
MAT 303 Spring 2013 Calculus IV with Applications

Homework #10 Solutions

Problems

• Section 5.1: 6, 12, 14, 24, 26, 36.

• Section 5.2: 4, 16, 18. On #4 and #16, make only a rough sketch of some solution
curves, including ones along the eigenvector directions.

5.1.6. Let

A1 =

[
2 1
−3 2

]
, A2 =

[
1 3
−1 −2

]
, B =

[
2 4
1 2

]
.

(a) Show that A1B = A2B and note that A1 6= A2. Thus, the cancellation law does not
hold for matrices; that is, if A1B = A2B and B 6= 0, it does not follow that A1 = A2.

(b) Let A = A1 − A2 and use part (a) to show that AB = 0. Thus, the product of two
nonzero matrices may be the zero matrix.

Solution (a): We compute:

A1B =

[
2 1
−3 2

] [
2 4
1 2

]
=

[
2(2) + 1(1) 2(4) + 1(2)
−3(2) + 2(1) −3(4) + 2(2)

]
=

[
5 10
−4 −8

]
A2B =

[
1 3
−1 −2

] [
2 4
1 2

]
=

[
1(2) + 3(1) 1(4) + 3(2)
−1(2) +−2(1) −1(4)− 2(2)

]
=

[
5 10
−4 −8

]
These products A1B and A2B are then the same matrix. On the other hand,

A = A1 − A2 =

[
2 1
−3 2

]
−
[

1 3
−1 −2

]
=

[
1 2
2 4

]
,

which is not the 0 matrix. �

Solution (b): Since A1B = A2B, A1B− A2B = 0, so by the distributivity of matrix multi-
plication, (A1 − A2)B = 0. Defining A = A1 − A2, AB = 0. �

5.1.12. Write the system x′ = 3x− 2y, y′ = 2x + y in the form x′ = P(t)x + f(t).

Solution: Let x =

[
x
y

]
. Then

x′ =
[

x′

y′

]
=

[
3x− 2y
2x + y

]
=

[
3 −2
2 1

] [
x
y

]
.
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Taking

P(t) =
[

3 −2
2 1

]
, f(t) =

[
0
0

]
,

this system is x′ = P(t)x + f(t). �

5.1.14. Write the system x′ = tx − ety + cos t, y′ = e−tx + t2y − sin t in the form x′ =
P(t)x + f(t).

Solution: Let x =

[
x
y

]
. Then

x′ =
[

x′

y′

]
=

[
tx− ety + cos t

e−tx + t2y− sin t

]
=

[
t et

e−t t2

] [
x
y

]
+

[
cos t
− sin t

]
.

Taking

P(t) =
[

t et

e−t t2

]
, f(t) =

[
cos t
− sin t

]
,

this system is x′ = P(t)x + f(t). �

5.1.24. First, verify that x1 = e3t
[

1
−1

]
and x2 = e2t

[
1
−2

]
are solutions to the system

x′ =
[

4 1
−2 1

]
x. Then use the Wronkian to show that they are linearly independent.

Finally, write the general solution of the system.

Solution: We first check that these are solutions, letting A denote the coefficient matrix in
the system, by evaluating x′ and Ax separately and checking that they are equal:

x′1 = 3e3t
[

1
−1

]
= e3t

[
3
−3

]
x′2 = 2e2t

[
1
−2

]
= e3t

[
2
−4

]
Ax1 = e3t

[
4 1
−2 1

] [
1
−1

]
= e3t

[
4(1) + 1(−1)
−2(1) + 1(−1)

]
= e3t

[
3
−3

]
= x′1

Ax2 = e2t
[

4 1
−2 1

] [
1
−2

]
= e2t

[
4(1) + 1(−2)
−2(1) + 1(−2)

]
= e2t

[
2
−4

]
= x′2

We then compute their Wronskian W(x1, x2):

W(x1, x2)(t) = det
[
x1(t) x2(t)

]
=

∣∣∣∣ e3t e2t

−e3t −2e2t

∣∣∣∣ = e3t(−2e2t)− (−e3t)e2t = −e5t.
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Since this function is not identically 0 (and in fact is never 0), the solutions are linearly
independent. The general solution is then[

x1(t)
x2(t)

]
= x(t) = c1x1(t) + c2x2(t) = c1

[
e3t

−e3t

]
+ c2

[
e2t

−2e3t

]
=

[
c1e3t + c2e2t

−c1e3t − 2c2e2t

]
.

�

5.1.26. First, verify that x1 = et

2
2
1

, x2 = e3t

−2
0
1

, and x3 = e5t

 2
−2

1

 are solutions to

the system x′ =

 3 −2 0
−1 3 −2

0 −1 3

 x. Then use the Wronkian to show that they are linearly

independent. Finally, write the general solution of the system.

