MAT 303 Spring 2013 Calculus IV with Applications

Homework #10 Solutions

Problems

e Section 5.1: 6, 12, 14, 24, 26, 36.

* Section 5.2: 4, 16, 18. On #4 and #16, make only a rough sketch of some solution
curves, including ones along the eigenvector directions.

5.1.6. Let

2 1 1 3 2 4
e L o

(a) Show that A1B = A;B and note that A1 # A,. Thus, the cancellation law does not
hold for matrices; that is, if A1B = A;B and B # 0, it does not follow that A; = A,.

(b) Let A = A; — Ay and use part (a) to show that AB = 0. Thus, the product of two
nonzero matrices may be the zero matrix.

Solution (a): We compute:
w3 0 4- (s 2] (3
| FEE s ML e AR
These products A1B and A;B are then the same matrix. On the other hand,
R REE N

which is not the 0 matrix. n

Solution (b): Since A1B = A3B, A1B — AyB = 0, so by the distributivity of matrix multi-
plication, (A1 — A2)B = 0. Defining A = A} — Ay, AB =0. n

5.1.12. Write the system x’ = 3x — 2y, ¥’ = 2x + y in the form x" = P(t)x + £(¢).

Solution: Letx = B} . Then
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Taking

this system is x’ = P(t)x + £(¢). u

5.1.14. Write the system x’ = tx — e'y + cost, y' = e~'x + t*y — sint in the form X' =
P(t)x + £(t).

Solution: Letx = B} . Then

;[ [ tx—ely+cost] [t €] [x L | cost
Ty | T letx+ 2y —sint| et 2] |y —sint|"

Taking

this system is x’ = P(t)x + £(¢). u

5.1.24. First, verify that x; = ¢ [_ﬂ and x; = ¢ [_ﬂ are solutions to the system

x' = _;L } x. Then use the Wronkian to show that they are linearly independent.

Finally, write the general solution of the system.

Solution: We first check that these are solutions, letting A denote the coefficient matrix in
the system, by evaluating x’ and Ax separately and checking that they are equal:

x; = 3¢ [_ﬂ = [_g}

Xy = 2¢* [_5] et [_ﬂ

Y R R
e Y[ [0 - -4
We then compute their Wronskian W(xy, x7):
Wi, x2) () = det [a(0) xa(t)] =| G | = (-26) = (- = -
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Since this function is not identically 0 (and in fact is never 0), the solutions are linearly
independent. The general solution is then

a®)] - et ] [ e+ e
] =x = ex rem —a | ] va|_ya] =[085
2 -2 [ 2
5.1.26. First, verify that x; = e' [2|,xo = ¢ | 0|, and x3 = > | —2| are solutions to
1 1 1
3 -2 0
thesystemx’ = | -1 3 —2| x. Then use the Wronkian to show that they are linearly
0 -1 3
independent. Finally, write the general solution of the system.

Solution: We first check that these are solutions, letting A denote the coefficient matrix
in the system, by evaluating x' and Ax separately and checking that they are equal. The

derivatives are:
2 -2 —6 2 10
x; =et |2 Xy =3 | 0l =e| 0 xy =5¢ | —2| = ¢ | -10
1 1 3 1 5

Then the matrix-vector products are

[ 3 -2 0] [2 3(2) —2(2) +0(1) 2
AX| —-1 3 =2 (2] =" |-1(2)+3(2) —2(1)| =¢' [2]| =x]
| 0 -1 3] |1 0(2) +1(2) +3(1) 1
3 -2 0] [-2] [ 3(—2) —2(0)+0(1)] [—6
Ax) -1 3 -2 0| =e' |—1(=2)+3(0)—2(1)| =€ | 0 | =%,
| 0 -1 3 1] | 0(—2) +1(0) +3(1) | | 3
3 -2 0] 2] [ 3(2) —2(—2)+0(1)] [ 10
Ax} -1 3 2| [=2| =€ |-1(2) +3(=2) —2(1)| =€ |-10| = x4
| 0 -1 3 1] | 0(2) +1(—=2)+3(1)] | 5
The Wronskian of these three solutions is then
2¢t —2¢3  2¢%
W(t) = [xi(t) xo(t) x3(t)]=1|2e8 0  —2¢
1et 1e3t eSt
2 -2 2
_ Sty 0 2| = (2|72 2 (—2) 2 2 = 16¢”,
1 1 1 1 1 1

so the solutions are linearly independent. Thus, the general solution is

|

] = x(t) = c1x1(t) + caxa(t) + cax3(t) =

2cqet — 20083t + ZC365]

2cqet — 2¢3e0t
c1et + cpe®t + c3edt



MAT 303 Spring 2013 Calculus IV with Applications

0
5.1.36. Given that x; = % { ] Xy = e~ { ] and x; = e ! [ 1] are linearly inde-
—1
011
pendent solutions to the system x’ 1 0 1] x, find the solution matching the initial
110
conditions x1(0) = 10, xp(0) = 12, x3(0) = —1.
10
Solution: Letting b = | 12 |, we then wish to solve the vector equation
-1
1 1 0
C1X1 (0) + CzXz(O) + C3X3(0) =c |1| +c O +c3 1{ =b.
1 -1 -1

We can rewrite this linear system in the ¢; as a matrix-vector equation Ac = b, with the
columns of A coming from the column vectors x;(0):

1 1 0f [ 1 1 0
1 0 1| |cf=1[1 0 1|lc=Db
1 -1 =1 |c3 1 -1 -1

Then row reduction of the augmented matrix [A|b] to [I|c] will produce the solution c:

1 1 010 1 0] 10 1 1 0/ 10
1 0 112 | ~ -1 1] 2 ~ (0 1 —-1| =2
1

-1 —-1]-1 -2 —-1|-11 0 -2 —-1|-11

[ 1
0
0
11 0 10 11 010
~101 -1 -2 | ~]01 —-1|-2
| 0 0 -3|-15 00 1|5
1 1 010 1007
~10103 |~]1010]|3
0 01]5 0 0 1|5

Then c¢; =7, c» = 3, c3 = 5, so the solution is

X(t) = 7X1(t) + 3X2(t) + 5X3(t) n
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5.2.4. Apply the eigenvalue method to find a general solution to the system x| = 4x; +
X, Xy = 6x1 — x3. Sketch some solution curves, including ones along the eigenvector
directions.

Solution: Writing x = il , the system is X’ = Ax, with A = E ﬂ We compute the
L 2 -
eigenvalues and eigenvectors of A. First, det(A — AI) is

6 1 =@-A)(-1-2)-6=212-31-10=(A-5)(A+2).

'4—/\ 1

The roots of this polynomial are the eigenvalues, which we enumerate Ay = 5and A, =
—2. We compute the eigenvectors associated to these eigenvalues from the solutions v =

{a} to (A — AI)v = 0. For A; — 5, this is the linear system

o o il = Do)

Then row reduction of A — 51 yields

-1 1 -1 1
6 —6 0 0|’
representing the only nontrivial equation —a + b = 0. Then a = b, so taking 2 = 1, the
only eigenvector for A; = 5 (up to scalar multiples) is v; = [ﬂ . Repeating this process
for A, = —2, we row reduce

6 1 [6 1
A+21_{6 1}“[0 o]'

so6a+b =0,and b = —6a. Taking a = 1, b = 6, so the only eigenvector is v, = {_H .

Therefore, two linearly independent solutions are

1 _ 1
x1 = eMty; = oo {1 , xp = eMty, = g2 dl

so the general solution is

=[] e[ ]

We plot the solutions in the x;x,-plane for different values of ¢; and ¢y, including along
the eigenvector directions:
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5.2.16. Apply the eigenvalue method to find a general solution to the system x| =
—50x7 + 20x2, x5 = 100x; — 60x,. Sketch some solution curves, including ones along
the eigenvector directions.

—50 20

.o o s S : —
Solution: Writing x = LCJ , the system is X' = Ax, with A = { 100 —60

} . We compute

the eigenvalues and eigenvectors of A. First, det(A — AI) is

’—50—)\ 20

100 60— )J — (=50 — A) (=60 — A) — 2000 = A% + 110A + 1000.

This factors as (A + 10)(A + 100), so the eigenvalues are A; = —10 and A, = —100. We

compute eigenvectors v = {g for each eigenvalue. First, we row reduce A — A4 I:
—40 20 -2 1
A“Ol_{ 100 —50]”{0 0]'

so —2a+b = 0,and b = 2a. Taking a = 1, b = 2, so an eigenvector is v; = B} . Next, for
Ar = —100,

7

50 200 |5 2
A“OOI_‘wo 40‘”‘0 0
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2| . . .
SO Vy = {_ 5} is an eigenvector for A,. Hence, the general solution is

— 1 _ 2
x(t) = cre 1% [2] 4 cpe 100 [_5} .

We plot the solutions in the x;x,-plane for different values of ¢; and ¢y, including along
the eigenvector directions:

N

5.2.18. Apply the eigenvalue method to find a general solution to the system x| = x; +
2xp 4+ 2x3, x5 = 2x1 + 7xp + X3, x5 = 2x1 + xp + 7x3.

X1 122
Solution: Writing x = | x|, the system is X' = Ax, with A = [2 7 1|.We compute the
X3 217
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eigenvalues and eigenvectors of A. First,

1-A 2 2
det(A—AD)=| 2 7-1 1

( 1 7-A 2 7—-A 2 1
=(1-A)((7-A)?=1)—2(14—2A —2) +2(2 — 14+ 2A)
(1 —A)(A% — 141 +48) + (41 — 24) + (41 —24)
= A3+ A%+ 14A% — 141 — 48] + 48 + 8\ — 48
= —A3+15A2 — 540 = —A(A —9)(A —6).
Therefore, we obtain 3 distinct eigenvalues, A; = 0, A, = 6, and A3 = 9. We compute

a
eigenvectors v = {b

Al '_2'2 1 ‘H‘z 7—A'

for each of them. First, for A1, we row reduce A — 0] = A:

1 22 1 2 2 10 4
271l ~|0 3 =3|~|01 -1
217 0 -3 3 00 O

Thena+4c=0and b —c=0,s0a = —4c and b = ¢, but c is free. Taking ¢ = 1, we have
—4
an eigenvector vi = { 1] for Ay = 0. For A, =6,
1

c

A=

2
1
1
Thena =0andb+c=0,s0vy = [

Finally, for A3 =9,

-8 2 2 -4 1 1 -4 0 -2 2 0 -1
A—-9] = 2 -2 1|~ 2 =2 1|~ 2 0 -1 ~|0 1 —1].
2 1 =2 0 3 -3 0 1 -1 00 O

] as an

NN =

Then2a —c = 0and b—c = 0,so b = ¢ = 24a. Then we may take vz = [

eigenvector for A3 = 9. Hence, the general solution is

—4 0 1
x(H)=cy | 1| +ce® | 1| +cze” |2].
1 -1 2 n




