Homework \#3 Solutions

Problems

- Section 1.6: 10, 20, 24, 28, 36
- Section 1.7: 2, 6, 16, 20
- Section 1.8: 2, 8, 14, 20, 22, 28
1.6.10. Solve for t using natural logarithms if $10=6 e^{0.5 t}$.

Solution: We isolate t :

$$
\begin{aligned}
\frac{10}{6} & =e^{0.5 t} \\
\ln \left(\frac{10}{6}\right) & =\ln \left(e^{0.5 t}\right)=0.5 t \\
t & =\frac{\ln \left(\frac{10}{6}\right)}{0.5}=2 \ln \left(\frac{5}{3}\right)
\end{aligned}
$$

Evaluating this numerically, $t \approx 1.022$.
1.6.20. The function $P=3.2 e^{0.03 t}$ represent exponential growth or decay. What is the initial quantity? What is the growth rate? State if the growth rate is continuous.

Solution: The initial quantity is 3.2 , and the (continuous) growth rate is 0.03 .
1.6.24. Write the function $P=2 e^{-0.5 t}$ in the form $P=P_{0} a^{t}$. Does the function represent exponential growth or decay?

Solution: The continuous growth rate k is -0.5 , so the growth factor a is $e^{-0.5} \approx 0.607$. Since $k<0$, this function represents decay.
1.6.28. Put the function $P=10(1.7)^{t}$ in the form $P=P_{0} e^{k t}$.

Solution: In this case, the growth factor a is 1.7 , so $k=\ln (1.7) \approx 0.531$.
1.6.36. The gross world product is $W=32.4(1.036)^{t}$, where W is in trillions of dollars and t is years since 2001. Find a formula for gross world product using a continuous growth rate.

Solution: The growth factor is $a=1.036$, so the continuous growth rate is $k=\ln (1.036) \approx$ 0.0354 . Hence, the new formula is

$$
W=32.4 e^{0.0354 t}
$$

1.7.2. The half-life of nicotine in the blood is 2 hours. A person absorbs 0.4 mg of nicotine by smoking a cigarette. Fill in the following table with the amount of nicotine in the blood after t hours. Estimate the length of time until the amount of nicotine is reduced to 0.04 mg .

Solution:

$$
\begin{array}{ccccccc}
t \text { (hours) } & 0 & 2 & 4 & 6 & 8 & 10 \\
\text { Nicotine (mg) } & 0.4 & 0.2 & 0.1 & 0.05 & 0.025 & 0.0125
\end{array}
$$

A formula describing the amount of nicotine at time t is $N(t)=0.4(2)^{-t / 2}$. Then $0.04=$ $0.4(2)^{-t / 2}$, so $0.1=2^{-t / 2}$, and $-t / 2=\log _{2}(0.1)$. Finally, $t=-2 \log _{2}(0.1) \approx 6.64$ hours.
1.7.6. Suppose 1000 is invested in an account paying interest at a rate of 5.5% per year. How much is in the account after 8 years if the interest is compounded
(a) Annually?
(b) Continuously?

Solution (a): The growth reate is 0.055 , so the amount is $1000(1.055)^{8} \approx 1534.69$.
Solution (b): The continuous growth rate is 0.055, so the amount is $1000 e^{0.055(8)} \approx 1552.71$.
1.7.16. The antidepressant fluoxetine (or Prozac) has a half-life of about 3 days. What percentage of a dose remains in the body after one day? After one week?

Solution: We write a function $P(t)$ that gives the proportion of Prozac remaining after time t. Since the half-life is 3 days, $P(t)=2^{-t / 3}$. Then $P(1)=2^{-1 / 3} \approx 0.794=79.4 \%$ is the percentage remaining after 1 day, and $P(7)=2^{-7 / 3} \approx 0.198=19.8 \%$ is the percentage remaining after 7 days.
1.7.20. The number of people living with HIV infections increased worldwide approximately exponentially from 2.5 million in 1985 to 37.8 million in 2003.
(a) Give a formula for the number of HIV infections, H, (in millions) as a function of years, t, since 1985. Use the form $H=H_{0} e^{k t}$. Graph the function.
(b) What was the yearly continuous percent change in the number of HIV infections between 1985 and 2003?

