MAT 303 Spring 2013 Calculus IV with Applications

Homework #6 Solutions

Problems

e Section 3.1: 26, 34, 40, 46
e Section 3.2: 2, 8, 10, 14, 18, 24, 30

3.1.26. Determine whether the functions f(x) = 2cosx + 3sinx and g(x) = 3cosx —
2sin x are linearly dependent or linearly independent on the real line.

Solution: We compute the Wronskian of these functions:

W(f,g) = jj:/ 5/

= (2cosx + 3sinx)(—3sinx —2cosx) — (3cos x — 2sinx)(—2sinx + 3 cos x)

—2sinx +3cosx —3sinx —2cosx

B ‘ 2cosx +3sinx  3cosx —2sinx

= (—12cosxsinx — 9sin? x — 4 cos® x) + (12 cos x sin x — 9 cos® x — 4sin® x)
= 13(sin® x + cos? x) = 13
Since the Wronskian is the constant function 13, which is not the 0 function, these func-

tions are linearly independent on the real line (and in fact on any subinterval of the real
line). ]

‘ 3.1.34. Find the general solution of the DE y” + 2y’ — 15y = 0.

Solution: Guessing the solution y = ¢'*, we obtain the characteristic equation 7> — 2r +
15 = 0, which factors as (r — 5)(r + 3) = 0. Therefore, r = 5 and r = —3 are roots, so
y1 = ¢ and y, = e 3 are solutions. Furthermore, by Theorem 5 in §3.1, the general
solution to the DE is

Y= c1° + cpe 3%, -

3.1.40. Find the general solution of the DE 9y" — 12y + 4y = 0.

Solution: As above, the characteristic equation for the DE is 972 — 12r +4 = 0, which
factors as (3r — 2)> = 0. Therefore, this equation has a double root at r = 2/3. By
Theorem 6 in §3.1, the general solution is then

y = Clxe2x/3 —|—C2€2x/3. .



MAT 303 Spring 2013 Calculus IV with Applications

3.1.46. Find a homogeneous second-order DE ay” + by’ + cy = 0 with general solution
g Y Y Yy g
y = c1e10% ¢ ¢,e100%

10x 100x

Solution: This constant coefficient DE must have y; = e** and yp = ¢ as solutions, so
we expect ¥ — 10 and r — 100 to be factors of its characteristic polynomial. Then we may
take

ar®* 4+ br + ¢ = a(r — 10)(r — 100) = a(r* — 110r + 1000),

so taking 4 = 1, we have the corresponding DE y”" — 110y’ + 1000y = 0. ]

3.2.2. Show directly that the functions f(x) = 5, g(x) = 2 — 3x?, and h(x) = 10 + 15x2
are linearly dependent on the real line.

Solution: We find a nontrivial linear combination c; f + c2g + c3h of these functions iden-
tically equal to 0. Since all 3 functions are polynomials in x, the function is 0 exactly when
the coefficients on all the powers of x are 0. Since

c1f +cog +csh = c1(5) + c2(2 — 3x%) + ¢c3(10 + 15x?)
= (5¢1 +2¢5 +10c3) + (—3cp + 15¢3)x?,

we require that 5¢; 4+ 2c; 4+ 10c3 = 0 and —3c; + 15¢3 = 0. From the second equation,
¢ = 5c3. Substituting this into the first,

5¢1 4 2¢5 + 10c3 = 5¢1 + 2(5¢3) + 10c3 = 5¢1 + 20c3 = 0.

Then c; = —4c3, and there are no more constraints on the ¢;. Choosing to set c3 = 1,
c1 = —4 and ¢, = 5. We check that this nontrivial linear combination of functions is 0:

(—4)(5) + (5)(2 — 3x%) + (1)(10 4 15x%) = —20 4 10 — 15x* + 10 + 15x* = 0.

Rearranging this equation, we can express any single one of these functions as a linear
combination of the other two: for example, 10 + 15x% = 4(5) — 5(10 — 3x2). u

3.2.8. Use the Wronskian to prove that the functions f(x) = €%, g(x) = ¥, and h(x) =
¢3* are linearly independent on the real line.

Solution: We compute W(f, g, h):
g h eX er eBx
W(f,g,h) =|f § HN|=le 2% 3¢
f// g// W' X 4e%% 9e3x
N De2X 33X e2x  p3x e e
=e 462x 963x - 4€2x 9632{ 26236 363x
=e*e?e ((2-9-4-3)—(1-9-1-4)+(1-3-1-2))
=% (6 —5+1) = 25,

2x 3x

+

Since W(x) = 2¢%, which is not zero on the real line (and in fact nowhere 0), these three
functions are linearly independent. n
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3.2.10. Use the Wronskian to prove that the functions f(x) = ¢*, g(x) = x 72, and
h(x) = x~2In x are linearly independent on the interval x > 0.

