Homework \#10 Solutions

Problems

Bolded problems are worth 2 points.

- Section 5.1: 4, 6, 8, 12, 14
- Section 5.2: 2, 6, 10, 18, 22, 30
- Notes: On 5.2.22, evaluate the integral using the fnInt function (available through MATH 9) on a TI graphing calculator, or through another computation system. On 5.2.30, the sums should cover the interval from $t=15$ to $t=23$.
5.1.4. A car starts moving at time $t=0$ and goes faster and faster. Its velocity is shown in the following table. Estimate how far the car travels during the 12 seconds.

$$
\begin{array}{cccccc}
t(\mathrm{sec}) & 0 & 3 & 6 & 9 & 12 \\
v(\mathrm{ft} / \mathrm{sec}) & 0 & 10 & 25 & 45 & 75
\end{array}
$$

Solution: Since the car is accelerating, its velocity function is increasing, so we can get an underestimate for the distance traveled by taking a left-hand sum over 3-second intervals:

$$
L=0 \cdot 3+10 \cdot 3+25 \cdot 3+45 \cdot 3=240 \mathrm{ft} .
$$

Similarly, we can get an overestimate with a right-hand sum:

$$
L=10 \cdot 3+25 \cdot 3+45 \cdot 3+75 \cdot 3=465 \mathrm{ft} .
$$

A better estimate is usually obtained from averaging the left- and right-hand estimates, which in this case gives $\frac{240+465}{2}=352.5 \mathrm{ft}$.
5.1.6. Figure 5.8 shows the velocity, v, of an object (in meters $/ \mathrm{sec}$). Estimate the total distance the object traveled between $t=0$ and $t=6$.

Solution: We estimate values for $v(t)$ at $t=0,1, \ldots, 6$:

$$
\begin{array}{cccccccc}
t & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
v(t) & 0 & 14 & 21 & 26 & 30 & 34 & 38
\end{array}
$$

Then the left-hand and right-hand sums for these values are

$$
L=0+14+21+26+30+34=125, \quad R=14+21+26+30+34+38=163
$$

and their average is $\frac{1}{2}(125+163)=144 \mathrm{~m}$. Estimates may differ if different values of $v(t)$ are determined.
5.1.8. The following table gives world oil consumption, in billions of barrels per year. Estimate total oil consumption during this 25 -year period.

Year	1980	1985	1990	1995	2000	2005
Oil (bn bbl/yr)	22.3	21.3	23.9	24.9	27.0	29.3

Solution: We again average the left-hand and right-hand sum estimates for these data:

$$
\begin{aligned}
L & =22.3 \cdot 5+21.3 \cdot 5+23.9 \cdot 5+24.9 \cdot 5+27.0 \cdot 5
\end{aligned}=597.0, ~=21.3 \cdot 5+23.9 \cdot 5+24.9 \cdot 5+27.0 \cdot 5+29.3 \cdot 5=632.0 .
$$

Then their average is $\frac{1}{2}(597.0+632.0)=614.5$ billion barrels.
5.1.12. Roger runs a marathon. His friend Jeff rides behind him on a bicycle and clocks his speed every 15 minutes. Roger starts out strong, but after an hour an a half he is so exhausted that he has to stop. Jeff's data follow:

$$
\begin{array}{cccccccc}
\text { Time (min) } & 0 & 15 & 30 & 45 & 60 & 75 & 90 \\
\text { Speed (mph) } & 12 & 11 & 10 & 10 & 8 & 7 & 0
\end{array}
$$

(a) Assuming that Roger's speed is never increasing, give upper and lower estimates for the distance Roger ran during the first half-hour.
(b) Give upper and lower estimates for the distance Roger ran during the entire hour and a half.

Solution (a): Since Roger is decelerating, his velocity is decreasing, so a left-hand sum will give us an overestimate (and a right-hand one, an underestimate). To make the units correct, we convert the time intervals from 15 minutes to $\frac{1}{4}$ of an hour when we compute the sum. For the first half-hour, we use only two intervals:

$$
L=12 \cdot \frac{1}{4}+11 \cdot \frac{1}{4}=\frac{23}{4}=5.75, \quad R=11 \cdot \frac{1}{4}+10 \cdot \frac{1}{4}=\frac{21}{4}=5.25 .
$$

Therefore, Roger traveled at least 5.25 miles and at most 5.75.
Solution (b): We take left- and right-hand sums for the entire 90-minute interval:

$$
L=\frac{1}{4}(12+11+10+10+8+7)=14.5, \quad R=\frac{1}{4}(11+10+10+8+7+0)=11.5 .
$$

Therefore, Roger ran somewhere between 11.5 and 14.5 miles.
5.1.14. Figure 5.10 shows the rate of change of a fish population. Estimate the total change in the population during this 12-month period.

Solution: We use the graph to estimate the rate of change every 2 months:

$$
\begin{array}{cccccccc}
t \text { (months) } & 0 & 2 & 4 & 6 & 8 & 10 & 12 \\
r(t) \text { (fish/month) } & 10 & 17 & 21 & 22 & 21 & 17 & 10
\end{array}
$$

Then averaging the left- and right-hand sums, we have

$$
\begin{aligned}
& L=(10+17+21+22+21+17) \cdot 2=216 \\
& R=(17+21+22+21+17+10) \cdot 2=216
\end{aligned}
$$

so the total change in population is probably about 216 fish.
5.2.2. Estimate $\int_{0}^{12} \frac{1}{x+1} d x$ using a left-hand sum with $n=3$.

