MAT 303 Spring 2013 Calculus IV with Applications

Homework #2 Solutions

Problems
e Section 1.3: 2, 8,12, 14, 28
e Section1.5:1,2,12, 14, 22,36
e Extra Problem #1

1.3.2. Sketch likely solution curves through the given slope field for Z—Z =x+y.

1.3.8. Sketch likely solution curves through the given slope field for Z—z =x°—y.

Solution: Here are slope fields with some solutions for these two problems:
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1.3.12. Determine whether Theorem 1.3.1 does or does not guarantee existence and/or
uniqueness for the IVP y' = xIny, y(1) = 1. If a solution does exist, is it unique?

Solution: We see that the DE is already in normal form, with f(x,y) = xIny. We then
examine this function and its derivative f,(x,y) = % around x = 1and y = 1. Since

both functions are defined and continuous in a region around (1,1), this IVP satisfies the
hypotheses of Theorem 1, so it is guaranteed to have a unique solution y(x) on some
interval containing x = 1. n
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1.3.14. Determine whether Theorem 1.3.1 does or does not guarantee existence and/or
uniqueness for the IVP i’ = 3/, y(0) = 0. If a solution does exist, is it unique?

Solution: We see that the DE is already in normal form, with f(x,y) = ¥y = yl/3. We
then examine this function and its derivative fy(x,y) = %y‘z/ 3 around x = 0 and y = 0.
While f is continuous everywhere, f; is not even defined for y = 0. Hence, Theorem 1

does not apply, so neither existence nor uniqueness is guaranteed for this IVP.

By inspection, we can see that y = 0 is actually a solution to this DE passing through the
initial condition (0,0), so we have verified existence empirically. Since the DE is a fairly
simple separable equation, we could probably solve it explicitly for y in terms of x, but
we are not required to for this problem. .

1.3.28. Verify that if k is a constant, then the function y(x) = kx satisfies the differential
equation xy’ = y. Construct a slope field and several of these straight-line solution
curves. Then determine (in terms of 4 and b) how many different solutions the initial
value problem xy’ = y, y(a) = b has—one, none, or infinitely many:.

Solution: We first check that y = kx satisfies the DE. For these solutions, y’ = k, so xy’ =
x(k) = kx =y, as desired.

Putting the DE in normal form, ' = y/x. Letting f(x,y) = y/x, we plot a slope field
with slopes given by f and some solutions y = kx:
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Note that f(x,y) is not defined for x = 0. We note that f and f,(x,y) = 1/x are contin-
uous for x # 0, so the hypotheses of Theorem 1 are satisfied at all points in this region.
Hence, there is a unique solution to this DE going through each (a, b) with a # 0, namely
the line y = bx/a.

For a = 0, we see that all the linear solutions intersect at (0,0), so there are an infinite
number of solutions for the IC (a,b) = (0,0). Conversely, no lines go through (0, b) with
b # 0, so there are no solutions to the IVP for that IC. n
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1.5.1. Find the general solution to the DE i’ 4+ y = 2. Find the particular solution satis-
fying the initial condition y(0) = 0.

Solution: We recognize this as a linear DE with P(x) = 1 and Q(x) = 2. We then multiply
the DE by the integrating factor y(x) = e/ P()4¥ = ¢* to get

(e*y) = ey + ey = 2e".

Integrating, ey = [ 2¢¥ dx = 2¢* + C. Isolating y, y = 2+ Ce*, C any real number, so this
is the general solution to the DE.

Applying the initial condition, 0 = y(0) =2+ Ce® =2+ C. Thus, C = —2,s0y = 2 — 2¢*
is the particular solution. L

1.5.2. Find the general solution to the DE y’ — 2y = 3¢?*. Find the particular solution
satisfying the initial condition y(0) = 0.

Solution: We recognize this DE as being linear with P(x) = —2. Then [ P(x)dx = —2x,
so an integrating factor is u(x) = e~2*. Multiplying the DE by this 1(x), we have

and integrating yields e~?*y = 3x + C. Hence, y = 3xe?* + Ce?* is the general solution.
Applying the initial condition, 0 = y(0) = 3(0)e" + Ce® = C, so C = 0. Thus, y = 3xe*" is
the particular solution for this IVP. n

1.5.12. Find the general solution to the DE xy’ + 3y = 2x°. Find the particular solution
satisfying the initial condition y(2) = 1.

Solution: Normalizing the DE, it becomes y’ + 2y = 2x*. Then P(x) = 2, s0 [ P(x)dx =
3In|x|, and an integrating factor is p(x) = ™Il = |x3]. In fact, we choose to take
p(x) = x3. Multiplying this through the normalized form of the equation,

(%y) = 2%y + 3x%y = 247,
Integrating, x°y = [2x7 dx = }IxS + C. Isolating y, y = }IxS + Cx 73,

Applying the IC, 1 = y(2) = 125+ C273 =8+ C/8. Then C/8 = —7,s0 C = —56, and
the particular solution to the IVP is y = }lx5 — 56x73, n
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1.5.14. Find the general solution to the DE xy’ — 3y = x°. Find the particular solution
satisfying the initial condition (1) = 10.

