$$
Q^{\prime}(w)=f^{\prime}(z) g^{\prime}(w)=e^{z}\left(3 w^{2}-4 w\right)=\left(3 w^{2}-4 w\right) e^{w^{3}-2 w^{2}}
$$

2. Let $f(x)=3 x^{5}-20 x^{3}$.
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Solution: Using the power rule, we find that

$$
f^{\prime}(x)=3\left(5 x^{4}\right)-20\left(3 x^{2}\right)=15 x^{4}-60 x^{2}
$$

Taking another derivative, we find that

$$
f^{\prime \prime}(x)=15\left(4 x^{3}\right)-60(2 x)=60 x^{3}-120 x
$$

(b) Find the critical points of $f(x)$.

Solution: To find the critical points of $f(x)$, we solve the equation $f^{\prime}(x)=0$ for x. (Since $f(x)$ is a polynomial, there are no places where $f^{\prime}(x)$ is undefined, so we do not get any of that type of critical point.) Hence, we wish to solve

$$
15 x^{4}-60 x^{2}=0
$$

Factoring, we see this is $15 x^{2}\left(x^{2}-4\right)=0$, which factors further as

$$
15 x^{2}(x-2)(x+2)=0
$$

Therefore, the roots are $x=0, x=2$, and $x=-2$, so these are the critical points of $f(x)$.
(c) Characterize each critical point as a local minimum, local maximum, or neither. Justify your answers.
Solution: Since we have computed the second derivative of f to be $f^{\prime \prime}(x)=60 x^{3}-$ $120 x$, we use the second derivative test to get information about these critical points:

$$
\begin{aligned}
f^{\prime \prime}(0) & =60(0)^{3}-120(0)=0 \\
f^{\prime \prime}(2) & =60(2)^{3}-120(2)=480-240=240 \\
f^{\prime \prime}(-2) & =60(-2)^{3}-120(-2)=-480+240=-240
\end{aligned}
$$

Since $f^{\prime \prime}(2)>0, f(x)$ has a local minimum at $x=2$, and since $f^{\prime \prime}(-2)<0, f(x)$ has a local maximum at $x=-2$. At $x=0$, however, the second derivative test is inconclusive, and we need to use the first derivative test instead.
For the first derivative test, we check the sign of $f^{\prime}(x)$ on either side of $x=0$. The critical points divide up the domain of $f(x)$ so that $f^{\prime}(x)$ has a single sign on the intervals $(-2,0)$ and $(0,2)$. Hence, we pick a point p from each interval and compute $f^{\prime}(p)$. From $(0,2)$, we pick $x=1$, so $f^{\prime}(1)=15-60=-45$, and from $(-2,0)$, we pick $x=-1$, so $f^{\prime}(-1)=15(-1)^{4}-60(-1)^{2}=15-60=-45$. Hence, $f^{\prime}(x)$ is negative on each side of $x=0$, so we have neither a minimum nor a maximum there.
(d) Find the intervals on which $f(x)$ is increasing and on which $f(x)$ is decreasing.

Solution: The critical points divide the real line (the domain of f) into 4 open intervals, $(-\infty,-2),(-2,0),(0,2)$, and $(2, \infty)$ as illustrated below:

From the first derivative test above, we computed that $f^{\prime}(x)$ is negative on both $(-2,0)$ and $(0,2)$, so $f(x)$ is decreasing on those intervals.
Since $f^{\prime \prime}(-2)<0, f^{\prime}(x)$ is decreasing from + to - at $x=-2$, so $f^{\prime}(x)$ is positive on $(-\infty,-2)$. Likewise, $f^{\prime \prime}(2)>0$, so $f^{\prime}(x)$ increases from - to + , and $f^{\prime}(x)$ is positive on $(2, \infty)$. Therefore, $f(x)$ is increasing on both of these intervals. We illustrate these signs ane behaviors below:

(e) Find the inflection points of $f(x)$. Justify your answers.

Solution: We check where $f^{\prime \prime}(x)=0: 60 x^{3}-120 x=0$, so $60 x\left(x^{2}-2\right)=0$. Hence, $x=0$, or $x^{2}-2=0$, so $x=\sqrt{2}$ or $x=-\sqrt{2}$. As with the critical points, these three points divide the real line into intervals on which $f^{\prime \prime}(x)$ is all positive or all negative:

We check the sign of $f^{\prime \prime}(x)$ on each interval.

- On the interval $(-\infty,-\sqrt{2}), f^{\prime \prime}(-2)<0$ from the second derivative test computations above, so $f^{\prime \prime}(x)$ is negative on this interval.
- On $(-\sqrt{2}, 0), f^{\prime \prime}(-1)=60$, so $f^{\prime \prime}(x)$ is positive on this interval.
- On $(0, \sqrt{2}), f^{\prime \prime}(1)=-60$, so $f^{\prime \prime}(x)$ is negative on this interval.
- Finally, on $(\sqrt{2}, \infty), f^{\prime \prime}(2)>0$, so $f^{\prime \prime}(x)$ is positive here.

