
MAT 303 Spring 2013 Calculus IV with Applications

Homework #6 Solutions

Problems

• Section 3.1: 26, 34, 40, 46

• Section 3.2: 2, 8, 10, 14, 18, 24, 30

3.1.26. Determine whether the functions f (x) = 2 cos x + 3 sin x and g(x) = 3 cos x −
2 sin x are linearly dependent or linearly independent on the real line.

Solution: We compute the Wronskian of these functions:

W( f , g) =
∣∣∣∣ f g
f ′ g′

∣∣∣∣ = ∣∣∣∣ 2 cos x + 3 sin x 3 cos x− 2 sin x
−2 sin x + 3 cos x −3 sin x− 2 cos x

∣∣∣∣
= (2 cos x + 3 sin x)(−3 sin x− 2 cos x)− (3 cos x− 2 sin x)(−2 sin x + 3 cos x)

= (−12 cos x sin x− 9 sin2 x− 4 cos2 x) + (12 cos x sin x− 9 cos2 x− 4 sin2 x)

= 13(sin2 x + cos2 x) = 13

Since the Wronskian is the constant function 13, which is not the 0 function, these func-
tions are linearly independent on the real line (and in fact on any subinterval of the real
line). �

3.1.34. Find the general solution of the DE y′′ + 2y′ − 15y = 0.

Solution: Guessing the solution y = erx, we obtain the characteristic equation r2 − 2r +
15 = 0, which factors as (r − 5)(r + 3) = 0. Therefore, r = 5 and r = −3 are roots, so
y1 = e5x and y2 = e−3x are solutions. Furthermore, by Theorem 5 in §3.1, the general
solution to the DE is

y = c1e5x + c2e−3x. �

3.1.40. Find the general solution of the DE 9y′′ − 12y′ + 4y = 0.

Solution: As above, the characteristic equation for the DE is 9r2 − 12r + 4 = 0, which
factors as (3r − 2)2 = 0. Therefore, this equation has a double root at r = 2/3. By
Theorem 6 in §3.1, the general solution is then

y = c1xe2x/3 + c2e2x/3. �

1



MAT 303 Spring 2013 Calculus IV with Applications

3.1.46. Find a homogeneous second-order DE ay′′ + by′ + cy = 0 with general solution
y = c1e10x + c2e100x.

Solution: This constant coefficient DE must have y1 = e10x and y2 = e100x as solutions, so
we expect r− 10 and r− 100 to be factors of its characteristic polynomial. Then we may
take

ar2 + br + c = a(r− 10)(r− 100) = a(r2 − 110r + 1000),

so taking a = 1, we have the corresponding DE y′′ − 110y′ + 1000y = 0. �

3.2.2. Show directly that the functions f (x) = 5, g(x) = 2− 3x2, and h(x) = 10 + 15x2

are linearly dependent on the real line.

Solution: We find a nontrivial linear combination c1 f + c2g + c3h of these functions iden-
tically equal to 0. Since all 3 functions are polynomials in x, the function is 0 exactly when
the coefficients on all the powers of x are 0. Since

c1 f + c2g + c3h = c1(5) + c2(2− 3x2) + c3(10 + 15x2)

= (5c1 + 2c2 + 10c3) + (−3c2 + 15c3)x2,

we require that 5c1 + 2c2 + 10c3 = 0 and −3c2 + 15c3 = 0. From the second equation,
c2 = 5c3. Substituting this into the first,

5c1 + 2c2 + 10c3 = 5c1 + 2(5c3) + 10c3 = 5c1 + 20c3 = 0.

Then c1 = −4c3, and there are no more constraints on the ci. Choosing to set c3 = 1,
c1 = −4 and c2 = 5. We check that this nontrivial linear combination of functions is 0:

(−4)(5) + (5)(2− 3x2) + (1)(10 + 15x2) = −20 + 10− 15x2 + 10 + 15x2 = 0.

