MAT 303 Spring 2013 Calculus IV with Applications

Homework #9 Solutions

Problems

¢ Section 3.6: 4, 8, 12, 18, 28, with modified graphing directions below:
+ On #4, omit the graph.
+ On #8, graph xp () and F(t) = :1(_:;)2 (which has units of length, unlike F(t)/mw).
+ On #12, graph both xgp (t) and x(t) = xgp(t) + xe(t).

* Section 4.1: 2, 8,24

3.6.4. Express the solution x(t) to the IVP x” + 25x = 90 cos 4t, x(0) = 0, x(0) = 90 as
the sum of two oscillations.

Solution: We first find the complementary solution x.(¢) to this nonhomogeneous DE.
Since it is a simple harmonic oscillation system with m = 1 and k = 25, the circular
frequency is wy = v/25 = 5, and

xc(t) = 1 cos 5t + ¢ sin 5¢.

Since the forcing term has frequency w = 4, which is not equal to wg, we expect a steady
state solution x,(t) of the form A cos 4t + B sin 4t. Differentiating twice, we see that x;,’ =
—16x,, so we obtain the equation

9A cos 4t 4 9B sin 4t = 90 cos 4t.
Therefore, A = 10,and B = 0, so xp(t) = 10 cos 4t. The general solution of this DE is then
x(t) = xc(t) + xp(t) = c1 cos 5t + cp sin 5t + 10 cos 4t,
and it is to this function that we apply the initial conditions. Since
x'(t) = —5cy sin 5t + 5¢p cos 5t — 40 sin 4t,

evaluating these equations at t = 0 gives the system c¢; + 10 = 0 and 5c; = 90. Hence,
c» =18, and ¢; = —10.

Finally, we combine the cos 5t and sin 5¢ terms into a single function C cos(5¢ — «). Then
C = +/(—10)2 + 182 = 24/106, and tana = ¢ /c; = 18/(—10) = —9/5. Furthermore, we
must take & so that cosa < 0 to match ¢; = —10,so & = 7 + tan~!(—9/5) ~ 2.08. Hence,
as the sum of two oscillations,

x(t) = 2v/106 cos(5t — 71 4 tan"1(9/5)) + 10 cos 4t. »
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3.6.8. Find the steady periodic solution xs,(t) = Ccos(wt — a) of the equation x” +
3x" +5x = —4cos5t. Then graph xs,(t) together with the adjusted forcing function
E(t) = F(t)/mw?.

Solution: We determine x;,(t), first assuming it has the general form A cos 5t + B sin 5¢.
Then

Xgp(t) = —5Asin 5t + 5B cos 5t, Xgp(t) = —25A cos 5t — 25Bsin 5t,

so plugging this into the DE, we have

x" +3x" +5x = —25A cos 5t — 25B sin 5t — 15A sin 5t + 15B cos 5¢ + 5A cos 5t + 5B sin 5¢
= (15B —20A) cos 5t + (—15A — 20B) sin 5t = —4 cos 5t.

Hence, —15A —20B = 0 and 15B —20A = —4,s50 B = —3A,and —$ A —20A = —4, s0
A = % Then B = — . Consequently,
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Taking a choice for a in [0,277), & = 27t — tan~!(3/4), so

4
Xsp(t) = 5E cos(5t — 27t + tan"1(3/4)).

Plotting this against F(t) = — 5 cos5t, we have
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3.6.12. For the differential equation x” + 6x’ + 13x = 10sin5t¢, find and plot both the
steady periodic solution x5, (t) = Ccos(wt — a) and the solution x(t) = x4 (t) + xsp(t)
matching the initial conditions x(0) = 0 and x’(0) = 0.

Solution: We first find xsp(t), in the form A cos 5t + B sin 5t. From Problem 3.6.8, we reuse
the derivatives of this function, so that

x" + 6x" +13x = —25A cos 5t — 25B sin 5t — 30A sin 5¢ + 30B cos 5t + 13 A cos 5t + 13B sin 5¢
— (30B — 12A) cos 5t + (—30A — 12B) sin5¢ = 10sin 5.

Then 30B — 12A = 0 and —30A — 12B = 10, so B = 2A, and then —304 — £ A = 10.

Then A = 87, soB = —é—g. Computing C and «,
\/252 —l— 102 5v29 5 —10 2
A2 4+ B2 = — — — t -1 2 t -1 —.
=/ + 37 3@, « = 7T+ tan 5 7T + tan 5

Then x,(t) = ~12)

_> — 7= 2

37 cos(5t —7m —tan™" £).

Next, we compute the solution x(#) matching the initial conditions. We first find the gen-
eral form of the transient solution: since the homogeneous equation has the characteristic
equation r2 + 6r 4+ 13 = 0, with roots r = —3 =+ 2i, the transient solution is of the form

-3t 3t

Xt (1) = cre”°" cos 2t + cre ' sin 2t,
with derivative
x} () = cre ™3 (=3 cos 2t — 2sin 2t) 4 cre > (=3 sin 2t 4 2 cos 2t).

Then x(t) = xsp(t) + x4(), so, matching the initial conditions,

25
x'(0) = x4,(0) + x3,(0) = —% —3c1 +2c; = 0.

