Homework #6 Solutions

Problems

Bolded problems are worth 2 points.

- Section 3.2: 4, 16, 20, 26, 34, 42, 46
- Section 3.3: 4, 12, 16, 26, 34, 40, 42, 50

3.2.4. Differentiate the function $f(x) = x^3 + 3^x$.

Solution: Using the sum, power, and exponential rules, $f'(x) = 3x^2 + (\ln 3)3^x$.

3.2.16. Differentiate $P = 200e^{0.12t}$.

Solution: The derivative is $P' = 200(0.12)e^{0.12t} = 24e^{0.12t}$.

3.2.20. Differentiate $y = B + Ae^t$, where *A* and *B* are constants.

Solution: Using the constant-multiple, sum, and exponential rules, $y' = 0 + Ae^t = Ae^t$.

3.2.26. Find the derivative of the function $R(q) = q^2 - 2 \ln q$.

Solution: The derivative is $R'(q) = 2q - 2\frac{1}{q} = 2q - \frac{2}{q}$.

3.2.34. The world's population is about $f(t) = 6.8e^{0.012t}$ billion, where *t* is the time in years since 2009. Find f(0), f'(0), f(10), and f'(10). Using units, interpret your answer in terms of population.

Solution: We find $f'(t) = 6.8(0.012)e^{0.012t} = 0.0816e^{0.012t}$, in billions of people per year. At t = 0, f(0) = 6.8 and f'(0) = 0.0816, so in 2009 the population is 6.8 billion and is increasing at a rate of 81.6 million per year. At t = 10, f(10) = 7.67 and f'(10) = 0.092, so the population in 2019 will be 7.67 billion and will be increasing at 92 million people per year. **3.2.42.** At a time *t* hours after it was administered, the concentration of a drug in the body is $f(t) = 27e^{-0.14t}$ ng/ml. What is the concentration 4 hours after it was administered? At what rate is the concentration changing at that time?

Solution: We find that $f'(t) = 27(-0.14)e^{-0.14t} = -3.78e^{-0.14t}$, in ng/ml · hr. At t = 4, the concentration is $f(4) = 27e^{-0.14(4)} \approx 15.42$ ng/ml, and the rate of change is $f'(4) = -3.78e^{-0.14(4)} \approx -2.16$ ng/ml · hr.

3.2.46. For the cost function $C = 1000 + 300 \ln q$ (in dollars), find the cost and the marginal cost at a production level of 500. Interpret your answers in economic terms.

Solution: The cost at q = 500 is $C(500) = 1000 + 300 \ln(500) \approx 2864.38$ dollars. The marginal cost is the derivative of the cost, $C'(q) = \frac{300}{q}$, so at q = 500, $C'(500) = \frac{300}{500} = 0.60$ dollars per unit. Therefore, it costs \$2864.38 to make 500 units of this product, and at that level of production costs are increasing at a rate of \$0.60 per unit.

3.3.4. Find the derivative of the function $w = (t^2 + 1)^{100}$.

Solution: We use the chain rule: $w = f(z) = z^{100}$, where $z = g(t) = t^2 + 1$. Then $f'(z) = 100z^{99}$ and g'(t) = 2t, so

$$w' = 100z^{99}(2t) = 200t(t^2 + 1)^{99}.$$

3.3.12. Find the derivative of the function $w = e^{-3t^2}$.

Solution: We use the chain rule: first, we write $w = f(z) = e^z$, with $z = g(t) = -3t^2$. Then $f'(z) = e^z$ and g'(t) = -6t, so

$$w' = e^z(-6t) = -6te^{-3t^2}.$$

3.3.16. Find the derivative of $f(t) = \ln(t^2 + 1)$.

Solution: Using the chain rule, with $h(z) = \ln z$ the outer function and $z = g(t) = t^2 + 1$ the inner function, we have $h'(z) = \frac{1}{z}$ and g'(t) = 2t. Then

$$f'(t) = \frac{1}{z}(2t) = \frac{2t}{t^2 + 1}.$$

3.3.26. Find the derivative of $y = \sqrt{e^x + 1}$.

Solution: We write this function as a composite: $y = \sqrt{z}$, where $z = e^x + 1$. Since $y = \sqrt{z} = z^{1/2}$, we use the power rule to find its derivative as $\frac{1}{2}z^{-1/2}$. $z' = e^x$, so the overall derivative is

$$y' = \frac{1}{2}(e^x + 1)^{-1/2}(e^x) = \frac{e^x}{2\sqrt{e^x + 1}}.$$

3.3.34. Find the relative rate of change
$$\frac{f'(t)}{f(t)}$$
 of the function $f(t) = 35t^{-4}$.

Solution: Since $f'(t) = 35(-4)t^{-5}$, the relative rate of change is

$$\frac{f'(t)}{f(t)} = \frac{35(-4)t^{-5}}{35t^{-4}} = -4t^{-1} = -\frac{4}{t}.$$

3.3.40. A firm estimates that the total revenue, *R*, received from the sale of *q* goods is given by

$$R = \ln(1 + 1000q^2).$$

Calculate the marginal revenue when q = 10.

Solution: The derivative of the revenue function, R'(q), gives the marginal revenue. This derivative is

$$R'(q) = \frac{2000q}{1 + 1000q^2}.$$

At
$$q = 10$$
, $R'(10) = \frac{2000(10)}{1 + 1000(10)^2} = \frac{20,000}{100,001} \approx 0.20.$

3.3.42. If you invest *P* dollars in a bank account at an annual interest rate of r%, then after *t* years you will have *B* dollars, where

$$B = P\left(1 + \frac{r}{100}\right)^t.$$

(a) Find $\frac{dB}{dt}$, assuming *P* and *r* are constant. In terms of money, what does $\frac{dB}{dt}$ represent? (b) Find $\frac{dB}{dr}$, assuming *P* and *t* are constant. In terms of money, what does $\frac{dB}{dr}$ represent?

Solution (a): With *t* as the independent variable, we recognize $B(t) = P \left(1 + \frac{r}{100}\right)^t$ as an exponential function Pa^t with base $a = 1 + \frac{r}{100}$. Therefore, its derivative is

$$\frac{dB}{dt} = P(\ln a)a^t = P\left(\ln\left(1 + \frac{r}{100}\right)\right)\left(1 + \frac{r}{100}\right)^t$$

This derivative tells us how fast the balance at a fixed rate *r* changes over time, in units of dollars per year.

Solution (b): With *r* as the independent variable, we see that $B(r) = P \left(1 + \frac{r}{100}\right)^t$ is more like a power function. Let $z = g(r) = 1 + \frac{r}{100}$, and then $B = Pz^t$, where *t* is constant. Hence, since $z' = \frac{1}{100}$,

$$\frac{dB}{dr} = Ptz^{t-1}\frac{1}{100} = \frac{Pt}{100}\left(1 + \frac{r}{100}\right)^{t-1}$$

This derivative tells us how fast the balance changes as we change the interest rate, *r*, but let the interest accumulate over the same period of time, *t*. Its units are in dollars per percentage point.

3.3.50. Let h(x) = f(g(x)), where *f* and *g* are graphed as in the text. Estimate h'(2).

Solution: By the chain rule, h'(2) = f'(g(2))g'(2). First, we estimate that $g(2) \approx 1.6$, so h'(2) = f'(1.6)g'(2). Next, from the slopes of tangent lines to the given graphs, we estimate that $g'(2) \approx -2$ and $f'(1.6) \approx 1$, so h'(2) = (-2)(1) = -2. Note that these derivative estimates are difficult to make and so answers may vary substantially.