Rearranging this equation, we can express any single one of these functions as a linear
combination of the other two: for example, 10 + 15x2 = 4(5)− 5(10− 3x2). �

3.2.8. Use the Wronskian to prove that the functions f (x) = ex, g(x) = e2x, and h(x) =
e3x are linearly independent on the real line.

Solution: We compute W( f , g, h):

W( f , g, h) =

∣∣∣∣∣∣
f g h
f ′ g′ h′

f ′′ g′′ h′′

∣∣∣∣∣∣ =
∣∣∣∣∣∣
ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x

∣∣∣∣∣∣
= ex

(∣∣∣∣2e2x 3e3x

4e2x 9e3x

∣∣∣∣− ∣∣∣∣ e2x e3x

4e2x 9e3x

∣∣∣∣+ ∣∣∣∣ e2x e3x

2e2x 3e3x

∣∣∣∣)
= exe2xe3x ((2 · 9− 4 · 3)− (1 · 9− 1 · 4) + (1 · 3− 1 · 2))
= e6x(6− 5 + 1) = 2e6x.

Since W(x) = 2e6x, which is not zero on the real line (and in fact nowhere 0), these three
functions are linearly independent. �
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3.2.10. Use the Wronskian to prove that the functions f (x) = ex, g(x) = x−2, and
h(x) = x−2 ln x are linearly independent on the interval x > 0.

Solution: We compute W( f , g, h). First, we compute derivatives of h:

h′(x) = −2x−3 ln x + x−2 1
x
= (1− 2 ln x)x−3

h′′(x) = (−3)(1− 2 ln x)x−4 +
−2
x

x−3 = (6 ln x− 5)x−4

Plugging these into the Wronskian, we have

W( f , g, h) =

∣∣∣∣∣∣
f g h
f ′ g′ h′

f ′′ g′′ h′′

∣∣∣∣∣∣ =
∣∣∣∣∣∣
ex x−2 x−2 ln x
ex −2x−3 (1− 2 ln x)x−3

ex 6x−4 (6 ln x− 5)x−4

∣∣∣∣∣∣ .

Rather than expand this directly, we make use of some additional properties of the deter-
minant. One of these is that the determinant is unchanged if a multiple of one column is
added to or subtracted from a different column. We subtract ln x times the second column
from the third to cancel the ln x terms there:

W( f , g, h) =

∣∣∣∣∣∣
ex x−2 0
ex −2x−3 x−3

ex 6x−4 −5x−4

∣∣∣∣∣∣
Using another property of the determinant, we factor the scalar ex out of the first column,
so that it multiplies the determinant of the remaining matrix:

W( f , g, h) = ex

∣∣∣∣∣∣
1 x−2 0
1 −2x−3 x−3

1 6x−4 −5x−4

∣∣∣∣∣∣
With these simplifications, we expand along the first row, which conveniently contains a
0 entry:

W( f , g, h) = ex
(∣∣∣∣−2x−3 x−3

6x−4 −5x−4

∣∣∣∣− x−2
∣∣∣∣1 x−3

1 −5x−4

∣∣∣∣+ 0
)

= ex
(

10x−7 − 6x−7 − x−2(−5x−4 − x−3)
)

= exx−7(x2 + 5x + 4) =
ex(x + 1)(x + 4)

x7 .

This function is defined and continuous for all x > 0. Furthermore, none of the factors
in its numerator is 0 for x > 0, so it is in fact nowhere 0 on this interval. Since their
Wronskian is not identically 0, these functions are linearly independent on this interval.�
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3.2.14. Find a particular solution to the DE y(3) − 6y′′ + 11y′ − 6y = 0 matching the
initial conditions y(0) = 0, y′(0) = 0, y′′(0) = 3 that is a linear combination of y1 = ex,
y2 = e2x, and y3 = e3x.