Solution (a): We have that $H_{0}=2.5$. In 2003, $t=2003-1985=18$, so we have $37.8=$ $2.5 e^{18 k}$. Then $k=\ln \left(\frac{37.8}{2.5}\right) / 18 \approx 0.151$, so the formula is

$$
H(t)=2.5 e^{0.151 t}
$$

The graph of this function is as follows:

Solution (b): The continuous percentage change is 15.1% per year.
1.8.2. If $f(x)=x^{2}+1$, find and simplify:
(a) $f(t+1)$
(b) $f\left(t^{2}+1\right)$
(c) $f(2)$
(d) $2 f(t)$
(e) $[f(t)]^{2}+1$

Solution (a): $f(t+1)=(t+1)^{2}+1=t^{2}+2 t+1+1=t^{2}+2 t+2$.
Solution (b): $f\left(t^{2}+1\right)=\left(t^{2}+1\right)^{2}+1=t^{4}+2 t^{2}+2$.
Solution (c): $f(2)=2^{2}+1=5$.

Solution (d): $2 f(t)=2\left(t^{2}+1\right)=2 t^{2}+2$.
Solution (e): $[f(t)]^{2}+1=\left(t^{2}+1\right)^{2}+1=t^{4}+2 t^{2}+2$.
1.8.8. Find the following if $f(x)=2 x^{2}$ and $g(x)=x+3$:
(a) $f(g(x))$
(b) $g(f(x))$
(c) $f(f(x))$

Solution (a): $f(g(x))=2(x+3)^{2}=2 x^{2}+12 x+18$.
Solution (b): $g(f(x))=2 x^{2}+3$.
Solution (c): $f(f(x))=2\left(2 x^{2}\right)^{2}=8 x^{4}$.
1.8.14. Use the variable u for the inside function to express each of the following as a composite function:
(a) $y=\left(5 t^{2}-2\right)^{6}$
(b) $P=12 e^{-0.6 t}$
(c) $C=12 \ln \left(q^{3}+1\right)$

Solution (a): Set $u=5 t^{2}-2$, so $y=u^{6}$.
Solution (b): Set $u=-0.6 t$, so $P=12 e^{u}$.
Solution (c): Set $u=q^{3}+1$, so $C=12 \ln u$.
1.8.20. Estimate $g(f(2))$ from the graphs of f and g.

Solution: First, from the graph of f above $x=2, f(2) \approx 0.4$. Then from the graph of g above $x=0.4, g(0.4) \approx 1.2$.
1.8.22. Using Table 1.36, create a table of values for $f(g(x))$ and for $g(f(x))$.

x	-3	-2	-1	0	1	2	3
$f(x)$	0	1	2	3	2	1	0
$g(x)$	3	2	2	0	-2	-2	-3

Solution: We calculate each value: for example, for $f(g(-1))$, we first look up $g(-1)=$ -2 . Then $f(g(-1))=f(-2)$, so we look that up to find $f(-2)=1$. Hence, $f(g(-1))=1$.

$$
\begin{array}{c|rrrrrrr}
x & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline f(g(x)) & 0 & 1 & 1 & 3 & 1 & 1 & 0 \\
g(f(x)) & 0 & -2 & -2 & -3 & -2 & -2 & 0
\end{array}
$$

1.8.28. The Heaviside step function, H, is graphed in Figure 1.79. Graph the following functions:
(a) $2 H(x)$
(b) $H(x)+1$
(c) $H(x+1)$
(d) $-H(x)$
(e) $H(-x)$

Solution: Below are the graphs:

(c) $y=H(x+1)$

(a) $y=2 H(x)$

(d) $y=-H(x)$

(b) $y=H(x)+1$

(e) $y=H(-x)$

