Lecture Handout #13: Oct 13

Online mid-semester course assessment: https://tlt.stonybrook.edu/evaluate

The Chain Rule: Derivatives of Composite Functions

Write y = H(x) as a composite: y = f(z), where z = g(x). The derivative of *H* is

 $H'(x) = \underline{\qquad } \cdot \underline{\qquad } = \underline{\qquad } \cdot \underline{\qquad }$

Polynomial Functions

y = H(x)	y = f(z)	z = g(x)	f'(z)	g'(x)	H'(x)
$(x^2+1)^2$	z^2	$x^2 + 1$			
$(x^2+1)^3$					

Generalized Power Rule: Derivative of $f(x)^n$ is ______.

Derivatives from Tables of Values

Some values of functions *f* and *g* and their derivatives:

	x	1	2	3	4	5	Со	mposites:		
	f(x)	4	3	1	2	5	H(z)	f(g(x)) = f(g(x))))	
	f'(x)	-1	-2	0	1	4	O(x) - g(f(x))			
	g(x)	5	6	4	2	3		() = g(f(x))))	
	g'(x)	2	0	-3	1	2				
$H'(\underline{3}) = \underline{1}$		×		=		H'() =	×	=	
$Q'(__) = _$		×		=		Q'() =	×		