Quiz \#2: Monday, Sep 19

Name:
Solution Key
Recitation R02 (M)

An initial investment of 5000 grows at 20% per year.

1. (5 points) Write a function $P(t)$ that gives the value of the investment after t years.

Solution: The growth factor is 1.2 , so the function $P(t)=5000(1.2)^{t}$.
2. (5 points) Find the value of the investment after 2 years.

Solution: The value is $P(2)=5000(1.2)^{2}=5000(1.44)=7200$.

Quiz \#2: Monday, Sep 19

Name:
Solution Key Recitation R02 (M)

The village of Northwesthampton, NY, has a population of 4000 in 2011 and grows at 25% per year.

1. (5 points) Write a function $P(t)$ that gives the Northwesthampton population t years after 2011. Solution: The growth factor is 1.25 , so the function is $P(t)=4000(1.25)^{t}$.
2. (5 points) What is the population in 2013?

Solution: In 2013, $t=2013-2011=2$, so the population is $P(2)=4000(1.25)^{2}$. Simplifying, $P(2)=5000(1.25)=6250$.

Quiz \#2: Tuesday, Sep 20

Name:
Solution Key
Recitation R04 (Tu)

A colony of S. aureus contains 800 bacteria at noon and 3200 at 2 pm .

1. (5 points) Write a function $P(t)$ that gives the population of the colony t hours after noon.

Solution: Assuming exponential growth, we know that $P(t)=800 a^{t}$, where we need to solve for a. Since $P(2)=3200,3200=800 a^{2}$, so $a^{2}=4$, and $a=2$. Then $P(t)=800(2)^{t}$.
2. (5 points) What is the population at 3 pm ?

Solution: At $3 \mathrm{pm}, P(3)=800(2)^{3}=800(8)=6400$.

Quiz \#2: Tuesday, Sep 20

Name:
Solution Key
Recitation R04 (Tu)

A 250-gram sample of the element calculonium- 273 contains only 10 grams of calculonium after 2 days.

1. (5 points) Write a function $P(t)$ that gives the amount of calculonium remaining after t days. Solution: Assuming exponential decay, we know that $P(t)=250 a^{t}$, where we need to solve for a. Since $P(2)=10,10=250 a^{2}$, so $a^{2}=\frac{1}{25}$, and $a=\frac{1}{5}$. Then $P(t)=250\left(\frac{1}{5}\right)^{t}$.
2. (5 points) How many grams are left after 3 days?

Solution: At $3 \mathrm{pm}, P(3)=250\left(\frac{1}{5}\right)^{3}$. Simplifying, $P(3)=250\left(\frac{1}{125}\right)=2$.

Quiz \#2: Wednesday, Sep 21

Name: Solution Key

The value of a used car t years old is given by $P(t)=15,000\left(\frac{4}{5}\right)^{t}$.

1. (5 points) How much is the car worth initially? What is the percent rate of decrease?

Solution: The car is initially worth $\$ 15,000$. The growth rate is $\frac{4}{5}-1=-0.2$, so the percent rate of decrease is 20%.
2. (5 points) Find the value of the car after 2 years.

Solution: The value after 2 years is $P(2)=15000\left(\frac{4}{5}\right)^{2}$, which simplifies to $\$ 9600$.

Quiz \#2: Wednesday, Sep 21

Name: Solution Key

The population of a city is $1,600,000\left(\frac{5}{4}\right)^{t}$, where t is the number of years after 2011.

1. (5 points) What is the population of the city in 2011? What is the percent growth rate?

Solution: The population of the city is $1,600,000$. The growth rate is $\frac{5}{4}-1=\frac{1}{4}$, so the percent growth rate is 25%.
2. (5 points) Find the population of the city in 2013.

Solution: In 2013, $t=2013-2011=2$, so the population is $P(2)=1,600,000\left(\frac{5}{4}\right)^{2}=2,500,000$.