Solution: With $a=0, b=12$, and $n=3, \Delta x=\frac{12-0}{3}=4$. Then the left-hand sum uses the x-values 0,4 , and 8 , so it is

$$
\frac{1}{1+0} \cdot 4+\frac{1}{1+4} \cdot 4+\frac{1}{1+8} \cdot 4=4+\frac{4}{5}+\frac{4}{9}=\frac{236}{45} \approx 5.2444 .
$$

5.2.6. Use the table to estimate $\int_{0}^{40} f(x) d x$. What values of n and Δx did you use?.

x	0	10	20	30	40
$f(x)$	350	410	435	450	460

Solution: Since the x-values in the table are spaced every 10 units, we use $\Delta X=10$. Since there are 5 values total, we use $n=5-1=4$ (since each sum ignores either a or b). Then the left- and right-hand sums gives estimates:

$$
L=(350+410+435+450) \cdot 10=16,450, \quad R=(410+435+450+460) \cdot 10=17,550 .
$$

Averaging them, we have the estimate $\frac{1}{2}(16,450+17,550)=17,000$.
5.2.10. Use the graph provided to estimate $\int_{0}^{3} f(x) d x$.

Solution: We estimate $f(x)$ at multiples of $\frac{1}{2}$ between 0 and 3:

x	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$	3
$f(x)$	4.0	5.2	6.6	7.2	6.5	5.0	3.2

These estimates are probably accurate to ± 0.1. Then the left- and right-hand sums are

$$
\begin{aligned}
& L=(4.0+5.2+6.6+7.2+6.5+5.0) \cdot \frac{1}{2}=17.25 \\
& R=(5.2+6.6+7.2+6.5+5.0+3.2) \cdot \frac{1}{2}=16.85
\end{aligned}
$$

The average is $\frac{1}{2}(17.25+16.85)=17.05$. (If the estimates of the $f(x)$ values differ, or if the x-values where the $f(x)$ estimates are taken change, this estimate will vary as well.)
5.2.18. Using the figure below, find the value of $\int_{1}^{6} f(x) d x$.

Solution: We estimate the area under the figure from $x=1$ to $x=6$ geometrically. Shading the region under the curve and cutting it into rectangles and squares, we have

The two rectangles have area 5 and 2 , the triangle on the left has area $\frac{1}{2}(1)(2)=1$, and the one on the right has area $\frac{1}{2}(1)(1)=\frac{1}{2}$. Hence, the total area is $5+2+1+\frac{1}{2}=8.5$, so this is the value of the integral.
5.2.22. Use a calculator to evaluate $\int_{1}^{4} \frac{1}{\sqrt{1+x^{2}}} d x$.

Solution: Using the fnInt function on the TI, we find that

$$
\int_{1}^{4} \frac{1}{\sqrt{1+x^{2}}} d x \approx 1.21334
$$

5.2.30. Use the data in the table below from $t=15$ to $t=23$ and the notation for Riemann sums.

$$
\begin{array}{cccccc}
t & 15 & 17 & 19 & 21 & 23 \\
f(t) & 10 & 13 & 18 & 20 & 30
\end{array}
$$

(a) If $n=4$, what is Δt ? What are $t_{0}, t_{1}, t_{2}, t_{3}, t_{4}$? What are $f\left(t_{0}\right), f\left(t_{1}\right), f\left(t_{2}\right), f\left(t_{3}\right), f\left(t_{4}\right)$?
(b) Find the left and right sums using $n=4$.
(c) If $n=2$, what is Δt ? What are t_{0}, t_{1}, t_{2} ? What are $f\left(t_{0}\right), f\left(t_{1}\right), f\left(t_{2}\right)$?
(d) Find the left and right sums using $n=2$.

Solution (a): For $n=4, \Delta t=\frac{23-15}{4}=2$. Then $t_{0}=15, t_{1}=17, t_{2}=19, t_{3}=21$, and $t_{4}=23$, so $f\left(t_{0}\right)=10, f\left(t_{1}\right)=13, f\left(t_{2}\right)=18, f\left(t_{3}\right)=20$, and $f\left(t_{4}\right)=30$.

Solution (b): The left and right sums with $n=4$ are

$$
\begin{aligned}
& \sum_{i=0}^{3} f\left(t_{i}\right) \Delta t=10 \cdot 2+13 \cdot 2+18 \cdot 2+20 \cdot 2=122 \\
& \sum_{i=1}^{4} f\left(t_{i}\right) \Delta t=13 \cdot 2+18 \cdot 2+20 \cdot 2+30 \cdot 2=162
\end{aligned}
$$

Solution (c): For $n=2, \Delta t=\frac{23-15}{2}=4$. Then $t_{0}=15, t_{1}=19$, and $t_{2}=23$, so $f\left(t_{0}\right)=10, f\left(t_{1}\right)=18$, and $f\left(t_{2}\right)=30$.

Solution (d): The left and right sums with $n=2$ are

$$
\sum_{i=0}^{1} f\left(t_{i}\right) \Delta t=10 \cdot 4+18 \cdot 4=112, \quad \sum_{i=1}^{2} f\left(t_{i}\right) \Delta t=18 \cdot 4+30 \cdot 4=192
$$