Since the sign of $f^{\prime \prime}(x)$ changes at each boundary point, $f(x)$ has an inflection point at all three points.

(f) Use the information in the parts above to make an accurate graph of $f(x)$ on the axes below. Indicate the scale on the x - and y-axes, and label the graph with the local extrema and inflection points.
Solution: We compute the values of $f(x)$ at the local extrema: $f(2)=3(32)-20(8)=$ $96-160=-64$, and $f(-2)=64$.

3. Let $h(t)=\left(t^{2}-4\right)^{2 / 3}$.
(a) Find $h^{\prime}(t)$. Simplify your answer.

Solution: Using the chain rule, with outer function $z^{2 / 3}$ and inner function $t^{2}-4$, we have

$$
h^{\prime}(t)=\frac{2}{3}\left(t^{2}-4\right)^{-1 / 3}(2 t)=\frac{4 t}{3\left(t^{2}-4\right)^{1 / 3}}=\frac{4 t}{3 \sqrt[3]{t^{2}-4}}
$$

(b) Find the critical points of $h(t)$.

Solution: We find where $h^{\prime}(t)=0$ or is undefined.

- For $h^{\prime}(t)=0$, we check where the numerator $4 t$ is 0 , which happens at $t=0$.
- For $h^{\prime}(t)$ undefined, we check where the denominator is 0 : this happens when $3\left(t^{2}-4\right)^{1 / 3}=0$, so when $t^{2}-4=0$. Solving for $t, t=2$ or $t=-2$.
Hence, the critical points of $h(t)$ are $-2,0$, and 2 .
(c) Find the intervals on which $h(t)$ is increasing and on which $h(t)$ is decreasing.

Solution: The function $h(t)$ is defined for all t, so its domain is the entire real line. The critical points divide the line into intervals on which $h^{\prime}(t)$ has a single sign:

We evaluate $h^{\prime}(t)$ at points in these intervals and record the sign:

- On $(-\infty,-2)$, we check $t=-3: h^{\prime}(-3)=\frac{4(-3)}{3 \sqrt[3]{5}}$. Since the numerator is negative and the denominator positive, $h^{\prime}(-3)$ is negative.
- On $(-2,0)$, we check $t=-1: h^{\prime}(-1)=\frac{4(-1)}{3 \sqrt[3]{-3}}$. Since the numerator and denominator are both negative, $h^{\prime}(-1)$ is positive.
- On $(0,2)$, we check $t=3: h^{\prime}(1)=\frac{4(1)}{3 \sqrt[3]{-3}}$. Since the numerator is positive and the denominator negative, $h^{\prime}(1)$ is negative.
- On $(2, \infty)$, we check $t=3$: $h^{\prime}(3)=\frac{4(3)}{3 \sqrt[3]{5}}$. Since the numerator and denominator are both positive, $h^{\prime}(3)$ is positive.
We show these signs and the corresponding $h(t)$ behavior:

(d) Characterize each critical point as a local minimum, local maximum, or neither. Justify your answers.
Solution: At $t=2$ and at $t=-2, h^{\prime}(t)$ changes sign from - to + , so $h(t)$ has local minima here. At $t=0, h^{\prime}(t)$ changes sign from + to - , so $h(t)$ has a local maximum here.

Note: although the problem does not ask us to graph the function, we understand it much better if we do:

4. Below are the values of $g(t)$ for certain values of t.

t	1	3	5	7	9	11	13
$g(t)$	0.7	1.9	2.7	3.1	2.9	1.5	-0.3

(a) Estimate $g^{\prime}(3)$ and $g^{\prime}(11)$. Explain your estimates.

Solution: A balanced way to estimate $g^{\prime}(3)$ is to take the t values immediately to the left and to the right of $t=3$, so that $t=3$ is centered on that interval, and compute the average rate of change over that interval. In this case, this yields

$$
g^{\prime}(3) \approx \frac{g(5)-g(1)}{5-1}=\frac{2.7-0.7}{4}=0.5 .
$$

Similarly, we estimate that $g^{\prime}(11)$ is given by

$$
g^{\prime \prime}(11) \approx \frac{g(13)-g(9)}{13-9}=\frac{-0.3-2.9}{4}=\frac{-3.2}{4}=-0.8
$$

(b) Do you expect $g^{\prime \prime}(t)$ to be positive or negative on this interval? Explain.

