
MAT 303 Spring 2013 Calculus IV with Applications

Homework #3 Solutions

Problems

• Section 1.6: 8, 22, 28, 34, 36, 44, 46, 60.

• Section 2.1: 16.

• Extra Problem #1:

1.6.8. Find the general solution of the DE x2y′ = xy + x2ey/x.

Solution: Dividing by x2, we see that the DE becomes y′ = y
x + ey/x, a function of y/x

alone. Let v = y/x, so that y = xv, and y′ = xv′ + v. Then the DE becomes

xv′ + v = v + ev,

which simplifies and separates to e−vv′ = 1
x . Integrating, −e−v = ln |x| + C, so v =

− ln(C− ln |x|). Backsolving for y, y = xv = −x ln(C− ln |x|) is the general solution to
the DE. �

1.6.22. Find the general solution of the DE x2y′ + 2xy = 5y4.

Solution: We observe that this is a Bernoulli equation with n = 4, so we make the substi-
tution v = y−3. Then y = v−1/3, so y′ = −1

3 v−4/3v′. Thus the DE becomes

−1
3

x2v−4/3v′ + 2xv−1/3 = 5v−4/3.

Dividing by the coefficient −1
3 x2v−4/3 on v′, this DE becomes v′ − 6

x v = −15
x2 , which

is linear. The coefficient function on v is P(x) = − 6
x , so the integrating factor is then

µ(x) = e−6 ln |x| = x−6. Multiplying by µ(x), we have

(x−6v)′ = x−6v′ − 6x−7v = −15x−8,

so upon integrating, x−6v = 15
7 x−7 +C. Then v = 15

7x +Cx6 = 15+Cx7

7x , rescaling C. Finally,
v = y−3, so the general solution is

y = 3

√
7x

15 + Cx7 .
�
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1.6.28. Find the general solution of the DE xeyy′ = 2(ey + x3e2x).

Solution: We observe that y occurs only in ey, so we let v = ey. Then y = ln v, so y′ = 1
v v′.

Hence, the DE becomes

xv
1
v

v′ = 2(v + x3e2x),

so v′ − 2
x v = 2x2e2x, which is linear in v. The integrating factor is µ(x) = e−2 ln |x| = x−2,

so then
(x−2v)′ = 2e2x.

Integrating, x−2v = e2x +C, so v = x2e2x +Cx2. Finally, the general solution is y = ln v =
ln(x2e2x + Cx2). �

1.6.34. Verify that the DE (2xy2 + 3x2) dx + (2x2y + 4y3) dy = 0 is exact, and find its
general solution.

Solution: Letting M(x, y) = 2xy2 + 3x2 and N(x, y) = 2x2y + 4y3, we check the exactness
condition My = Nx. Since My = 4xy + 0 = 4xy and Nx = 4xy + 0 = 4xy, the condition is
satisfied, and the DE is exact.

We find F first by integrating M with respect to x:

F(x, y) =
∫

2xy2 + 3x2 dx = x2y2 + x3 + g(y),

where g is some unknown function of y. We compute Fy and compare it to N: Fy = 2x2y+
g′(y) = N = 2x2y + 4y3, so g′(y) = 4y3. Integrating with respect to y, g(y) = y4 + C.
Thus, the general solution is given implicitly by the equation x2y2 + x3 + y4 = C. �

1.6.36. Verify that the DE (1 + yexy) dx + (2y + xexy) dy = 0 is exact, and find its general
solution.

Solution: Letting M(x, y) = 1 + yexy and N(x, y) = 2y + xexy, we check the exactness
condition My = Nx. Since My = 0 + y(xexy) = xyexy and Nx = 0 + x(yexy) = xyexy, the
condition is satisfied, and the DE is exact.

We find F first by integrating M with respect to x:

F(x, y) =
∫

1 + yexy dx = x + exy + g(y),

where g is some unknown function of y. We compute Fy and compare it to N: Fy =

yexy + g′(y) = N = 2y + xexy, so g′(y) = 2y. Then g(y) = y2 + C, so the general solution
to F is F(x, y) = x + exy + y2 +C. Hence, the general solution to the DE is given implicitly
by the equation

x + exy + y2 = C

for different values of C. �
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1.6.44. Find a general solution of the reducible second-order equation yy′′ + (y′)2 = 0.
Assume x, y, and/or y′ to be positive if helpful, but state your assumptions.

Solution: Since this second-order DE does not have any explicit dependence on x, it is
indeed reducible. Let p(y) = y′; then y′′ = pp′, and the DE becomes ypp′ + p2 = 0.
Normalizing, p′ = −p/y, or p′ + 1

y p = 0, which is linear. Using the integrating factor

µ(y) = eln y = y, (yp)′ = 0, so yp = C, and p(y) = C/y.

Since y′ = p, this gives the separable equation y′ = C/y, so yy′ = C. Integrating with
respect to x, 1

2 y2 = Cx + D, so y =
√

Cx + D (rescaling C and D) is the general solution.�

1.6.46. Find a general solution of the reducible second-order equation xy′′ + y′ = 4x.
Assume x, y, and/or y′ to be positive if helpful, but state your assumptions.

Solution: Since this second-order DE does not have any explicit dependence on x, it is
indeed reducible. Let p(x) = y′, so that y′′ = p′. Then the DE is xp′ + p = 4x, which is
linear; in fact, the left-hand side is already (xp)′. Integrating, xp = 2x2 +C, so p = 2x+ C

x .

We therefore have that y′ = 2x + C
x , so we integrate to obtain y:

y =
∫

2x +
C
x

dx = x2 + C ln |x|+ D.
�

1.6.60. Solve the DE
dy
dx

=
2y− x + 7

4x− 3y− 18

first by finding h and k so that the substitutions x = u + h, y = v + k transform it into a
homogeneous DE.

