Lecture Handout \#13: Oct 13

Online mid-semester course assessment: https://tlt.stonybrook.edu/evaluate

The Chain Rule: Derivatives of Composite Functions

Write $y=H(x)$ as a composite: $y=f(z)$, where $z=g(x)$. The derivative of H is

$$
H^{\prime}(x)=
$$

\qquad . $=$ \qquad .

Polynomial Functions

$y=H(x)$	$y=f(z)$	$z=g(x)$	$f^{\prime}(z)$	$g^{\prime}(x)$	$H^{\prime}(x)$
$\left(x^{2}+1\right)^{2}$	z^{2}	$x^{2}+1$			
$\left(x^{2}+1\right)^{3}$					

Generalized Power Rule: Derivative of $f(x)^{n}$ is

Derivatives from Tables of Values

Some values of functions f and g and their derivatives:

x	1	2	3	4	5	Composites:
$f(x)$	4	3	1	2	5	$H(x)=f(g(x))$
$f^{\prime}(x)$	-1	-2	0	1	4	$Q(x)=g(f(x))$
$g(x)$	5	6	4	2	3	
$g^{\prime}(x)$	2	0	-3	1	2	

