Quiz \#7: Monday, Oct 31

Name: Solution Key Recitation R02 (M)

Find the derivative of each function below. Simplify your answers.

1. $f(x)=x^{3} e^{3 x}$

Solution: By the product rule,

$$
f^{\prime}(x)=\left(x^{3}\right)^{\prime} e^{3 x}+x^{3}\left(e^{3 x}\right)^{\prime}=3 x^{2} e^{3 x}+x^{3}\left(3 e^{3 x}\right)=\left(3 x^{2}+3 x^{3}\right) e^{3 x} .
$$

2. $g(t)=\frac{2 t+3}{t+2}$

Solution: By the quotient rule,

$$
g^{\prime}(t)=\frac{(2)(t+2)-(2 t+3)(1)}{(t+2)^{2}}=\frac{2 t+4-2 t-3}{(t+2)^{2}}=\frac{1}{(t+2)^{2}} .
$$

Quiz \#7: Monday, Oct 31

Name: Solution Key Recitation R02 (M)

Find the derivative of each function below. Simplify your answers.

1. $f(x)=\frac{1-2 x}{x-1}$

Solution: By the quotient rule,

$$
f^{\prime}(x)=\frac{(-2)(x-1)-(1-2 x)(1)}{(x-1)^{2}}=\frac{-2 x+2-1+2 x}{(x-1)^{2}}=\frac{1}{(x-1)^{2}} .
$$

2. $g(t)=t^{3} e^{-t}$

Solution: By the product rule,

$$
g^{\prime}(t)=\left(t^{3}\right)^{\prime} e^{-t}+t^{3}\left(e^{-t}\right)^{\prime}=3 t^{2} e^{-t}+t^{3}\left(-e^{-t}\right)=\left(3 t^{2}-t^{3}\right) e^{-t} .
$$

Quiz \#7: Tuesday, Nov 1

Name:
Solution Key
Recitation R04 (Tu)

Find the derivative of each function below. Simplify your answers.

1. $f(x)=x^{2} e^{4 x}$

Solution: By the product rule,

$$
f^{\prime}(x)=\left(x^{2}\right)^{\prime} e^{4 x}+x^{2}\left(e^{4 x}\right)^{\prime}=2 x e^{4 x}+x^{2}\left(4 e^{4 x}\right)=\left(2 x+4 x^{2}\right) e^{4 x} .
$$

2. $g(t)=\frac{3 t+1}{t+1}$

Solution: By the quotient rule,

$$
g^{\prime}(t)=\frac{(3)(t+1)-(3 t+1)(1)}{(t+1)^{2}}=\frac{3 t+3-3 t-1}{(t+1)^{2}}=\frac{2}{(t+1)^{2}}
$$

Quiz \#7: Tuesday, Nov 1

Name: Solution Key

Recitation R04 (Tu)

Find the derivative of each function below. Simplify your answers.

1. $f(x)=\frac{4-3 x}{x-2}$

Solution: By the quotient rule,

$$
f^{\prime}(x)=\frac{(-3)(x-2)-(4-3 x)(1)}{(x-2)^{2}}=\frac{-3 x+6-4+3 x}{(x-2)^{2}}=\frac{2}{(x-2)^{2}}
$$

2. $g(t)=t^{2} \ln t$

Solution: By the product rule,

$$
g^{\prime}(t)=\left(t^{2}\right)^{\prime} \ln t+t^{2}(\ln t)^{\prime}=2 t \ln t+t^{2} \cdot \frac{1}{t}=2 t \ln (t)+t .
$$

Quiz \#7: Wednesday, Nov 2

Name: Solution Key

Find the derivative of each function below. Simplify your answers.

1. $f(x)=x^{3} \ln x$

Solution: By the product rule,

$$
f^{\prime}(x)=\left(x^{3}\right)^{\prime} \ln x+x^{3}(\ln x)^{\prime}=3 x^{2} \ln x+x^{3} \cdot \frac{1}{x}=3 x^{2} \ln (x)+x^{2} .
$$

2. $g(t)=\frac{3 t-1}{t+2}$

Solution: By the quotient rule,

$$
g^{\prime}(t)=\frac{(3)(t+2)-(3 t-1)(1)}{(t+2)^{2}}=\frac{3 t+6-3 t+1}{(t+2)^{2}}=\frac{7}{(t+2)^{2}}
$$

Quiz \#7: Wednesday, Nov 2

Name: Solution Key

Find the derivative of each function below. Simplify your answers.

1. $f(x)=\frac{2 x+4}{x+3}$

Solution: By the quotient rule,

$$
f^{\prime}(x)=\frac{(2)(x+3)-(2 x+4)(1)}{(x+3)^{2}}=\frac{2 x+6-2 x-4}{(x+3)^{2}}=\frac{2}{(x+3)^{2}} .
$$

2. $g(t)=t^{4} e^{-t}$

Solution: By the product rule,

$$
g^{\prime}(t)=\left(t^{4}\right)^{\prime} e^{-t}+t^{4}\left(e^{-t}\right)^{\prime}=4 t^{3} e^{-t}+t^{4}\left(-e^{-t}\right)=\left(4 t^{3}-t^{4}\right) e^{-t} .
$$