Solution: We let y = c1ex + c2e2x + c3e3x. Then y′ = c1ex + 2c2e2x + 3c3e3x and y′′ =
c1ex + 4c2e2x + 9c3e3x, so evaluating these functions at x = 0 and matching them to the
initial conditions, we obtain the linear system

c1 + c2 + c3 = 0
c1 + 2c2 + 3c3 = 0
c1 + 4c2 + 9c3 = 3

We solve this linear system by row reduction of an augmented matrix to echelon form:1 1 1 0
1 2 3 0
1 4 9 3

 ∼
1 1 1 0

0 1 2 0
0 3 8 3

 R2 ← R2 − R1, R3 ← R3 − R1

∼

1 1 1 0
0 1 2 0
0 0 2 3

 R3 ← R3 − 3R2

∼

1 1 0 −3
2

0 1 0 −3
0 0 1 3

2

 R3 ←
1
2

R3, R2 ← R2 − 2R3, R1 ← R1 − R3

∼

1 0 0 3
2

0 1 0 −3
0 0 1 3

2

 R1 ← R1 − R2

Then c1 = c3 = 3
2 and c2 = −3, so y = 3

2 ex − 3e2x + 3
2 e3x is the solution to the IVP. �

3.2.18. Find a particular solution to the DE y(3)− 3y′′ + 4y′ − 2y = 0 matching the initial
conditions y(0) = 1, y′(0) = 0, y′′(0) = 0 that is a linear combination of y1 = ex,
y2 = ex cos x, and y3 = ex sin x.

Solution: We let y = c1ex + c2ex cos x + c3ex sin x. Then

y′ = c1ex + c2ex(cos x− sin x) + c3ex(sin x + cos x)
y′′ = c1ex − 2c2ex sin x + 2c3ex cos x

Evaluating these functions at x = 0 and matching them to the initial conditions, we obtain
the linear system

c1 + c2 = 1
c1 + c2 + c3 = 0
c1 + 2c3 = 0
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By the third equation, c1 = −2c3. Substituting this into the second, c2− c3 = 0, so c2 = c3.
Finally, in the first equation, −2c3 + c3 = 1, so c3 = −1, c2 = −1, and c1 = −2(−1) = 2.
Then y = 2ex − ex cos x− ex sin x = ex(2− cos x− sin x) is the solution to the IVP. �

3.2.24. The nonhomogeneous DE y′′− 2y′+ 2y = 2x has the particular solution yp = x+
1 and the complementary solution yc = c1ex cos x + c2ex sin x. Find a solution satisfying
the initial conditions y(0) = 4, y′(0) = 8.

Solution: The general solution to this DE is of the form

y = yp + yc = x + 1 + c1ex cos x + c2ex sin x.

Then
y′ = 1 + c1ex(cos x− sin x) + c2ex(sin x + cos x).

Evaluating at x = 0 and applying the initial conditions, y(0) = 1 + c1 = 4 and y′(0) =
1 + c1 + c2 = 8. Then c1 = 3 and c2 = 4, so the solution to the IVP is

y = x + 1 + ex(3 cos x + 4 sin x). �

3.2.30. Verify that y1 = x and y2 = x2 are linearly independent solutions on the entire
real line of the equation x2y′′ − 2xy′ + 2y = 0, but that W(x, x2) vanishes at x = 0. Why
do these observations not contradict part (b) of Theorem 3?

Solution: We first check that these are solutions:

x2y′′1 − 2xy′1 + 2y1 = x2(0)− 2x(1) + 2(x) = x(−2 + 2) = 0

x2y′′2 − 2xy′2 + 2y2 = x2(2)− 2x(2x) + 2(x2) = x2(2− 4 + 2) = 0

We then compute their Wronskian:

W(x, x2) =

∣∣∣∣x x2

1 2x

∣∣∣∣ = x(2x)− 1(x2) = x2.

This function is not identically 0, so the two functions x and x2 are linearly independent
on the real line, but it is 0 at precisely x = 0.

We note that Theorem 3 applies only to normalized homogeneous linear DEs. Normaliz-
ing this DE, we obtain

y′′ − 2
x

y′ +
2
x2 y = 0,

the coefficient functions of which are continuous for x 6= 0. Thus, any interval on which
the theorem applies does not include x = 0, the only point at which W(x) = 0, so W(x, x2)
is nonzero on every such interval. This is consistent with the linear independence of the
solutions x and x2. �
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