Homework #10 Solutions

Problems

Bolded problems are worth 2 points.

- Section 5.1: 4, 6, 8, 12, 14
- Section 5.2: 2, 6, 10, 18, 22, 30
- Notes: On 5.2.22, evaluate the integral using the fnInt function (available through MATH 9) on a TI graphing calculator, or through another computation system. On 5.2.30, the sums should cover the interval from t = 15 to t = 23.

5.1.4. A car starts moving at time t = 0 and goes faster and faster. Its velocity is shown in the following table. Estimate how far the car travels during the 12 seconds.

t (sec)	0	3	6	9	12
v (ft/sec)	0	10	25	45	75

Solution: Since the car is accelerating, its velocity function is increasing, so we can get an underestimate for the distance traveled by taking a left-hand sum over 3-second intervals:

$$L = 0 \cdot 3 + 10 \cdot 3 + 25 \cdot 3 + 45 \cdot 3 = 240 \text{ ft.}$$

Similarly, we can get an overestimate with a right-hand sum:

$$L = 10 \cdot 3 + 25 \cdot 3 + 45 \cdot 3 + 75 \cdot 3 = 465 \text{ ft.}$$

A better estimate is usually obtained from averaging the left- and right-hand estimates, which in this case gives $\frac{240 + 465}{2} = 352.5$ ft.

5.1.6. Figure 5.8 shows the velocity, v, of an object (in meters/sec). Estimate the total distance the object traveled between t = 0 and t = 6.

Solution: We estimate values for v(t) at t = 0, 1, ..., 6:

Then the left-hand and right-hand sums for these values are

$$L = 0 + 14 + 21 + 26 + 30 + 34 = 125$$
, $R = 14 + 21 + 26 + 30 + 34 + 38 = 163$,

and their average is $\frac{1}{2}(125 + 163) = 144$ m. Estimates may differ if different values of v(t) are determined.

5.1.8. The following table gives world oil consumption, in billions of barrels per year. Estimate total oil consumption during this 25-year period.

Year198019851990199520002005Oil (bn bbl/yr)22.321.323.924.927.029.3

Solution: We again average the left-hand and right-hand sum estimates for these data:

 $L = 22.3 \cdot 5 + 21.3 \cdot 5 + 23.9 \cdot 5 + 24.9 \cdot 5 + 27.0 \cdot 5 = 597.0,$ $R = 21.3 \cdot 5 + 23.9 \cdot 5 + 24.9 \cdot 5 + 27.0 \cdot 5 + 29.3 \cdot 5 = 632.0.$

Then their average is $\frac{1}{2}(597.0 + 632.0) = 614.5$ billion barrels.

5.1.12. Roger runs a marathon. His friend Jeff rides behind him on a bicycle and clocks his speed every 15 minutes. Roger starts out strong, but after an hour an a half he is so exhausted that he has to stop. Jeff's data follow:

Time (min)0153045607590Speed (mph)12111010870

- (a) Assuming that Roger's speed is never increasing, give upper and lower estimates for the distance Roger ran during the first half-hour.
- (b) Give upper and lower estimates for the distance Roger ran during the entire hour and a half.

Solution (a): Since Roger is decelerating, his velocity is decreasing, so a left-hand sum will give us an overestimate (and a right-hand one, an underestimate). To make the units correct, we convert the time intervals from 15 minutes to $\frac{1}{4}$ of an hour when we compute the sum. For the first half-hour, we use only two intervals:

$$L = 12 \cdot \frac{1}{4} + 11 \cdot \frac{1}{4} = \frac{23}{4} = 5.75, \qquad R = 11 \cdot \frac{1}{4} + 10 \cdot \frac{1}{4} = \frac{21}{4} = 5.25.$$

Therefore, Roger traveled at least 5.25 miles and at most 5.75.

Solution (b): We take left- and right-hand sums for the entire 90-minute interval:

$$L = \frac{1}{4}(12 + 11 + 10 + 10 + 8 + 7) = 14.5, \quad R = \frac{1}{4}(11 + 10 + 10 + 8 + 7 + 0) = 11.5.$$

Therefore, Roger ran somewhere between 11.5 and 14.5 miles.

5.1.14. Figure 5.10 shows the rate of change of a fish population. Estimate the total change in the population during this 12-month period.

Solution: We use the graph to estimate the rate of change every 2 months:

t (months)	0	2	4	6	8	10	12
r(t) (fish/month)	10	17	21	22	21	17	10

Then averaging the left- and right-hand sums, we have

$$L = (10 + 17 + 21 + 22 + 21 + 17) \cdot 2 = 216,$$

$$R = (17 + 21 + 22 + 21 + 17 + 10) \cdot 2 = 216,$$

so the total change in population is probably about 216 fish.