Solution: We first convert this DE into a homogeneous DE in new variables u and v, with
x = u + h and y = v + k for some constants h, k. Making these substitutions, dy

dx =
dy
dv

dv
du

du
dx = dv

du , since dy
dv = 1 and du

dx = 1, and

2y− x + 7
4x− 3y− 18

=
2(v + k)− (u + h) + 7

4(u + h)− 3(v + k)− 18
=

2v− u + 2k− h + 7
4u− 3v + 4h− 3k− 18

.

In order for the DE to be homogeneous, the constant terms 2k− h + 7 and 4h− 3k− 18 in
this fraction must both be 0. We use this to solve for h and k: h = 2k + 7, so 8k + 28− 3k−
18 = 0. Then 5k = −10, so k = −2, and h = 3. Thus, with the substitutions x = u + 3 and
y = v− 2, the DE becomes

dv
du

=
2v− u

4u− 3v
=

2(v/u)− 1
4− 3(v/u)

.
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Since this equation is homogeneous, let z(u) = v/u, so that v = uz. Then v′ = uz′ + z, so
the DE becomes

uz′ =
2z− 1
4− 3z

− z =
2z− 1 + 3z2 − 4z

4− 3z
=

3z2 − 2z− 1
4− 3z

,

which is separable. Upon separating, we have 4−3z
3z2−2z−1 z′ = 1

u ; to integrate the left-hand
side, we expect to use partial fractions. Fortunately, 3z2− 2z− 1 factors as (3z+ 1)(z− 1),
so we need to solve the functional equation A(3z + 1) + B(z− 1) = 4− 3z for A and B.
Then 3A + B = −3 and A− B = 4, so A = 1

4 and B = −15
4 . Hence, integrating both sides,∫ 4− 3z

3z2 − 2z− 1
dz =

1
4

∫ 1
z− 1

− 15
3z + 1

dz =
1
4
(ln |z− 1| − 5 ln |3z + 1|) = ln |u|+ C.

Multiplying by 4 and exponentiating, (z− 1)(3z + 1)−5 = Cu4, so

(z− 1) = Cu4(3z + 1)5.

Backsubstituting z = v/u to eliminate z, we have

1
u
(v− u) = Cu4 1

u5 (3v + u)5 = C
1
u
(3v + u)5,

and muliplying by u gives v− u = C(3v + u)5. Finally, backsubstituting with u = x− 3
and v = y + 2, the implicit solution is

(y− x + 5) = C(3y + x + 3)5,

for which there is no hope of solving for y explicitly. �

2.1.16. Consider a rabbit population P(t) satisfying the logistic equation P′ = aP− bP2.
If the initial population is 120 rabbits and there are 8 births per month and 6 deaths per
month occurring at time t = 0, how many months does it take for P(t) to reach 95% of
the limiting population M?

Solution: From Problem 15, we see that the limiting population is M = B0P0/D0 =
8(120)/6 = 160 rabbits. At t = 0, the net rate of change of P is 2 rabbits/month, so

2 = k(120)(160− 120) = 4800k.

Then k = 1/2400, so kM = 160/2400 = 1/15. We solve for the T when P(T) = 0.95M;
then

0.95M =
MP0

P0 + (M− P0)e−kMT ,

so (M− P0)e−kMT = P0
0.95 − P0. Substituting in values, 40e−T/15 = 120

0.95 − 120, so e−T/15 =
3

0.95 − 3 = 3
19 , and T = 15 ln 19

3 ≈ 27.7. Hence, it takes the population 27.7 months to reach
95% of its limit. �
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Extra Problem #1. Consider the DE (x + y)y′ = x− y.
(a) Solve the DE using the homogeneous substitution v = y/x. An implicit solution is

acceptable.

(b) We can rearrange the DE into the differential form

(y− x) dx + (x + y) dy = 0.

Is this equation exact? If so, find an implicit solution to the equation using our
techniques for exact DEs. Show that your solution is equivalent to your answer
from part (a). Which method was easier?

Solution (a): Let v = y/x, so y = xv, and y′ = xv′ + v. Then the DE becomes

xv′ + v =
1− v
1 + v

⇒ xv′ =
1− v
1 + v

− v =
1− v− v2 − v

1 + v
=

1− 2v− v2

1 + v
.

Separating variables, 1+v
1−2v−v2 v′ = 1

x . Fortunately, the left-hand side is integrable, since
(1− 2v− v2)′ = (−2− 2v)v′ = −2(1 + v)v′, so we have

−1
2

ln |1− 2v− v2| = ln |x|+ C ⇒ ln |1− 2v− v2|+ ln(x2) = C.

Combining the logs and exponentiating, x2(1− 2v− v2) = C, or x2 − 2xy− y2 = C. �

Solution (b): Since M(x, y) = y− x and N(x, y) = x + y, My = 1 and Nx = 1. Therefore,
the DE is exact. To find the function F(x, y) defining its implicit solutions, integrate M =
Fx with respect to x:

F(x, y) =
∫

y− x dx = xy− x2

2
+ g(y).

Then Fy = x + g′(y) = N = x + y, so g′(y) = y, and g(y) = 1
2 y2. Hence,

F(x, y) = xy− x2

2
+

1
2

y2 = C

determines implicit solutions to the DE. Multiplying the equation by −2, we obtain x2 −
2xy− y2 = C, which is exactly the solution from part (a).

This method seems easier, as it required integration of only polynomial functions and no
fraction or log manipulations. �
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