Solution: Normalizing the DE by dividing by x, we have y' — 2y = x2. Then P(x) =
—3,s0 [P(x)dx = —3In|x|, and an integrating factor is e>"¥l = |x|=3. Actually,
we take p(x) = x~2 = 1/x3 as our integrating factor for convenience. Multiplying our
normalized equation by this y(x), we have

1\ 1, 3 _ el 1
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Integrating, y/x> = Inx + C, so y = x> Inx + Cx? is the general solution to the DE.

Applying the initial condition, 10 = (1) = 1¥In1+ C1®> = 0+ C = C, so C = 10. Thus,
the particular solution to the IVP is y = x> In x + 10x°. .

1.5.22. Find the general solution to the DE i’ = 2xy + 3x2¢*". Find the particular solution
satisfying the initial condition y(0) = 5.

Solution: The DE is already given in normal form, so we move the y term to the left-hand
side to get vy’ — 2xy = 3x2¢*. Then this DE is linear with P(x) = —2x,s0 [ P(x)dx =
—x?, and an integrating factor is p(x) = e, Multiplying the DE on both sides by this
function, . . .
(e y) =e 'y —2xy =3x%" e =3x%

Then integrating yields e=*'y = [3x2dx = x3 + C. Isolating y gives the general solution
y= x3e¥ 4 CeX’.

Applying the initial condition, 5 = y(0) = 03¢ + Ce® = C,s0 C = 5,and y = (x3 + 5)e*’
is the particular solution to this IVP. n

1.5.36. A tank initially contains 60 gallons of pure water. Brine containing 1 Ib of salt per
gallon enters the tank at 2 gal/min, and the (perfectly mixed) solution leaves the tank at
3 gal/min; thus, the tank is empty after exactly 1 hour.

(a) Find the amount of salt in the tank after t minutes.

(b) What is the maximum amount of salt ever in the tank?

Solution (a): We produce a model for this system. Let x(f) denote the amount of salt in
the tank at time ¢, ¢ in minutes since the brine starts flowing into the tank. The flow rate
in is r; = 2 gal/min, and the flow rate out is r, = 3 gal/min, so the volume in the tank at
time tis V(t) = 60 + (2 — 3)t = 60 — ¢, in gallons.
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The concentration of salt in the tank (and hence of the solution flowing out of the tank) is
then c,(t) = x(t)/V(t) = gi—x(t). Since the incoming concentration is ¢; = 1 Ib/gal, the
net rate of change of the salt is

Z_’; = rici — ToCo = (2)(1) — (3) 601_ ) =2- 603— )

which is a linear DE. Rearranging it so that x(t) and x’(t) are on the left-hand side, we
have x’ + g&x = 2. Then P(t) = ¢, so [ P(t)dt = —3In|60 — t|, with the minus
sign coming from the chain rule with 60 — t. Hence, an integrating factor is 3160~ —
|60 — t|~3. We choose to take u(t) = (60 — t) 3, without the absolute values, since we

expect solutions only for 0 < t < 60.
Multiplying the DE by this integrating factor, we have

1 N1 R R
(60—1t)3") — (60 —1t)3 (60 —t)4" (60 —t)3
Integrating, z5= t)3x =/ (60+t)3dt (60 oz TG s0x=60—t+ C(60 —t)°.

Finally, we note that there is also an initial condition: x(0) = 0, since the tank starts with
no salt. Thus, 0 = x(0) = 60 — 0 + C(60 — 0)3 = 60 + 60°C, so C = 1/60?, and the total
amount of salt in the tank at time ¢ is

x(f) = 60—t — —— (60 — ).

3600

Solution (b): We find the maximum value of x(¢) on [0,60]. Computing x’(t),

! 1 2 _ 1
x'(f) =—-1— m(3)(—1)(60 — ) =—-1+ m(éo —1)2

At a local extremum, x'(t) = 0, since x'(t) exists everywhere on this interval. Then 0 =

—1+ 135(60 — )%, 50 (60 — t)? = 1200, and ¢ = 60 — 20+/3. Finally,

1 4
x(60 —20V/3) = 20V/3 — m(20\f )% =203 — 52W§ = ?O\/E ~ 23.09 Ibs.

Since x(0) = x(60) = 0, this is the maximum amount of salt in the tank. u
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Extra Problem #1. Consider the DEy/ = x +2 —y.

(a) Plot a slope field for this DE in the region —3 < x < 3, —3 < y < 3. Sketch solution
curves through the points (0,0), (0,2), and (1,2). Sketch at least two other solution
curves of your choice.

(b) Find the general solution to this DE. Find a particular solution satisfying the initial

condition y(1) = 2 — 2. Sketch it on your slope field.

Solution (a): Here is the slope field, with solutions through (0,0), (0,2), and (1,2), as well
as (0,—1) and (—2,2):
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Solution (b): Writing the DE as i’ +y = x + 2, we see it is linear. We multiply by the
integrating factor p(x) = e¥, so (e*y)’ = xe* + 2¢*. Integrating and applying integration
by parts for the right-hand side,

ey = (xe* —e*)+2"+C=(x+1)e*+C,

soy = x + 1+ Ce™* is the general solution to the DE.

We solve for C with the ICy(1) =2—2 =1+1+Ce ! ThenC = —2,s0y = x+1—
2¢~*. In fact, y(0) = 1 —2 = —1, so this is the curve through (0, —1), which we already
sketched above. n



