Lecture Handout \#21: Nov 10

Distance Change from Velocity

Velocity of a toy wind-up car: starts at $2 \mathrm{~m} / \mathrm{s}$, increases steadily for 2 s

Time interval Underestimate Overestimate
\qquad
\qquad
\qquad

Total Change in Volume from Flow Rate

Time $t(\mathrm{~s}):$	0	1	2	3	4	5	Left-hand estimate:

Flow rate $f(t)(1 / \mathrm{s}): \begin{array}{llllllll}8 & 14 & 20 & 12 & 6 & 4 & \text { Right-hand estimate: }\end{array}$ \qquad

Bacterial Population from Growth Rate

Bacteria grow at $f(t)=1+t^{2}$ million per hour in a 4-hour time period

$n=4 \quad \Delta t=1 \quad$ Pop \approx \qquad

