Lecture Handout #15: Oct 20

Quotient Rule

$H(x) = \frac{f(x)}{g(x)}$		$H'(x) = - \cdot \boxed{ \cdot \boxed{ \cdot \boxed{ \cdot \boxed{ \cdot \boxed{ \cdot \boxed{ \cdot \boxed{$			
H(x) x/e^x	f(x)	g(x) e^x	f'(x)	g'(x)	H'(x)

Applications of Derivative Rules

Daily revenue from sale of an iPhone game at price p: quantity q(p) =

Revenue: R(p) = _____ Marginal revenue: R'(p) = _____

Sketch graphs of R(p) and R'(p) on the same axes:

For which value of p does R(p) reach a maximum value?

What happens to R'(p) there?