Then ¢; = 2, and ¢c; = (3c1 + 39) = 15. Combining the terms in x,(t) into a single

trigonometric function C1e~% cos(2t — B), we then have

V502 + 1252 25 _1 125 15
C= = , Bp=tan"" — =tan -,
174 6+/29 50 2

SO Xy (t) = 6\F cos(2t —tan~! 3). We plot x;,(t) and x(t) below:
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3.6.18. Consider the mass-spring-dashpot system mx" + cx’ + kx = Fycoswt with
m =1,c =10, k = 650, and Fy = 100 (in mks units). Find and sketch the amplitude
C(w) of steady periodic oscillations with frequency w, and find the practical resonance
frequency w, if it exists.
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Solution: From the computations in this section, the amplitude is given by

F B 100 B 100
Vik—mw?)2+2w? /(650 — w?)2+100w? /422,500 — 120002 + w?

Clw) =

We check whether practical resonance is possible: since ¢ = 10> = 100 and 2km =
2(1)(650) = 1300, c* < 2km, so it is. The frequency maximizing C(w) is then

— 2 1
Y ka ¢ 300 — /600 = 10v/6 ~ 24.5.

Below is a plot of C(w), which clearly has a maximum at that frequency:
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3.6.28. As indicated by the cart-with-flywheel example discussed in this section, an un-
balanced rotating machine part typically results in a force having amplitude propor-
tional to the square of the frequency w.

(a) Show that the amplitude of the steady periodic solution of the differential equation
mx" 4 cx' + kx = mAw? cos wt

is given by
2

V (k= mw?)? + (cw)?

(b) Suppose that ¢ < 2mk. Show that the maximum amplitude occurs at the frequency

wp given by
k 2km
Wm = \/E <2km - cz)’

Thus the resonance frequency in this case is larger than the natural frequency wy =
Vk/m. (Suggestion: maximize the square of C.)

C(w) =

Solution (a): We note that, although the forcing term is now mAw? cos wt, the amplitude
mAw? does not vary with ¢, and so is a constant under differentiation with respect to ¢.
Then the same formula as in Equation 3.6.21 applies with Fy = mAw?, so the amplitude
is
F Aw?
C (w) _ 0 _ maAaw
V(k—mw?)2 + (cw)?  /(k—mw?)? + (cw)? .

Solution (b): As suggested by the hint, we instead maximize C(w)? = %. By

the quotient rule,

4A2m?w3) ((k — mw?)? + 2w?) — (A?m?w*) (2(—2mw) (k — mw?)? + 2c%w)
((k = mw?) + c2w?)?

_ 2A%m2wR (2((k — mw?)? + Fw?) — (2mPw?* — 2kmw? + 2w?))

B ((k — mw?)? + c2w?)?

(Clw?y =

Setting the numerator equal to 0, we have that either w = 0 or

0 = 2((k — mw?)? + 2w?) — 2m*w* — 2kmw? + w?)
= 2m?w* — dkmw? + 2k* + 2%w? — 2mPw* + 2kmw? — 2w?
= (c? — 2km)w? + 2k>.

Therefore, (2km — c?)w? = 2k?, so

o 2Kz k 2km
NV 2km—c2 N m \2km—c2 )

5
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A routine verification shows that C(w) is indeed a maximum here, if ¢ < 2km so that the
square root exists. L]

4.1.2. Transform the differential equation x(*) + 6x” — 3x’ + x = cos 3t into an equivalent
system of first-order differential equations.

Solution: Since we have a fourth derivative of x in the system, we introduce 4 variables:
x1 = x,xp = xy =/, x3 = ¥, and x4 = x}. Then the original DE becomes x} + 6x3 —
3x2 + x1 = cos 3t, so we obtain the system

2

I
RoR R
[6M)

4
—x1 + 3xy — 6x3 + cos 3t n

X
X
x3
xy

4.1.8. Transform the system of differential equations x” + 3x" +4x — 2y =0, y" 4+ 2y’ —
3x + y = cost into an equivalent system of first-order differential equations.

Solution: We introduce the following variables to rewrite the system: x; = x, xp = x; =
x',y1 =y, and y» = y}. Then x5 4+ 3x2 + 4x7 — 2y; = 0 and vy}, + 2y, — 3x1 +y1 = cost, so
we have the following linear system:

/

X1 =X
xh = —4x1 — 3% + 2u1
Y1=12
Yo = 3x1 — Y1 — 2y2 + cos t .
4.1.24. Derive the equations
mlxlll = — (k1 +k2)x1 + kax2, mzxé' = koxq — (kz + k3)xo

from the displacements from equilibrium of the two masses in Figure 4.1.11.

Solution: At a given time t, the net displacements of these three springs are x1, xo — x1,
and —x;p, respectively, so the corresponding forces are F; = —kix1, F, = —kp(xp — x1) =
kox1 — kpxp, and F3 = —k3(—x2) = k3xa. The net forces acting on the masses m; and my
are then F; — F, and F, — F3, so Newton’s law provides the equations

myxy = Fi — B = —kyx1 — koxq + koxp = — (k1 + ko) x1 + koxo,

myxy = F) — F3 = kpx1 — koxp — kaxp = koxy — (ko + k3)x2,

as desired. -