Solution: We first check that these are solutions, letting A denote the coefficient matrix
in the system, by evaluating x′ and Ax separately and checking that they are equal. The
derivatives are:

x′1 = et

2
2
1

 x′2 = 3e3t

−2
0
1

 = e3t

−6
0
3

 x′3 = 5e5t

 2
−2

1

 = e5t

 10
−10

5


Then the matrix-vector products are

Ax′1 = et

 3 −2 0
−1 3 −2

0 −1 3

2
2
1

 = et

 3(2)− 2(2) + 0(1)
−1(2) + 3(2)− 2(1)

0(2) + 1(2) + 3(1)

 = et

2
2
1

 = x′1

Ax′2 = et

 3 −2 0
−1 3 −2

0 −1 3

−2
0
1

 = et

 3(−2)− 2(0) + 0(1)
−1(−2) + 3(0)− 2(1)

0(−2) + 1(0) + 3(1)

 = et

−6
0
3

 = x′2

Ax′3 = et

 3 −2 0
−1 3 −2

0 −1 3

 2
−2

1

 = et

 3(2)− 2(−2) + 0(1)
−1(2) + 3(−2)− 2(1)

0(2) + 1(−2) + 3(1)

 = et

 10
−10

5

 = x′3

The Wronskian of these three solutions is then

W(t) =
∣∣x1(t) x2(t) x3(t)

∣∣ =
∣∣∣∣∣∣
2et −2e3t 2e5t

2et 0 −2e5t

1et 1e3t e5t

∣∣∣∣∣∣
= ete3te5t

∣∣∣∣∣∣
2 −2 2
2 0 −2
1 1 1

∣∣∣∣∣∣ = e9t
(
−2
∣∣∣∣−2 2

1 1

∣∣∣∣− (−2)
∣∣∣∣2 −2
1 1

∣∣∣∣) = 16e9t,

so the solutions are linearly independent. Thus, the general solution isx1(t)
x2(t)
x3(t)

 = x(t) = c1x1(t) + c2x2(t) + c3x3(t) =

2c1et − 2c2e3t + 2c3e5t

2c1et − 2c3e5t

c1et + c2e3t + c3e5t

 .
�
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5.1.36. Given that x1 = e2t

1
1
1

, x2 = e−t

 1
0
−1

, and x1 = e−t

 0
1
−1

 are linearly inde-

pendent solutions to the system x′ =

0 1 1
1 0 1
1 1 0

 x, find the solution matching the initial

conditions x1(0) = 10, x2(0) = 12, x3(0) = −1.

Solution: Letting b =

 10
12
−1

, we then wish to solve the vector equation

c1x1(0) + c2x2(0) + c3x3(0) = c1

1
1
1

+ c2

 1
0
−1

+ c3

 0
1
−1

 = b.

We can rewrite this linear system in the ci as a matrix-vector equation Ac = b, with the
columns of A coming from the column vectors xi(0):1 1 0

1 0 1
1 −1 −1

c1
c2
c3

 =

1 1 0
1 0 1
1 −1 −1

 c = b.

Then row reduction of the augmented matrix [A|b] to [I|c] will produce the solution c: 1 1 0 10
1 0 1 12
1 −1 −1 −1

 ∼
 1 1 0 10

0 −1 1 2
0 −2 −1 −11

 ∼
 1 1 0 10

0 1 −1 −2
0 −2 −1 −11


∼

 1 1 0 10
0 1 −1 −2
0 0 −3 −15

 ∼
 1 1 0 10

0 1 −1 −2
0 0 1 5


∼

 1 1 0 10
0 1 0 3
0 0 1 5

 ∼
 1 0 0 7

0 1 0 3
0 0 1 5


Then c1 = 7, c2 = 3, c3 = 5, so the solution is

x(t) = 7x1(t) + 3x2(t) + 5x3(t) �
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5.2.4. Apply the eigenvalue method to find a general solution to the system x′1 = 4x1 +
x2, x′2 = 6x1 − x2. Sketch some solution curves, including ones along the eigenvector
directions.

Solution: Writing x =

[
x1
x2

]
, the system is x′ = Ax, with A =

[
4 1
6 −1

]
. We compute the

eigenvalues and eigenvectors of A. First, det(A− λI) is∣∣∣∣4− λ 1
6 −1− λ

∣∣∣∣ = (4− λ)(−1− λ)− 6 = λ2 − 3λ− 10 = (λ− 5)(λ + 2).

The roots of this polynomial are the eigenvalues, which we enumerate λ1 = 5 and λ2 =
−2. We compute the eigenvectors associated to these eigenvalues from the solutions v =[

a
b

]
to (A− λI)v = 0. For λ1 − 5, this is the linear system

[
−1 1

6 −6

] [
a
b

]
=

[
0
0

]
.

Then row reduction of A− 5I yields[
−1 1

6 −6

]
∼
[
−1 1

0 0

]
,

representing the only nontrivial equation −a + b = 0. Then a = b, so taking a = 1, the

only eigenvector for λ1 = 5 (up to scalar multiples) is v1 =

[
1
1

]
. Repeating this process

for λ2 = −2, we row reduce

A + 2I =
[

6 1
6 1

]
∼
[

6 1
0 0

]
,

so 6a + b = 0, and b = −6a. Taking a = 1, b = 6, so the only eigenvector is v2 =

[
1
−6

]
.