Solution: Since our estimates of the derivative $g^{\prime}(t)$ decrease from $t=3$ to $t=11$, we expect $g^{\prime \prime}(t)$ to be negative.
5. Our favorite budget steel mill, Bethlehem Steel, has made some changes to its steel prices. The cost in dollars of x tons of steel is now given by the function

$$
C(x)=2000+800 x-6 x^{2}+0.05 x^{3} .
$$

(a) Find $C^{\prime}(x)$.

Solution: We find that $C^{\prime}(x)=800-12 x+0.15 x^{2}$.
(b) Evaluate $C(100)$ and $C^{\prime}(100)$. Interpret your results, and include units.

Solution: At $x=100$,

$$
\begin{aligned}
C(100) & =200+800(100)-6(100)^{2}+0.05(100)^{3} \\
& =200+80,000-60,000+50,000=72,000 \\
C^{\prime}(100) & =800-12(100)+0.15(10000)=800-1200+1500=1100
\end{aligned}
$$

Hence, to buy 100 tons of steel, the cost is 72,000 dollars, and the cost is increasing at a rate of 1100 dollars per ton.
(c) Find an equation of the tangent line to $C(x)$ at $x=100$.

Solution: At $x=100$, we use the point-slope formula to find the equation of the tangent line:

$$
y=C^{\prime}(100)(x-100)+C(100)=1100(x-100)+72,000 .
$$

If we write this equation in slope-intercept form, $y=1100 x-38,000$.
(d) Estimate $C(102)$.

Solution: We use the tangent line to estimate $C(102)$, since it provides the best linear approximation to $C(x)$ near $x=100$. Then

$$
C(102) \approx 1100(102-100)+72,000=2200+72,000=74,200
$$

6. Below are values of three functions, $r(x), s(x)$, and $t(x)$, and their derivatives at different values of x.

x	$r(x)$	$s(x)$	$t(x)$	$r^{\prime}(x)$	$s^{\prime}(x)$	$t^{\prime}(x)$
3	4	0	1	2	4	3
4	2	3	3	-2	6	2
5	3	4	4	-4	7	0

(a) Let $H(x)=r(s(x))$. Find $H^{\prime}(4)$.

Solution: Since $H^{\prime}(x)=r^{\prime}(s(x)) s^{\prime}(x)$ by the chain rule,

$$
H^{\prime}(4)=r^{\prime}(s(4)) s^{\prime}(4)=r^{\prime}(3) s^{\prime}(4)=(2)(6)=12
$$

(b) Let $L(x)=\ln (t(x))$. Find $L^{\prime}(3)$.

Solution: Since $L^{\prime}(x)=\frac{t^{\prime}(x)}{t(x)}$ by the chain rule and the derivative of $\ln x$,

$$
L^{\prime}(3)=\frac{t^{\prime}(3)}{t(3)}=\frac{3}{1}=3 .
$$

(c) Let $P(x)=r(x) s(x)$. Find $P^{\prime}(5)$.

Solution: By the product rule, $P^{\prime}(x)=r^{\prime}(x) s(x)+r(x) s^{\prime}(x)$. Then

$$
P^{\prime}(5)=r^{\prime}(5) s(5)+r(5) s^{\prime}(5)=(-4)(4)+(3)(7)=5 .
$$

(d) Let $Q(x)=\frac{r(x)}{t(x)}$. Find $Q^{\prime}(3)$.

Solution: By the quotient rule, $Q^{\prime}(x)=\frac{r^{\prime}(x) t(x)-r(x) t^{\prime}(x)}{t(x)^{2}}$, so

$$
Q^{\prime}(3)=\frac{r^{\prime}(3) t(3)-r(3) t^{\prime}(3)}{t(3)^{2}}=\frac{2(1)-4(3)}{1}=-10
$$

(e) Let $V(x)=s(x) e^{r(x)}$. Find $V^{\prime}(4)$.

Solution: By the product rule and the chain rule,

$$
V^{\prime}(x)=s^{\prime}(x) e^{r(x)}+s(x) e^{r(x)} r^{\prime}(x)=\left(s^{\prime}(x)+s(x) r^{\prime}(x)\right) e^{r(x)} .
$$

Then $V^{\prime}(4)=\left(s^{\prime}(4)+s(4) r^{\prime}(4)\right) e^{r(4)}=(6+3(-2)) e^{2}=0$.
7. On a hot summer's day, we launch a water balloon into the air from the roof of a building. The vertical position of the balloon is given by $y(t)=35+30 t-5 t^{2}$, in meters, where t is the time in seconds since the balloon was launched.
(a) What are the balloon's vertical velocity $v(t)$ and acceleration $a(t)$? Include units.

Solution: The vertical velocity is the derivative of the height function $y(t)$, so $v(t)=$ $y^{\prime}(t)=30-10 t$, in units of m / s. The acceleration is the derivative of velocity, so it is $a(t)=v^{\prime}(t)=-10$, in units of $\mathrm{m} / \mathrm{s}^{2}$.
(b) How high up does the balloon go? At what time does the balloon reach its peak?

