
MAT 303 Spring 2013 Calculus IV with Applications

Homework #9 Solutions

Problems

• Section 3.6: 4, 8, 12, 18, 28, with modified graphing directions below:

* On #4, omit the graph.

* On #8, graph xsp(t) and F̃(t) = F(t)
mω2 (which has units of length, unlike F(t)/mω).

* On #12, graph both xsp(t) and x(t) = xsp(t) + xtr(t).

• Section 4.1: 2, 8, 24

3.6.4. Express the solution x(t) to the IVP x′′ + 25x = 90 cos 4t, x(0) = 0, x′(0) = 90 as
the sum of two oscillations.

Solution: We first find the complementary solution xc(t) to this nonhomogeneous DE.
Since it is a simple harmonic oscillation system with m = 1 and k = 25, the circular
frequency is ω0 =

√
25 = 5, and

xc(t) = c1 cos 5t + c2 sin 5t.

Since the forcing term has frequency ω = 4, which is not equal to ω0, we expect a steady
state solution xp(t) of the form A cos 4t + B sin 4t. Differentiating twice, we see that x′′p =
−16xp, so we obtain the equation

9A cos 4t + 9B sin 4t = 90 cos 4t.

Therefore, A = 10, and B = 0, so xp(t) = 10 cos 4t. The general solution of this DE is then

x(t) = xc(t) + xp(t) = c1 cos 5t + c2 sin 5t + 10 cos 4t,

and it is to this function that we apply the initial conditions. Since

x′(t) = −5c1 sin 5t + 5c2 cos 5t− 40 sin 4t,

evaluating these equations at t = 0 gives the system c1 + 10 = 0 and 5c2 = 90. Hence,
c2 = 18, and c1 = −10.

Finally, we combine the cos 5t and sin 5t terms into a single function C cos(5t− α). Then
C =

√
(−10)2 + 182 = 2

√
106, and tan α = c2/c1 = 18/(−10) = −9/5. Furthermore, we

must take α so that cos α < 0 to match c1 = −10, so α = π + tan−1(−9/5) ≈ 2.08. Hence,
as the sum of two oscillations,

x(t) = 2
√

106 cos(5t− π + tan−1(9/5)) + 10 cos 4t. �
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3.6.8. Find the steady periodic solution xsp(t) = C cos(ωt − α) of the equation x′′ +
3x′ + 5x = −4 cos 5t. Then graph xsp(t) together with the adjusted forcing function
F̃(t) = F(t)/mω2.

Solution: We determine xsp(t), first assuming it has the general form A cos 5t + B sin 5t.
Then

x′sp(t) = −5A sin 5t + 5B cos 5t, x′′sp(t) = −25A cos 5t− 25B sin 5t,

so plugging this into the DE, we have

x′′ + 3x′ + 5x = −25A cos 5t− 25B sin 5t− 15A sin 5t + 15B cos 5t + 5A cos 5t + 5B sin 5t
= (15B− 20A) cos 5t + (−15A− 20B) sin 5t = −4 cos 5t.

Hence, −15A− 20B = 0 and 15B− 20A = −4, so B = −3
4 A, and −45

4 A− 20A = −4, so
A = 16

125 . Then B = − 12
125 . Consequently,

C =
√

A2 + B2 =

√
122 + 162

125
=

20
125

=
4

125
, tan α =

B
A

= −3
4

.

Taking a choice for α in [0, 2π), α = 2π − tan−1(3/4), so

xsp(t) =
4

25
cos(5t− 2π + tan−1(3/4)).

Plotting this against F̃(t) = − 4
25 cos 5t, we have
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3.6.12. For the differential equation x′′ + 6x′ + 13x = 10 sin 5t, find and plot both the
steady periodic solution xsp(t) = C cos(ωt− α) and the solution x(t) = xtr(t) + xsp(t)
matching the initial conditions x(0) = 0 and x′(0) = 0.

Solution: We first find xsp(t), in the form A cos 5t + B sin 5t. From Problem 3.6.8, we reuse
the derivatives of this function, so that

x′′ + 6x′ + 13x = −25A cos 5t− 25B sin 5t− 30A sin 5t + 30B cos 5t + 13A cos 5t + 13B sin 5t
= (30B− 12A) cos 5t + (−30A− 12B) sin 5t = 10 sin 5t.

Then 30B − 12A = 0 and −30A − 12B = 10, so B = 2
5 A, and then −30A − 24

5 A = 10.
Then A = −25

87 , so B = −10
87 . Computing C and α,

C =
√

A2 + B2 =

√
252 + 102

87
=

5
√

29
87

=
5

3
√

29
, α = π + tan−1 −10

−25
= π + tan−1 2

5
.

Then xsp(t) = 5
3
√

29
cos(5t− π − tan−1 2

5).

Next, we compute the solution x(t) matching the initial conditions. We first find the gen-
eral form of the transient solution: since the homogeneous equation has the characteristic
equation r2 + 6r + 13 = 0, with roots r = −3± 2i, the transient solution is of the form

xtr(t) = c1e−3t cos 2t + c2e−3t sin 2t,

with derivative

x′tr(t) = c1e−3t(−3 cos 2t− 2 sin 2t) + c2e−3t(−3 sin 2t + 2 cos 2t).

Then x(t) = xsp(t) + xtr(t), so, matching the initial conditions,

x(0) = xsp(0) + xtr(0) = −
25
87

+ c1 = 0,

x′(0) = x′sp(0) + x′tr(0) = −
50
87
− 3c1 + 2c2 = 0.

