Lecture Handout #12: Oct 11

Online mid-semester course assessment: https://tlt.stonybrook.edu/evaluate

Derivatives of Exponential Functions

Slope of the tangent line to $f(x) = e^x$ at different values of x:

Derivative of $f(x) = e^x$: f'(x) =

Derivative of $f(x) = e^{2x}$: $f'(x) = ______$

Derivative of $f(x) = e^{kx}$: $f'(x) = \underline{\hspace{1cm}}$

Derivatives of Logarithm Functions

Slope of the tangent line to $f(x) = \ln x$ at different values of x:

x	f'(x)	x	f'(x)	x	f'(x)
1					
2					

Formula for the derivative of $f(x) = \ln x$: f'(x) =

Applications

Mouse population: P(t) =______ (t in months)

$$P(12) =$$
______ $P'(t) =$ ______ $P'(12) =$ ______

Tangent line to h(x) =_____ at a =_____

$$h(a) = \underline{\hspace{1cm}} h'(a) = \underline{\hspace{1cm}} y = \underline{\hspace{1cm}}$$