Solution: We compute W(f, g, h). First, we compute derivatives of h:
W(x)=—2xInx+ x‘zi = (1-2Inx)x"3
W(x) = (-3)(1 -2l + x = (6lnx —5)x
Plugging these into the Wronskian, we have

g h ef x7? x2Inx
W(f.gh)=|f § H|=| =223 (1-2Inx)x3|.
8" W' et 6x* (6lnx—5)x*

Rather than expand this directly, we make use of some additional properties of the deter-
minant. One of these is that the determinant is unchanged if a multiple of one column is
added to or subtracted from a different column. We subtract In x times the second column
from the third to cancel the In x terms there:

X x2 0
W(f,gh)=le5 —2x3 x73
e 6x % —5x4

Using another property of the determinant, we factor the scalar e* out of the first column,
so that it multiplies the determinant of the remaining matrix:

1 x2 0
W(f,gh)=¢e"|1 —2x3 x3
1 6x* —5x*

With these simplifications, we expand along the first row, which conveniently contains a

0 entry:
+ 0)

|2 X3 B
W(f/g/h) =e (’ 6x—4 _5x—4
=e" (1Ox*7 —6x 7 —x(—5x"* — x*3)>

e*(x+1)(x+4)
7

= x 7 (x2 +5x +4) =

This function is defined and continuous for all x > 0. Furthermore, none of the factors
in its numerator is 0 for x > 0, so it is in fact nowhere 0 on this interval. Since their
Wronskian is not identically 0, these functions are linearly independent on this interval.m
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3.2.14. Find a particular solution to the DE y®) — 6y” + 11y’ — 6y = 0 matching the
initial conditions y(0) = 0, ¥'(0) = 0, ¥”(0) = 3 that is a linear combination of y; = e,

Yo = ¥, and y3 = e>*.

Solution: We let y = cie* + c2e®* + c3e3*. Then y' = cie® + 2c0e?* + 3cz3e® and y’ =
c16¥ + 4cpe®* + 9cze?*, so evaluating these functions at x = 0 and matching them to the
initial conditions, we obtain the linear system

c1+c+c3=0
c1+2c+4+3c3=0
c1+4cy+9c3 =3

We solve this linear system by row reduction of an augmented matrix to echelon form:

11 1[0 11 1]0
1 2 3{0~1]01 2|0 Ry < R) — R{,R3 < R3 — R4
1 4 9|3 0 3 8|3]
(1 1 1/0]
~ 10 1 2]0 R3 < R3 — 3R,
0 0 23]
1 1 0] -3 1
~ 01 0|-3 R3 < —R3,Ry <~ R —2R3,R; < Ry — R3
3 2
0 01 5]
(1 0 0| 3
~ 101 0]-3 Ri <+ R1 —R»
00 1| 3
Thenc; =c3 = % andc; = —3,s0y = %ex — 3> + %ea’x is the solution to the IVP. n

3.2.18. Find a particular solution to the DE y(®) — 3" + 4y’ — 2y = 0 matching the initial
conditions y(0) = 1, ¥'(0) = 0, ¥”’(0) = 0 that is a linear combination of y; = e,
Y2 = e* cosx, and y3 = e* sin x.

Solution: We let y = cie* + cpe* cos x + cze* sin x. Then
y' = c1e” + cpe*(cos x — sinx) + cze” (sin x + cos x)
y" = c1e* — 2cpe* sin x + 2c3e” cos x

Evaluating these functions at x = 0 and matching them to the initial conditions, we obtain
the linear system

c1+co =1

c1+c+ c3=0
1+ 2c3 =0
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By the third equation, c; = —2c3. Substituting this into the second, c; —c3 = 0, s0 ¢c2 = c3.
Finally, in the first equation, —2c3 +c¢3 = 1,s0¢c3 = —1,¢c; = —1,and ¢; = —2(—1) = 2.
Then y = 2¢* — e¥ cosx — ¥ sinx = ¢¥(2 — cos x — sin x) is the solution to the IVP. U

3.2.24. The nonhomogeneous DE iy’ — 2y’ 4- 2y = 2x has the particular solution y, = x +
1 and the complementary solution y. = cje* cos x + ce* sin x. Find a solution satisfying
the initial conditions y(0) = 4, y'(0) = 8.

Solution: The general solution to this DE is of the form
Y=1Yp+yc=2x+1+cre’ cosx+ coe* sinx.

Then

y' =1+ c1e*(cosx — sinx) + cpe*(sinx + cos x).
Evaluating at x = 0 and applying the initial conditions, y(0) = 1+ ¢; = 4 and y'(0) =
1+ c1+cp =8. Then ¢; = 3 and ¢, = 4, so the solution to the IVP is

y=x+1+e"(3cosx+4sinx). u

3.2.30. Verify that y; = x and y, = x? are linearly independent solutions on the entire

real line of the equation x%y” — 2xy’ + 2y = 0, but that W(x, x?) vanishes at x = 0. Why
do these observations not contradict part (b) of Theorem 3?

Solution: We first check that these are solutions:

Xy = 2xyh + 21 =

X*yh — 2xyh + 2y, =

x2(0) —2x(1) +2(x) = x(—2+2) =0
X

We then compute their Wronskian:

X X

W) =] 5,

This function is not identically 0, so the two functions x and x? are linearly independent
on the real line, but it is 0 at precisely x = 0.

We note that Theorem 3 applies only to normalized homogeneous linear DEs. Normaliz-
ing this DE, we obtain

//_2/ 2 _
y -yt zy=0

the coefficient functions of which are continuous for x # 0. Thus, any interval on which
the theorem applies does not include x = 0, the only point at which W(x) = 0, so W(x, x?)
is nonzero on every such interval. This is consistent with the linear independence of the
solutions x and x2. .