Then c1 = 25
87 , and c2 = 1

2(3c1 +
50
87) = 125

174 . Combining the terms in xtr(t) into a single
trigonometric function C1e−3t cos(2t− β), we then have

C =

√
502 + 1252

174
=

25
6
√

29
, β = tan−1 125

50
= tan−1 5

2
,

so xtr(t) = 25
6
√

29
cos(2t− tan−1 5

2). We plot xsp(t) and x(t) below:
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3.6.18. Consider the mass-spring-dashpot system mx′′ + cx′ + kx = F0 cos ωt with
m = 1, c = 10, k = 650, and F0 = 100 (in mks units). Find and sketch the amplitude
C(ω) of steady periodic oscillations with frequency ω, and find the practical resonance
frequency ω, if it exists.

Solution: From the computations in this section, the amplitude is given by

C(ω) =
F0√

(k−mω2)2 + c2ω2
=

100√
(650−ω2)2 + 100ω2

=
100√

422,500− 1200ω2 + ω4
.

We check whether practical resonance is possible: since c2 = 102 = 100 and 2km =
2(1)(650) = 1300, c2 < 2km, so it is. The frequency maximizing C(ω) is then

ωm =

√
2km− c2

2m2 =

√
1300− 100

2
=
√

600 = 10
√

6 ≈ 24.5.

Below is a plot of C(ω), which clearly has a maximum at that frequency:
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3.6.28. As indicated by the cart-with-flywheel example discussed in this section, an un-
balanced rotating machine part typically results in a force having amplitude propor-
tional to the square of the frequency ω.
(a) Show that the amplitude of the steady periodic solution of the differential equation

mx′′ + cx′ + kx = mAω2 cos ωt

is given by

C(ω) =
mAω2√

(k−mω2)2 + (cω)2
.

(b) Suppose that c2 < 2mk. Show that the maximum amplitude occurs at the frequency
ωm given by

ωm =

√
k
m

(
2km

2km− c2

)
.

Thus the resonance frequency in this case is larger than the natural frequency ω0 =√
k/m. (Suggestion: maximize the square of C.)

Solution (a): We note that, although the forcing term is now mAω2 cos ωt, the amplitude
mAω2 does not vary with t, and so is a constant under differentiation with respect to t.
Then the same formula as in Equation 3.6.21 applies with F0 = mAω2, so the amplitude
is

C(ω) =
F0√

(k−mω2)2 + (cω)2
=

mAω2√
(k−mω2)2 + (cω)2

�

Solution (b): As suggested by the hint, we instead maximize C(ω)2 = A2m2ω2

(k−mω2)2+c2ω2 . By
the quotient rule,

(C(ω)2)′ =
(4A2m2ω3)((k−mω2)2 + c2ω2)− (A2m2ω4)(2(−2mω)(k−mω2)2 + 2c2ω)

((k−mω2) + c2ω2)2

=
2A2m2ω3(2((k−mω2)2 + c2ω2)− (2m2ω4 − 2kmω2 + c2ω2))

((k−mω2)2 + c2ω2)2

Setting the numerator equal to 0, we have that either ω = 0 or

0 = 2((k−mω2)2 + c2ω2)− (2m2ω4 − 2kmω2 + c2ω2)

= 2m2ω4 − 4kmω2 + 2k2 + 2c2ω2 − 2m2ω4 + 2kmω2 − c2ω2

= (c2 − 2km)ω2 + 2k2.

Therefore, (2km− c2)ω2 = 2k2, so

ω =

√
2k2

2km− c2 =

√
k
m

(
2km

2km− c2

)
.
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A routine verification shows that C(ω) is indeed a maximum here, if c2 < 2km so that the
square root exists. �

4.1.2. Transform the differential equation x(4)+ 6x′′− 3x′+ x = cos 3t into an equivalent
system of first-order differential equations.

Solution: Since we have a fourth derivative of x in the system, we introduce 4 variables:
x1 = x, x2 = x′1 = x′, x3 = x′2, and x4 = x′3. Then the original DE becomes x′4 + 6x3 −
3x2 + x1 = cos 3t, so we obtain the system

x′1 = x2

x′2 = x3

x′3 = x4

x′4 = −x1 + 3x2 − 6x3 + cos 3t �

4.1.8. Transform the system of differential equations x′′ + 3x′ + 4x− 2y = 0, y′′ + 2y′ −
3x + y = cos t into an equivalent system of first-order differential equations.

Solution: We introduce the following variables to rewrite the system: x1 = x, x2 = x1 =
x′, y1 = y, and y2 = y′1. Then x′2 + 3x2 + 4x1− 2y1 = 0 and y′2 + 2y2− 3x1 + y1 = cos t, so
we have the following linear system:

x′1 = x2

x′2 = −4x1 − 3x2 + 2y1

y′1 = y2

y′2 = 3x1 − y1 − 2y2 + cos t �

4.1.24. Derive the equations

m1x′′1 = −(k1 + k2)x1 + k2x2, m2x′′2 = k2x1 − (k2 + k3)x2

from the displacements from equilibrium of the two masses in Figure 4.1.11.

Solution: At a given time t, the net displacements of these three springs are x1, x2 − x1,
and −x2, respectively, so the corresponding forces are F1 = −k1x1, F2 = −k2(x2 − x1) =
k2x1 − k2x2, and F3 = −k3(−x2) = k3x2. The net forces acting on the masses m1 and m2
are then F1 − F2 and F2 − F3, so Newton’s law provides the equations

m1x′′1 = F1 − F2 = −k1x1 − k2x1 + k2x2 = −(k1 + k2)x1 + k2x2,

m2x′′2 = F2 − F3 = k2x1 − k2x2 − k3x2 = k2x1 − (k2 + k3)x2,

as desired. �
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