Lecture Handout \#12: Oct 11

Online mid-semester course assessment: https://tlt.stonybrook.edu/evaluate

Derivatives of Exponential Functions

Slope of the tangent line to $f(x)=e^{x}$ at different values of x :
x
$f(x)$
$f^{\prime}(x)$
x
$f(x)$
$f^{\prime}(x)$

0

1
\qquad

Derivative of $f(x)=e^{x}: f^{\prime}(x)=$ \qquad
Derivative of $f(x)=e^{2 x}: f^{\prime}(x)=$ \qquad
Derivative of $f(x)=e^{k x}: f^{\prime}(x)=$ \qquad

Derivatives of Logarithm Functions

Slope of the tangent line to $f(x)=\ln x$ at different values of x :

x	$f^{\prime}(x)$	x	$f^{\prime}(x)$	x	$f^{\prime}(x)$
1					
2					

Formula for the derivative of $f(x)=\ln x: f^{\prime}(x)=$ \qquad

Applications

Mouse population: $P(t)=$ \qquad (t in months)
$P(12)=$ \qquad

$$
P^{\prime}(t)=
$$

\qquad

$$
P^{\prime}(12)=
$$

\qquad
Tangent line to $h(x)=$ \qquad at $a=$ \qquad
$h(a)=$ \qquad

$$
h^{\prime}(a)=
$$

\qquad $y=$ \qquad

