
MAT 303 Spring 2013 Calculus IV with Applications

Homework #7 Solutions

Problems

• Section 3.3: 4, 18, 22, 24, 34, 40

• Section 3.4: 4, 12abc, 16, 18, 22. Omit the graphing part on problems 16 and 18.

3.3.4. Find the general solution to the differential equation 2y′′ − 7y′ + 3y = 0.

Solution: We determine that the characteristic equation for this linear polynomial is 2r2−
7r + 3 = 0, which factors as (2r− 1)(r− 3) = 0. Thus, the roots are r = 1/2 and r = 3, so
the general solution is y = c1ex/2 + c2e3x. �

3.3.18. Find the general solution to the differential equation y(4) = 16y.

Solution: Writing the DE as y(4) − 16y = 0, we see that its characteristic equation is r4 −
16 = 0. Since this is a difference of squares, it factors as

(r2 − 4)(r2 + 4) = (r− 2)(r + 2)(r2 + 4) = 0.

Therefore, it has the roots r = 2 and r = −2 from the linear factors, and the r2 + 4 factor
has pure imaginary roots r = ±

√
−4 = ±2i. From the real roots, we have the solutions

e2x and e−2x, while we get the trigonometric functions cos 2x and sin 2x from the pure
imaginary roots. Thus, the general solution is

y = c1e2x + c2e−2x + c3 cos 2x + c4 sin 2x. �

3.3.22. Solve the IVP 9y′′ + 6y′ + 4y = 0, y(0) = 3, y′(0) = 4.

Solution: We first find the general solution to the homogeneous linear DE. Since its char-
acteristic equation is 9r2 + 6r + 4 = 0, which has roots

r =
−6±

√
62 − 4(4)(9)
2 · 9 =

−1±
√
−3

3
= −1

3
± 1√

3
i,

the general solution is the linear combination

y = c1e−x/3 cos
x√
3
+ c2e−x/3 sin

x√
3

.
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We use the product rule to compute its derivative; after factoring out e−x/3, this is

y′ = c1e−x/3
(
−1

3
cos

x√
3
− 1√

3
sin

x√
3

)
+ c2e−x/3

(
−1

3
sin

x√
3
+

1√
3

cos
x√
3

)
.

Evaluating at x = 0 and applying the initial conditions, and noting that the sin terms
vanish,

y(0) = c1 = 3, y′(0) = − c1

3
+

c2√
3
= 4.

Then c1 = 3, and c2 =
√

3(4 + c1/3) = 5
√

3, so the solution to the IVP is

y = 3e−x/3 cos
x√
3
+ 5
√

3e−x/3 sin
x√
3

.
�

3.3.24. Solve the IVP 2y(3) − 3y′′ − 2y′ = 0, y(0) = 1, y′(0) = −1, y′′(0) = 3.

Solution: The characteristic equation for this DE is 2r3 − 3r2 − 2r = 0, which factors as

r(2r2 − 3r− 2) = r(2r + 1)(r− 2) = 0.

Then r = 0, r = −1/2, and r = 2 are its (distinct real) roots, so the general solution is

y = c1 + c2e−x/2 + c3e2x.

Its first and second derivatives are

y′ = −1
2

c2e−x/2 + 2c3e2x, y′′ =
1
4

c2e−x/2 + 4c3e2x.

Evaluating at x = 0 and applying the initial conditions, we have the linear system

c1 + c2 + c3 = 1, −1
2

c2 + 2c3 = −1,
1
4

c2 + 4c3 = 3.

From the third equation, c2 = 12 − 16c3. Substituting this into the second, −1
2(12 −

16c3) + 2c3 = −1, so 10c3 = 5, and c3 = 1/2. Then c2 = 12− 8 = 4, so c1 = 1− c2 − c3 =
−7/2. Thus, the solution to the IVP is y = −7

2 + 4e−x/2 + 1
2 e2x. �

3.3.34. One solution to the DE 3y(3) − 2y′′ + 12y′ − 8y = 0 is y = e2x/3. Find the general
solution.

Solution: The characteristic equation for the DE is 3r3 − 2r2 + 12r− 8 = 0. Since r = 2/3
is a root, we expect r− 2/3 to be a linear factor of this polynomial. In fact, 3(r− 2/3) =
3r− 2 is seen to be a linear factor, so that this polynomial factors as

(3r− 2)(r2 + 4) = 0.

Thus, the two other roots are r = ±2i, from the r2 + 4 factor, so the general solution is

c1e2x/3 + c2 cos 2x + c3 sin 2x. �
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3.3.40. Find a linear homogeneous constant-coefficient equation with general solution
y = Ae2x + B cos 2x + C sin 2x.