Solution: We first find when the balloon reaches its peak. This happens when the velocity $v(t)$ is 0 , as that indicates a critical point of the height function $y^{\prime}(t)$. Hence, $30-10 t=0$, so $t=3$. At this time, $y(3)=35+30(3)-5(3)^{2}=80$.
(c) How long does it take the balloon to hit the ground?

Solution: When the balloon hits the ground, its height is 0 , so $y(t)=35+30 t-5 t^{2}=0$. Factoring out and dividing by a $-5, t^{2}-6 t-7=0$, so $(t-7)(t+1)=0$, and $t=-1$ or $t=7$. The solution $t=-1$ does not make sense, so we conclude that the balloon hits the ground at $t=7$, or 7 seconds after the launch.
(d) What is the vertical velocity of the balloon when it hits the ground?

Solution: We evaluate $v(t)$ at $t=7: v(7)=30-10(7)=-40$. Hence, the balloon is traveling downward at $40 \mathrm{~m} / \mathrm{s}$ at the time of impact.
8. When a 200-milligram dose of the drug pretendozole ingested, the function

$$
C(t)=\frac{60 t}{t^{3}+16}
$$

describes its concentration in the bloodstream t hours later, in mg / l.
(a) Find $C^{\prime}(t)$. What are the units of this quantity?

Solution: We use the quotient rule to compute $C^{\prime}(t)$, with $f(t)=60 t$ and $g(t)=$ $t^{3}+16$. Then $f^{\prime}(t)=60$ and $g^{\prime}(t)=3 t^{2}$, so

$$
C^{\prime}(t)=\frac{60\left(t^{3}+16\right)-60 t\left(3 t^{2}\right)}{\left(t^{3}+16\right)^{2}}=\frac{60\left(16-2 t^{3}\right)}{\left(t^{3}+16\right)^{2}}=\frac{120\left(8-t^{3}\right)}{\left(t^{3}+16\right)^{2}}
$$

This quantity is in units of $\mathrm{mg} / \mathrm{l} \cdot \mathrm{hr}$.
(b) Evaluate $C^{\prime}(1)$ and $C^{\prime}(3)$. What do these values tell you about how $C(t)$ is changing? Solution: At $t=1, C^{\prime}(1)=\frac{120(8-1)}{(1+16)^{2}}=\frac{120(7)}{17^{2}}=\frac{840}{17^{2}}$, and at $t=3, C^{\prime}(3)=\frac{120(8-27)}{(27+16)^{2}}=$ $\frac{120(-19)}{43^{2}}=\frac{-2280}{43^{2}}$. These values indicate that $C(t)$ is increasing around $t=1$ and decreasing around $t=3$.
(c) Find the time t when the maximum concentration occurs. What is the concentration at that maximum?
Solution: We compute the critical points of $C(t)$ for $t \geq 0$. We first look for critical points where $C^{\prime}(t)=0$. Since

$$
C^{\prime}(t)=\frac{120\left(8-t^{3}\right)}{\left(t^{3}+16\right)^{2}}
$$

these occur only when the numerator $120\left(8-t^{3}\right)=0$, so $t^{3}=8$, and thus $t=2$. We also note that for $t \geq 0, t^{3}+16$ is strictly positive, so we get no undefined-case critical points from the denominator being 0 .
From part (b), $C(t)$ is increasing to the left of $t=2$ and decreasing to the right, so $C(t)$ has a local maximum at $t=2$ by the first derivative test. Furthermore, $C(t)$ is increasiing on $[0,2)$ and decreasing on $(2, \infty)$, so $C(t)$ has a global maximum at $t=2$. There, $C(2)=\frac{60(2)}{8+16}=\frac{120}{24}=5 \mathrm{mg} / \mathrm{l}$.
9. Below is the graph of a function $f(x)$, labeled with points A through F.

At which of the labeled points is
(a) $f(x)$ greatest?

Solution: $f(x)$ has the greatest value at C, since the graph is highest there.
(b) $f^{\prime}(x)$ greatest?

Solution: We look for where $f(x)$ has the steepest upward slope. B and F both have positive slopes, but the steepest slope occurs at F.
(c) $f(x)$ smallest?

Solution: Looking for the lowest height on the graph, we observe it at E.
(d) $f^{\prime}(x)$ smallest?

Solution: This is where $f(x)$ has the steepest downward slope, which happens at D.
(e) $f^{\prime}(x)=0$?

Solution: We look for where $f(x)$ has a horizontal tangent line, and we observe that only C has such a tangent.
(f) $f^{\prime \prime}(x)=0$?

Solution: We look for where $f(x)$ changes concavities. This occurs at D, as $f(x)$ changes from negative concavity to positive.

