
MAT 303 Spring 2013 Calculus IV with Applications

Homework #2 Solutions

Problems

• Section 1.3: 2, 8, 12, 14, 28

• Section 1.5: 1, 2, 12, 14, 22, 36

• Extra Problem #1

1.3.2. Sketch likely solution curves through the given slope field for dy
dx = x + y.

1.3.8. Sketch likely solution curves through the given slope field for dy
dx = x2 − y.

Solution: Here are slope fields with some solutions for these two problems:
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1.3.12. Determine whether Theorem 1.3.1 does or does not guarantee existence and/or
uniqueness for the IVP y′ = x ln y, y(1) = 1. If a solution does exist, is it unique?

Solution: We see that the DE is already in normal form, with f (x, y) = x ln y. We then
examine this function and its derivative fy(x, y) = x

y around x = 1 and y = 1. Since
both functions are defined and continuous in a region around (1, 1), this IVP satisfies the
hypotheses of Theorem 1, so it is guaranteed to have a unique solution y(x) on some
interval containing x = 1. �
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1.3.14. Determine whether Theorem 1.3.1 does or does not guarantee existence and/or
uniqueness for the IVP y′ = 3

√
y, y(0) = 0. If a solution does exist, is it unique?

Solution: We see that the DE is already in normal form, with f (x, y) = 3
√

y = y1/3. We
then examine this function and its derivative fy(x, y) = 1

3 y−2/3 around x = 0 and y = 0.
While f is continuous everywhere, fy is not even defined for y = 0. Hence, Theorem 1
does not apply, so neither existence nor uniqueness is guaranteed for this IVP.

By inspection, we can see that y = 0 is actually a solution to this DE passing through the
initial condition (0, 0), so we have verified existence empirically. Since the DE is a fairly
simple separable equation, we could probably solve it explicitly for y in terms of x, but
we are not required to for this problem. �

1.3.28. Verify that if k is a constant, then the function y(x) ≡ kx satisfies the differential
equation xy′ = y. Construct a slope field and several of these straight-line solution
curves. Then determine (in terms of a and b) how many different solutions the initial
value problem xy′ = y, y(a) = b has—one, none, or infinitely many.

Solution: We first check that y = kx satisfies the DE. For these solutions, y′ = k, so xy′ =
x(k) = kx = y, as desired.

Putting the DE in normal form, y′ = y/x. Letting f (x, y) = y/x, we plot a slope field
with slopes given by f and some solutions y = kx:
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Note that f (x, y) is not defined for x = 0. We note that f and fy(x, y) = 1/x are contin-
uous for x 6= 0, so the hypotheses of Theorem 1 are satisfied at all points in this region.
Hence, there is a unique solution to this DE going through each (a, b) with a 6= 0, namely
the line y = bx/a.

For a = 0, we see that all the linear solutions intersect at (0, 0), so there are an infinite
number of solutions for the IC (a, b) = (0, 0). Conversely, no lines go through (0, b) with
b 6= 0, so there are no solutions to the IVP for that IC. �
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1.5.1. Find the general solution to the DE y′ + y = 2. Find the particular solution satis-
fying the initial condition y(0) = 0.

Solution: We recognize this as a linear DE with P(x) = 1 and Q(x) = 2. We then multiply
the DE by the integrating factor µ(x) = e

∫
P(x) dx = ex to get

(exy)′ = exy′ + exy = 2ex.

Integrating, exy =
∫

2ex dx = 2ex + C. Isolating y, y = 2 + Cex, C any real number, so this
is the general solution to the DE.
Applying the initial condition, 0 = y(0) = 2+ Ce0 = 2+ C. Thus, C = −2, so y = 2− 2ex

is the particular solution. �

1.5.2. Find the general solution to the DE y′ − 2y = 3e2x. Find the particular solution
satisfying the initial condition y(0) = 0.

Solution: We recognize this DE as being linear with P(x) = −2. Then
∫

P(x) dx = −2x,
so an integrating factor is µ(x) = e−2x. Multiplying the DE by this µ(x), we have

(e−2xy)′ = 3e2xe−2x = 3,

and integrating yields e−2xy = 3x + C. Hence, y = 3xe2x + Ce2x is the general solution.
Applying the initial condition, 0 = y(0) = 3(0)e0 + Ce0 = C, so C = 0. Thus, y = 3xe2x is
the particular solution for this IVP. �

1.5.12. Find the general solution to the DE xy′ + 3y = 2x5. Find the particular solution
satisfying the initial condition y(2) = 1.

Solution: Normalizing the DE, it becomes y′ + 3
x y = 2x4. Then P(x) = 3

x , so
∫

P(x) dx =

3 ln |x|, and an integrating factor is µ(x) = e3 ln |x| = |x3|. In fact, we choose to take
µ(x) = x3. Multiplying this through the normalized form of the equation,

(x3y)′ = x3y′ + 3x2y = 2x7.

Integrating, x3y =
∫

2x7 dx = 1
4 x8 + C. Isolating y, y = 1

4 x5 + Cx−3.

Applying the IC, 1 = y(2) = 1
425 + C2−3 = 8 + C/8. Then C/8 = −7, so C = −56, and

the particular solution to the IVP is y = 1
4 x5 − 56x−3. �
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1.5.14. Find the general solution to the DE xy′ − 3y = x3. Find the particular solution
satisfying the initial condition y(1) = 10.

