Quiz #4: Monday, Oct 10

Name: Solution Key

Recitation R02 (M)

Below is the graph of a function h(x), labeled with points *A* through *F*.

Quiz #4: Monday, Oct 10

Name: Solution Key

Recitation R02 (M)

Below is the graph of a function w(t), labeled with points *A* through *F*.

At which of these points is w'(t) negative? _____ B, F

At which of these points is w'(t) = 0? _____ *C*, *E*_____

Quiz #4: Tuesday, Oct 11

Name: Solution Key

Recitation R04 (Tu)

The function g(x) shown below has g(3) = 4 and g'(3) = 2.

What are the x and y coordinates of point A ?	(3, 4)	
---	--------	--

What are the *x* and *y* coordinates of point *B*? (5,8)

Quiz #4: Tuesday, Oct 11

Quiz #4: Wednesday, Oct 12

Name: Solution Key

Recitation R03 (W)

Below is the graph of a function w(x):

Explain your choice: w(x) has three horizontal tangents, at x = 0, $x \approx 1.7$, and $x \approx -1.7$. Only **C** and **D** have zeroes there. From there, we check the sign of the derivative: between $x \approx 1.7$ and x = 0, w(x) is increasing, so w'(x) must be positive. Only **C** matches this, and it agrees with the expected signs in the remaining regions as well.

Quiz #4: Wednesday, Oct 12

Name: Solution Key

Recitation R03 (W)

Below is the graph of a function m(x):

Explain your choice: w(x) has three horizontal tangents, at x = 0, $x \approx 1.7$, and $x \approx -1.7$. Only **B** and **D** have zeroes there. From there, we check the sign of the derivative: between $x \approx 1.7$ and x = 0, w(x) is decreasing, so w'(x) must be negative. Only **D** matches this, and it agrees with the expected signs in the remaining regions as well.