Background Quiz: Thu, Sep 1

Name: \qquad
Solution Key
Section (circle one)

1. (2 points) Simplify $\frac{7}{4}-\frac{5}{6}$ to a single fraction.

Solution:

$$
\frac{7}{4}-\frac{5}{6}=\frac{7 \cdot 6}{4 \cdot 6}-\frac{4 \cdot 5}{4 \cdot 6}=\frac{42-20}{24}=\frac{22}{24}=\frac{11}{12}
$$

2. (2 points) Solve for x if $\frac{8}{x}-3=1$.

Solution: Isolating x,

$$
\frac{8}{x}=1+3=4
$$

Cross-multiplying, we get $8=4 x$, so $x=8 / 4=2$.
3. (1 point) Simplify $\left(x^{\frac{1}{3}}\right)^{9}$.

Solution:

$$
\left(x^{\frac{1}{3}}\right)^{9}=x^{\frac{1}{3} \cdot 9}=x^{\frac{9}{3}}=x^{3} .
$$

4. (2 points) Expand $(x-2)(x+3)-x$ and collect all like terms.

Solution: Using the FOIL mnemonic (First-Outside-Inside-Last), we have

$$
(x-2)(x+3)-x=x^{2}+3 x-2 x-6-x=x^{2}-6
$$

5. (3 points) Factor the polynomial $x^{3}-4 x^{2}+3 x$ into linear factors. What are the three roots of this polynomial?

Solution: Since $x^{3}-4 x^{2}+3 x$ has no constant term, x is a factor, and $x^{3}-4 x^{2}+3 x=x\left(x^{2}-4 x+3\right)$. Then, by inspection or by the quadratic formula,

$$
x^{2}-4 x+3=(x-3)(x-1) .
$$

Hence, $x^{3}-4 x^{2}+3 x=x(x-3)(x-1)$. Its roots are $x=0, x=3$, and $x=1$.

Background Quiz: Thu, Sep 1

Name: \qquad
Solution Key
Section (circle one)

1. (2 points) Simplify $\frac{11}{6}-\frac{7}{4}$ to a single fraction.

Solution:

$$
\frac{11}{6}-\frac{7}{4}=\frac{11 \cdot 4}{4 \cdot 6}-\frac{6 \cdot 7}{4 \cdot 6}=\frac{44-42}{24}=\frac{2}{24}=\frac{1}{12}
$$

2. (2 points) Solve for x if $\frac{9}{x}-2=1$.

Solution: Isolating x,

$$
\frac{9}{x}=1+2=3
$$

Cross-multiplying, we get $9=3 x$, so $x=9 / 3=3$.
3. (1 point) Simplify $(\sqrt{x})^{4}$.

Solution: $\sqrt{x}=x^{\frac{1}{2}}$, so

$$
(\sqrt{x})^{4}=\left(x^{\frac{1}{2}}\right)^{4}=x^{\frac{1}{2} \cdot 4}=x^{\frac{4}{2}}=x^{2} .
$$

4. (2 points) Expand $(x+2)(x-4)+2 x$ and collect all like terms.

Solution: Using the FOIL mnemonic (First-Outside-Inside-Last), we have

$$
(x+2)(x-4)+2 x=x^{2}-4 x+2 x-8-2 x=x^{2}-8
$$

5. (3 points) Factor the polynomial $x^{3}-6 x^{2}+5 x$ into linear factors. What are the three roots of this polynomial?

Solution: Since $x^{3}-6 x^{2}+5 x$ has no constant term, x is a factor, and $x^{3}-6 x^{2}+5 x=x\left(x^{2}-6 x+5\right)$. Then, by inspection or by the quadratic formula,

$$
x^{2}-6 x+5=(x-5)(x-1) .
$$

Hence, $x^{3}-6 x^{2}+5 x=x(x-5)(x-1)$. Its roots are $x=0, x=5$, and $x=1$.