Therefore, two linearly independent solutions are

x1 = eλ1tv1 = e5t
[

1
1

]
, x2 = eλ2tv2 = e−2t

[
1
−6

]
,

so the general solution is

x(t) = c1e5t
[

1
1

]
+ c2e−2t

[
1
−6

]
.

We plot the solutions in the x1x2-plane for different values of c1 and c2, including along
the eigenvector directions:
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-4 -2 2 4

-4

-2

2

4

�

5.2.16. Apply the eigenvalue method to find a general solution to the system x′1 =
−50x1 + 20x2, x′2 = 100x1 − 60x2. Sketch some solution curves, including ones along
the eigenvector directions.

Solution: Writing x =

[
x1
x2

]
, the system is x′ = Ax, with A =

[
−50 20

100 −60

]
. We compute

the eigenvalues and eigenvectors of A. First, det(A− λI) is∣∣∣∣−50− λ 20
100 −60− λ

∣∣∣∣ = (−50− λ)(−60− λ)− 2000 = λ2 + 110λ + 1000.

This factors as (λ + 10)(λ + 100), so the eigenvalues are λ1 = −10 and λ2 = −100. We

compute eigenvectors v =

[
a
b

]
for each eigenvalue. First, we row reduce A− λ1 I:

A + 10I =
[
−40 20

100 −50

]
∼
[
−2 1
0 0

]
,

so −2a + b = 0, and b = 2a. Taking a = 1, b = 2, so an eigenvector is v1 =

[
1
2

]
. Next, for

λ2 = −100,

A + 100I =
∣∣∣∣ 50 20
100 40

∣∣∣∣ ∼ ∣∣∣∣5 2
0 0

∣∣∣∣ ,
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so v2 =

[
2
−5

]
is an eigenvector for λ2. Hence, the general solution is

x(t) = c1e−10t
[

1
2

]
+ c2e−100t

[
2
−5

]
.

We plot the solutions in the x1x2-plane for different values of c1 and c2, including along
the eigenvector directions:

-4 -2 2 4

-4

-2

2

4

�

5.2.18. Apply the eigenvalue method to find a general solution to the system x′1 = x1 +
2x2 + 2x3, x′2 = 2x1 + 7x2 + x3, x′3 = 2x1 + x2 + 7x3.

Solution: Writing x =

x1
x2
x3

, the system is x′ = Ax, with A =

1 2 2
2 7 1
2 1 7

. We compute the
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eigenvalues and eigenvectors of A. First,

det(A− λI) =

∣∣∣∣∣∣
1− λ 2 2

2 7− λ 1
2 1 7− λ

∣∣∣∣∣∣
= (1− λ)

∣∣∣∣7− λ 1
1 7− λ

∣∣∣∣− 2
∣∣∣∣2 1
2 7− λ

∣∣∣∣+ 2
∣∣∣∣2 7− λ
2 1

∣∣∣∣
= (1− λ)((7− λ)2 − 1)− 2(14− 2λ− 2) + 2(2− 14 + 2λ)

= (1− λ)(λ2 − 14λ + 48) + (4λ− 24) + (4λ− 24)

= −λ3 + λ2 + 14λ2 − 14λ− 48λ + 48 + 8λ− 48

= −λ3 + 15λ2 − 54λ = −λ(λ− 9)(λ− 6).

Therefore, we obtain 3 distinct eigenvalues, λ1 = 0, λ2 = 6, and λ3 = 9. We compute

eigenvectors v =

a
b
c

 for each of them. First, for λ1, we row reduce A− 0I = A:

A =

1 2 2
2 7 1
2 1 7

 ∼
1 2 2

0 3 −3
0 −3 3

 ∼
1 0 4

0 1 −1
0 0 0


Then a + 4c = 0 and b− c = 0, so a = −4c and b = c, but c is free. Taking c = 1, we have

an eigenvector v1 =

−4
1
1

 for λ1 = 0. For λ2 = 6,

A− 6I =

−5 2 2
2 1 1
2 1 1

 ∼
−9 0 0

2 1 1
0 0 0

 ∼
1 0 0

0 1 1
0 0 0

 .

Then a = 0 and b + c = 0, so v2 =

 0
1
−1

 is a reasonable choice for an eigenvector for λ2.

Finally, for λ3 = 9,

A− 9I =

−8 2 2
2 −2 1
2 1 −2

 ∼
−4 1 1

2 −2 1
0 3 −3

 ∼
−4 0 −2

2 0 −1
0 1 −1

 ∼
2 0 −1

0 1 −1
0 0 0

 .

Then 2a − c = 0 and b − c = 0, so b = c = 2a. Then we may take v3 =

1
2
2

 as an

eigenvector for λ3 = 9. Hence, the general solution is

x(t) = c1

−4
1
1

+ c2e6t

 0
1
−1

+ c3e9t

1
2
2

 .
�
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