Lecture Handout \#10: Oct 4

Approximations with Tangent Lines

Approximate $f(x)=x^{2}$ for x near 3: $\quad a=$ \qquad $f(a)=$ \qquad

$$
f^{\prime}(a)=
$$

\qquad
tangent line at $x=a: \quad y=\overline{\text { height at } a}+\frac{}{\text { slope at } a} \quad \times \frac{}{\text { step from } a}$ tangent line at $x=3: \quad y=$ \qquad

x	step	estimate of x^{2}	actual x^{2}
3.1			

The Second Derivative and Concavity

Sketch graphs of a function $f(x)$ with:

$f^{\prime \prime}(x)>0$

$f^{\prime \prime}(x)<0$

Concavity from Tabular Data
$C(t)$ gives the number of passenger cars (in millions) in US in year t

t	1940	1950	1960	1970	1980
$C(t)$	27.5	40.3	61.7	89.2	121.6

estimate of $C^{\prime}(t)$ \qquad
\qquad

From 1940 to 1980, does $C^{\prime}(t)$ increase or decrease? \qquad