Solution: Since the general solution contains both e2x and a cos 2x-sin 2x pair, the original
DE should have roots r = 2 and r = ±2i. Furthermore, its general solution has three in-
dependent parameters, so it should be a third-order DE. Hence, its characteristic equation
is

(r− 2)(r− 2i)(r + 2i) = (r− 2)(r2 + 4) = r3 − 2r2 + 4r− 8 = 0,

which comes from the linear homogeneous DE y(3)− 2y′′+ 4y′− 8y = 0. (Scalar multiples
of this DE have the same solutions.) �

3.4.4. A body with mass 250 g is attached to the end of a spring that is stretched 25 cm
by a force of 9 N. At time t = 0 the body is pulled 1 m to the right, stretching the spring,
and set in motion with an initial velocity of 5 m/s to the left.
(a) Find x(t) in the form C cos(ω0t− α).

(b) Find the amplitude and period of motion of the body.

Solution (a): We normalize the constants to mks SI units, so m = 0.25 kg and k = 9/0.25 =
36 N/m. Then the circular frequency is ω0 =

√
k/m =

√
36/0.25 = 12 rad/s, so the

general solution for the motion of the body is

x(t) = A cos 12t + B sin 12t, x′(t) = −12A sin 12t + 12B cos 12t.

Evaluating at t = 0, x(0) = A = 1 and x′(0) = 12B = −5 (since the initial velocity is
rightward). Then A = 1 and B = −5/12. Computing C, C2 = A2 + B2 = 122+52

122 = (13
12)

2,
so C = 13

12 .

The phase angle α has tan α = B/A = − 5
12 , but must satisfy C cos α = A > 0 and

C sin α = B < 0 from the above values of A and B. Fortunately, since its cosine must be
positive, we may then pick α from the principal branch of arctan, so α = arctan(−5/12) =
− arctan 5

12 ≈ −0.395. (Of course, we may also add an arbitrary multiple of 2π to this
angle, so 2π − arctan 5

12 ≈ 5.888 is also a correct answer.) Thus,

x(t) =
13
12

cos
(

12t + arctan
5

12

)
.

�

Solution (b): The amplitude is the constant C = 13
12 , and the period is T = 2π

12 = π
6 s. �
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3.4.12abc. Assume that the earth is a solid sphere of uniform density, with mass M
and radius R = 3960 miles. For a particle of mass m within the earth at a distance r
from the center of the earth, the gravitational force attracting m toward the center is
Fr = −GMrm/r2, where Mr is the mass of the part of the earth within a sphere of radius
r.
(a) Show that Fr = −GMmr/R3.

(b) Now suppose that a small hole is drilled straight through the center of the earth, thus
connecting two antipodal paints on its surface. Let a particle of mass m be dropped
at time t = 0 into this hole with initial speed zero, and let r(t) be its distance from
the center of the earth at time t. Conclude from Newton’s second law and part (a)
that r′′(t) = −k2r(t), where k2 = GM/R3 = g/R.

(c) Take g = 32.2 ft/s2, and conclude from part (b) that the particle undergoes simple
harmonic motion back and forth between the ends of the hole, with a period of about
84 min.

Solution (a): The volume of the Earth (assumed to be a perfect sphere) is V = 4π
3 R3, so

the density of the Earth is ρ = M
V = M

4π
3 R3 . The mass of the radius-r portion of the Earth is

then Mr = ρ · 4π
3 r3 = M r3

R3 . Hence, the force of gravity on the mass m at its surface is

Fr = −
Gm
r2 Mr = −

Gm
r2 M

r3

R3 = −GMmr
R3 .

�

Solution (b): From Newton’s second law, F = ma. Since the position of the particle is
given by r(t), the acceleration is its second derivative, r′′(t). The only force on the body
is gravity, so from part (a), we have the DE.

−GMmr
R3 = mr′′(t).

Dividing out the m and collecting the r terms, this is

r′′ +
GM
R3 r = 0,

which gives simple harmonic motion with circular frequency ω0 =
√

GM
R3 . We also note

that when r = R, the gravitational acceleration g is given by GMR
R3 = GM

R2 , so this constant
is also g

R . �

Solution (c): Since ω0 =
√

g
R , the period of oscillation is T = 2π

ω0
= 2π

√
R
g . Then, in fps

units,

T = 2π

√
3960 · 5280

32.2
≈ 5063 s ≈ 84.4 min.

�
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3.4.16. A mass m = 3 is attached to both a spring with spring constant k = 63 and
a dashpot with damping constant c = 30. The mass is set in motion with initial posi-
tion x0 = 2 and initial velocity v0 = 2. Find the position function x(t) and determine
whether the motion is overdamped, critically damped, or underdamped. If it is under-
damped, write the position function in the form x(t) = Ce−pt cos(ω1t− α1). Also, find
the undamped position function u(t) = C0 cos(ω0t− α0) that would result if the mass
on the spring were set in motion with the same initial position and velocity but wth the
dashpot disconnected (c = 0).

Solution: We first find that ω2
0 = k

m = 21, and p = c
2m = 30

2·3 = 5. Then p2 = 25,
which is larger than ω2

0, so the motion is overdamped. The roots of the DE are r =

−p±
√

p2 −ω2
0 = −5± 2, or r = −7 and r = −3. Hence, the general solution is

x(t) = c1e−7t + c2e−3t, v(t) = x′(t) = −7c1e−7t − 3c2e−3t.