Solution: Normalizing the DE by dividing by x, we have y′ − 3
x y = x2. Then P(x) =

− 3
x , so

∫
P(x) dx = −3 ln |x|, and an integrating factor is e−3 ln |x| = |x|−3. Actually,

we take µ(x) = x−3 = 1/x3 as our integrating factor for convenience. Multiplying our
normalized equation by this µ(x), we have(

1
x3 y
)′

=
1
x3 y′ − 3

x4 y = x2 1
x3 =

1
x

.

Integrating, y/x3 = ln x + C, so y = x3 ln x + Cx3 is the general solution to the DE.

Applying the initial condition, 10 = y(1) = 13 ln 1 + C13 = 0 + C = C, so C = 10. Thus,
the particular solution to the IVP is y = x3 ln x + 10x3. �

1.5.22. Find the general solution to the DE y′ = 2xy+ 3x2ex2
. Find the particular solution

satisfying the initial condition y(0) = 5.

Solution: The DE is already given in normal form, so we move the y term to the left-hand
side to get y′ − 2xy = 3x2ex2

. Then this DE is linear with P(x) = −2x, so
∫

P(x) dx =

−x2, and an integrating factor is µ(x) = e−x2
. Multiplying the DE on both sides by this

function,
(e−x2

y)′ = e−x2
y′ − 2xy = 3x2ex2

e−x2
= 3x2.

Then integrating yields e−x2
y =

∫
3x2 dx = x3 + C. Isolating y gives the general solution

y = x3ex2
+ Cex2

.

Applying the initial condition, 5 = y(0) = 03e0 + Ce0 = C, so C = 5, and y = (x3 + 5)ex2

is the particular solution to this IVP. �

1.5.36. A tank initially contains 60 gallons of pure water. Brine containing 1 lb of salt per
gallon enters the tank at 2 gal/min, and the (perfectly mixed) solution leaves the tank at
3 gal/min; thus, the tank is empty after exactly 1 hour.
(a) Find the amount of salt in the tank after t minutes.

(b) What is the maximum amount of salt ever in the tank?

Solution (a): We produce a model for this system. Let x(t) denote the amount of salt in
the tank at time t, t in minutes since the brine starts flowing into the tank. The flow rate
in is ri = 2 gal/min, and the flow rate out is ro = 3 gal/min, so the volume in the tank at
time t is V(t) = 60 + (2− 3)t = 60− t, in gallons.
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The concentration of salt in the tank (and hence of the solution flowing out of the tank) is
then co(t) = x(t)/V(t) = 1

60−t x(t). Since the incoming concentration is ci = 1 lb/gal, the
net rate of change of the salt is

dx
dt

= rici − roco = (2)(1)− (3)
1

60− t
x(t) = 2− 3

60− t
x(t),

which is a linear DE. Rearranging it so that x(t) and x′(t) are on the left-hand side, we
have x′ + 3

60−t x = 2. Then P(t) = 3
60−t , so

∫
P(t) dt = −3 ln |60 − t|, with the minus

sign coming from the chain rule with 60− t. Hence, an integrating factor is e−3 ln |60−t| =
|60− t|−3. We choose to take µ(t) = (60− t)−3, without the absolute values, since we
expect solutions only for 0 ≤ t ≤ 60.

Multiplying the DE by this integrating factor, we have(
1

(60− t)3 x
)′

=
1

(60− t)3 x′ +
3

(60− t)4 x =
2

(60− t)3 .

Integrating, 1
(60−t)3 x =

∫ 2
(60−t)3 dt = 1

(60−t)2 + C, so x = 60− t + C(60− t)3.

Finally, we note that there is also an initial condition: x(0) = 0, since the tank starts with
no salt. Thus, 0 = x(0) = 60− 0 + C(60− 0)3 = 60 + 603C, so C = 1/602, and the total
amount of salt in the tank at time t is

x(t) = 60− t− 1
3600

(60− t)3.
�

Solution (b): We find the maximum value of x(t) on [0, 60]. Computing x′(t),

x′(t) = −1− 1
3600

(3)(−1)(60− t)2 = −1 +
1

1200
(60− t)2.

At a local extremum, x′(t) = 0, since x′(t) exists everywhere on this interval. Then 0 =

−1 + 1
1200(60− t)2, so (60− t)2 = 1200, and t = 60− 20

√
3. Finally,

x(60− 20
√

3) = 20
√

3− 1
3600

(20
√

3)3 = 20
√

3− 1
3

20
√

3 =
40
3

√
3 ≈ 23.09 lbs.

Since x(0) = x(60) = 0, this is the maximum amount of salt in the tank. �
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Extra Problem #1. Consider the DE y′ = x + 2− y.
(a) Plot a slope field for this DE in the region −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. Sketch solution

curves through the points (0, 0), (0, 2), and (1, 2). Sketch at least two other solution
curves of your choice.

(b) Find the general solution to this DE. Find a particular solution satisfying the initial
condition y(1) = 2− 2

e . Sketch it on your slope field.

Solution (a): Here is the slope field, with solutions through (0, 0), (0, 2), and (1, 2), as well
as (0,−1) and (−2, 2):
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Solution (b): Writing the DE as y′ + y = x + 2, we see it is linear. We multiply by the
integrating factor µ(x) = ex, so (exy)′ = xex + 2ex. Integrating and applying integration
by parts for the right-hand side,

exy = (xex − ex) + 2ex + C = (x + 1)ex + C,

so y = x + 1 + Ce−x is the general solution to the DE.

We solve for C with the IC y(1) = 2− 2
e = 1 + 1 + Ce−1. Then C = −2, so y = x + 1−

2e−x. In fact, y(0) = 1− 2 = −1, so this is the curve through (0,−1), which we already
sketched above. �
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