5.2.2. Estimate $\int_0^{12} \frac{1}{x+1} dx$ using a left-hand sum with n = 3.

Solution: With a = 0, b = 12, and n = 3, $\Delta x = \frac{12-0}{3} = 4$. Then the left-hand sum uses the *x*-values 0, 4, and 8, so it is

$$\frac{1}{1+0} \cdot 4 + \frac{1}{1+4} \cdot 4 + \frac{1}{1+8} \cdot 4 = 4 + \frac{4}{5} + \frac{4}{9} = \frac{236}{45} \approx 5.2444.$$

Solution: Since the *x*-values in the table are spaced every 10 units, we use $\Delta X = 10$. Since there are 5 values total, we use n = 5 - 1 = 4 (since each sum ignores either *a* or *b*). Then the left- and right-hand sums gives estimates:

 $L = (350 + 410 + 435 + 450) \cdot 10 = 16,450, \quad R = (410 + 435 + 450 + 460) \cdot 10 = 17,550.$

Averaging them, we have the estimate $\frac{1}{2}(16,450 + 17,550) = 17,000$.

5.2.10. Use the graph provided to estimate $\int_0^3 f(x) dx$.

Solution: We estimate f(x) at multiples of $\frac{1}{2}$ between 0 and 3:

These estimates are probably accurate to ± 0.1 . Then the left- and right-hand sums are

$$L = (4.0 + 5.2 + 6.6 + 7.2 + 6.5 + 5.0) \cdot \frac{1}{2} = 17.25,$$

$$R = (5.2 + 6.6 + 7.2 + 6.5 + 5.0 + 3.2) \cdot \frac{1}{2} = 16.85.$$

The average is $\frac{1}{2}(17.25 + 16.85) = 17.05$. (If the estimates of the f(x) values differ, or if the *x*-values where the f(x) estimates are taken change, this estimate will vary as well.)

Solution: We estimate the area under the figure from x = 1 to x = 6 geometrically. Shading the region under the curve and cutting it into rectangles and squares, we have

The two rectangles have area 5 and 2, the triangle on the left has area $\frac{1}{2}(1)(2) = 1$, and the one on the right has area $\frac{1}{2}(1)(1) = \frac{1}{2}$. Hence, the total area is $5 + 2 + 1 + \frac{1}{2} = 8.5$, so this is the value of the integral.

5.2.22. Use a calculator to evaluate
$$\int_{1}^{4} \frac{1}{\sqrt{1+x^2}} dx$$
.

Solution: Using the fnInt function on the TI, we find that

$$\int_{1}^{4} \frac{1}{\sqrt{1+x^2}} \, dx \approx 1.21334.$$

5.2.30. Use the data in the table below from t = 15 to t = 23 and the notation for Riemann sums.

(a) If n = 4, what is Δt ? What are t_0, t_1, t_2, t_3, t_4 ? What are $f(t_0), f(t_1), f(t_2), f(t_3), f(t_4)$?

(b) Find the left and right sums using n = 4.

(c) If n = 2, what is Δt ? What are t_0, t_1, t_2 ? What are $f(t_0), f(t_1), f(t_2)$?

(d) Find the left and right sums using n = 2.

Solution (a): For n = 4, $\Delta t = \frac{23 - 15}{4} = 2$. Then $t_0 = 15$, $t_1 = 17$, $t_2 = 19$, $t_3 = 21$, and $t_4 = 23$, so $f(t_0) = 10$, $f(t_1) = 13$, $f(t_2) = 18$, $f(t_3) = 20$, and $f(t_4) = 30$.

Solution (b): The left and right sums with n = 4 are

$$\sum_{i=0}^{3} f(t_i)\Delta t = 10 \cdot 2 + 13 \cdot 2 + 18 \cdot 2 + 20 \cdot 2 = 122,$$

$$\sum_{i=1}^{4} f(t_i)\Delta t = 13 \cdot 2 + 18 \cdot 2 + 20 \cdot 2 + 30 \cdot 2 = 162.$$

Solution (c): For n = 2, $\Delta t = \frac{23 - 15}{2} = 4$. Then $t_0 = 15$, $t_1 = 19$, and $t_2 = 23$, so $f(t_0) = 10$, $f(t_1) = 18$, and $f(t_2) = 30$.

Solution (d): The left and right sums with n = 2 are

$$\sum_{i=0}^{1} f(t_i)\Delta t = 10 \cdot 4 + 18 \cdot 4 = 112, \qquad \sum_{i=1}^{2} f(t_i)\Delta t = 18 \cdot 4 + 30 \cdot 4 = 192.$$