Setting t = 0 and matching the initial conditions, x(0) = c1 + c2 = 2 and v(0) = −7c1 −
3c2 = 2. Solving for c1 and c2, c2 = 2− c1, so −7c1 − 3(2− c1) = 2, and −4c1 = 8, Then
c1 = −2, so c2 = 4, and the solution is

x(t) = 4e−3t − 3e−7t.

Removing the damping, we get simple harmonic motion with the frequency ω0 =
√

21,
so the general solution is

u(t) = A cos ω0t + B sin ω0t, u′(t) = −Aω0 sin ω0t + Bω0 cos ω0t.

Then u(0) = A = 2 and u′(0) = Bω0 = 2, so A = 2 and B = 2√
21

. Then u(t) =

C cos(ω0t− α) C =
√

A2 + B2 =
√

4 + 4
21 = 2

√
22
21 , and α = arctan B

A = arctan 1√
21

. �

3.4.18. A mass m = 2 is attached to both a spring with spring constant k = 50 and a
dashpot with damping constant c = 12. The mass is set in motion with initial position
x0 = 0 and initial velocity v0 = −8. Find the position function x(t) and determine
whether the motion is overdamped, critically damped, or underdamped. If it is under-
damped, write the position function in the form x(t) = Ce−pt cos(ω1t− α1). Also, find
the undamped position function u(t) = C0 cos(ω0t− α0) that would result if the mass
on the spring were set in motion with the same initial position and velocity but wth the
dashpot disconnected (c = 0).

Solution: We have that ω2
0 = k

m = 50
2 = 25, so ω0 = 5, and p = c

2m = 12
2·2 = 3, so the motion

is underdamped. The pseudofrequency is ω1 =
√

ω2
0 − p2 =

√
25− 9 =

√
16 = 4, so the

general solution is

x(t) = c1e−3t cos 4t + c2e−3t sin 4t,

v(t) = c1e−3t(−3 cos 4t− 4 sin 4t) + c2e−3t(−3 sin 4t + 4 cos 4t)
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At t = 0, x(0) = c1 = 0. Then, using c1 = 0, v(0) = 4c2 = −8, so c2 = −2. Hence,
x(t) = −2e−3t sin 4t, which we convert to Ce−pt cos(ω1t− α1). We have that C = 2, and
A = −2 = 2 sin α1, so α1 = 3π

2 (taking an angle between 0 and 2π), so

x(t) = 2e−3t cos
(

4t− 3
2

π

)
.

With c = 0, the solution is u(t) = A cos 5t + B sin 5t, with u′(t) = −5A sin 5t + 5B cos 5t;
applying the initial conditions, A = 0 and 5B = −8, so u(t) = −8

5 sin 5t = 8
5 cos(5t −

3
2 π). �

3.4.22. A 12-lb weight (mass m = 0.375 slugs in fps units) is attached both to a verti-
cally suspended spring that it stretches 6 inches and to a dashpot that provides 3 lb of
resistance for every foot-per-second of velocity.
(a) If the weight is pulled down 1 foot below its static equilibrium position and then

released from rest at time t = 0, find its position function x(t).

(b) Find the frequency, time-varying amplitude, and phase angle of the motion.

Solution (a): The mass in fps units is m = 0.375, and the spring constant is k = 12 lb
0.5 ft =

24 lb/ft. The circular frequency is given by ω2
0 = k

m = 64, so ω0 = 8 rad/s. The damping
constant is c = 3 lb-s/ft, so p = c

2m = 4, and the system is therefore underdamped. Then

ω1 =
√

ω2
0 − p2 =

√
48 = 4

√
3, so the general solution is

x(t) = Ae−4t cos 4
√

3t + Be−4t sin 4
√

3t,

v(t) = Ae−4t(−4 cos 4
√

3t− 4
√

3 sin 4
√

3t) + Be−4t(−4 sin 4
√

3t + 4
√

3 cos 4
√

3t).

We measure the displacement vertically, considering a displacement downwards as being
positive, since it corresponds to stretching the string further. Thus, at time t = 0 we have
that x(0) = 1 and v(0) = 0. Then A = 1 and −4A + 4

√
3B = 0, so B = 4A

4
√

3
= 1√

3
. Thus,

the solution is
x(t) = e−4t cos 4

√
3t +

1√
3

e−4t sin 4
√

3.
�

Solution (b): We reformulate our answer to part (a) in the form Ce−pt cos(ω1t− α). Then
C2 = A2 + B2 = 1 + 1

3 = 4
3 , so C = 2√

3
, and the time-varying amplitude is 2√

3
e−4t. From

above, the pseudofrequency is ω1 = 4
√

3 rad/s. Finally, tan α = B
A = 1√

3
, with α in

Quadrant I so that both A and B are positive. Thus, the phase angle is α = π
6 . �
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