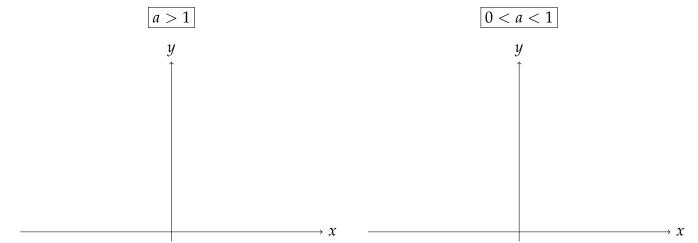
Lecture Handout #04: Sep 8

Population Growth

Population of 10 bacteria doubles every hour:

Formula for population:
$$P(t) =$$

Compounded Interest


Value of \$1 at 100% interest, compounded n times per year, after 1 year: V(n) =______

n	1	2	3	4	5
Value (\$)	2				
n	10	20	100	1000	1000000
Value (\$)					

- How large does n have to be for V(n) > \$2.50?
- How large does n have to be for V(n) > \$2.70?
- How large does n have to be for V(n) > \$2.80?
- What number do the values approach as *n* gets larger and larger?

Graphs of Exponentials

Sketch some graphs $y = a^x$ of exponential functions with:

