
MAT 303 Spring 2013 Calculus IV with Applications

Homework #11 Solutions

Problems

• Section 5.2: 10, 12, 24, 28. Omit the graphing on problems 10 and 12.

• Section 5.4: 2, 6, 12. Omit the graphing on problems 2 and 6.

• Additional Problem #1.

5.2.10. Apply the eigenvalue method to find a general solution to the system x′1 =
−3x1 − 2x2, x′2 = 9x1 + 3x2.

Solution: We write the system as x′ = Ax, where

x(t) =
[

x1(t)
x2(t)

]
, A =

[
−3 −2

9 3

]
.

We compute the eigenvalues of A from det(A− λI):

det(A− λI) =
∣∣∣∣−3− λ −2

9 3− λ

∣∣∣∣ = λ2 − 9 + 18 = λ2 + 9.

Thus, the eigenvalues are the pure imaginary pair λ = ±3i. Undaunted, we compute
eigenvectors for one of the eigenvalues in this pair, λ = 3i. Row reducing A− 3iI gives[

−3− 3i −2
9 3− 3i

]
∼
[
−3− 3i −2

3 1− i

]
∼
[

3 1− i
0 0

]
,

where we use that (1 + i)
[
3 1− i

]
=
[
3 + 3i 2

]
is the opposite of the top row. Hence,

one choice of complex eigenvector is v =

[
1− i
−3

]
, and one complex-valued solution is

x(t) = eλtv = e3tiv = (cos 3t + i sin 3t)
[

1− i
−3

]
=

[
cos 3t + i sin 3t− i cos 3t + sin 3t

−3 cos 3t− 3i sin 3t

]
We get another linearly independent solution from λ = −3i, but we may take its eigen-
vector to be the complex conjugate of v, and therefore this solution is also the complex
conjugate of x(t) above. Hence, we may isolate the real and complex parts of x(t) as
real-valued, linearly independent solutions to the DE:

x1(t) =
[

cos 3t + sin 3t
−3 cos 3t

]
, x2(t) =

[
sin 3t− cos 3t
−3 sin 3t

]
.

Therefore, the general solution is

x(t) = c1x1(t) + c2x2(t) =
[

c1(cos 3t + sin 3t) + c2(sin 3t− cos 3t)
−3c1 cos 3t− 3c2 sin 3t

]
.

1



MAT 303 Spring 2013 Calculus IV with Applications

Note that the complex eigenvector v is determined up to a complex scalar multiple, the
choice of which may drastically change the linear combinations of sin and cos terms in
the final solution. Nevertheless, all such forms should be equivalent, and are related by
different, invertible linear combinations of the coefficients c1 and c2. �

5.2.12. Apply the eigenvalue method to find a general solution to the system x′1 = x1 −
5x2, x′2 = x1 + 3x2.

Solution: We write the system as x′ = Ax, where

x(t) =
[

x1(t)
x2(t)

]
, A =

[
1 −5
1 3

]
.

We compute the eigenvalues of A from det(A− λI):

det(A− λI) =
∣∣∣∣1− λ −5

1 3− λ

∣∣∣∣ = λ2 − 4λ + 8.

Thus, the eigenvalues are the complex pair λ = 2± 2i. We again compute an eigenvector
for one of these eigenvalues, say λ = 2 + 2i:

A− λI =
[
−1− 2i −5

1 1− 2i

]
∼
[

1 1− 2i
0 0

]

Therefore, one choice of eigenvector is v =

[
1− 2i
−1

]
. Since eλt = e2t(cos 2t + i sin 2t), the

complex solution is

x(t) = e2t(cos 2t + i sin 2t)
[

1− 2i
−1

]
= e2t

[
cos 2t + i sin 2t− 2i cos 2t + 2 sin 2t

− cos 2t− i sin 2t

]
.

Taking linear combinations of the real and imaginary parts gives the general solution as
a linear combination of real-valued functions:

x(t) = c1e2t
[

cos 2t + 2 sin 2t
− cos 2t

]
+ c2e2t

[
sin 2t− 2 cos 2t
− sin 2t

]
.

As above, solutions may vary, but should be equivalent with different choices of linear
combinations of the coefficients c1 and c2. �
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5.2.24. Apply the eigenvalue method to find a general solution to the system x′1 = 2x1 +
x2 − x3, x′2 = −4x1 − 3x2 − x3, x′3 = 4x1 + 4x2 + 2x3.

Solution: We write the system as x′ = Ax, where

x(t) =

x1(t)
x2(t)
x3(t)

 , A =

 2 1 −1
−4 −3 −1

4 4 2

 .

We compute the eigenvalues of A from det(A− λI):

det(A− λI) =

∣∣∣∣∣∣
2− λ 1 −1
−4 −3− λ −1

4 4 2− λ

∣∣∣∣∣∣
= (2− λ)

∣∣∣∣−3− λ −1
4 2− λ

∣∣∣∣− ∣∣∣∣−4 −1
4 2− λ

∣∣∣∣+ (−1)
∣∣∣∣−4 −3− λ

4 4

∣∣∣∣
= (2− λ)(λ2 + λ− 2)− (4λ− 8 + 4)− (−16 + 12 + 4λ)

= −λ3 − λ2 + 2λ + 2λ2 + 2λ− 4− 4λ + 4− 4λ + 4

= −λ3 + λ2 − 4λ3 + 4 = −(λ− 1)(λ2 + 4).

Therefore, the eigenvalues are λ = 1 and the complex pair λ = ±2i. We determine
eigenvectors for λ = 1 and λ = 2i. First,

A− 1I =

 1 1 −1
−4 −4 −1

4 4 1

 ∼
1 1 −1

0 0 −5
0 0 0

 ∼
1 1 0

0 0 1
0 0 0



Thus, we may choose v1 =

 1
−1

0

, so one solution is x1(t) = et

 1
−1

0

. Taking λ = 2i,

A− λI =

 2− 2i 1 −1
−4 −3− 2i −1

4 4 2− 2i

 ∼
0 −1 + 2i −1 + 2i

0 1− 2i 1− 2i
1 1 1

2 −
1
2 i


∼

1 1 1
2 −

1
2 i

0 1 1
0 0 0

 ∼
1 0 −1

2 −
1
2 i

0 1 1
0 0 0



Then, writing v =

a
b
c

, a = (1
2 + 1

2 i)c and b = −c. Taking c = 2, v =

1 + i
−2

2

, so a

complex-valued solution is

x(t) = ei2tv =

cos 2t + i sin 2t + i cos 2t− sin 2t
−2 cos 2t− 2i sin 2t

2 cos 2t + 2i sin 2t

 .
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Therefore, taking its real and imaginary parts, we obtain the general solution

x(t) = c1et

 1
−1
0

+ c2

cos 2t− sin 2t
−2 cos 2t

2 cos 2t

+ c3

sin 2t + cos 2t
−2 sin 2t

2 sin 2t


�

5.2.28. The amounts x1(t) and x2(t) of salt in the two brine tanks of Figure 5.2.7 satisfy
the differential equation

dx1

dt
= −k1x1,

dx2

dt
= k1x1 − k2x2,

where ki = r/Vi for i = 1, 2. First, solve for x1(t) and x2(t) assuming that r =
10 gal/min, V1 = 25 gal, V2 = 40 gal, x1(0) = 15 lb, and x2(0) = 0 lb. Then find
the maximum amount of salt ever in tank 2. Finally, graph x1(t) and x2(t) together.

Solution: With these values for r, V1, and V2, k1 = 2
5 and k2 = 1

4 . Then the system is

x′ = Ax, with A =

[
−2

5 0
2
5 −

1
4

]
. Since the matrix is lower triangular, we immediately

obtain its eigenvalues λ1 = −2
5 and λ2 = −1

4 from the diagonal coefficients. We then find
eigenvectors for these eigenvalues.

A +
2
5

I =
[

0 0
2
5

3
20

]
∼
[

8 3
0 0

]
, A +

1
4

I =
[
− 3

20 0
2
5 0

]
∼
[

1 0
0 0

]
,

so we take v1 =

[
3
−8

]
and v2 =

[
0
1

]
. Hence, the general solution is

x(t) = c1e−2/5t
[

3
−8

]
+ c2e−1/4t

[
0
1

]
.

To solve the initial condition, we find c1 and c2 so that x(0) =

[
15
0

]
. This produces the

augmented system [
3 0 15
−8 1 0

]
∼
[

1 0 15
0 1 40

]
,

so c1 = 5 and c2 = 40. Then x1(t) = 15e−3/20t and x2(t) = 40(e−1/4t − e−2/5t).

We find the maximum value of x2(t). First, we find the t at which that occurs: solving
x′2(t) = 0, we have 40(−1

4 e−1/4t + 2
5 e−2/5t = 0, so 5e−1/4t = 8e−2/5t, and t = 20

3 ln 8
5 .

Plugging this back into x2(t), and simplifying the exponentials with eln 8
5 = 8

5 , we have

x2

(
20
3

ln
8
5

)
= 40

(
e−

5
3 ln 8

5 − e−
8
3 ln 8

5

)
= 40

(
8
5

)−8/3(8
5
− 1
)
=

75 3
√

25
32

≈ 6.85 lb.

Finally, we plot x1(t) and x2(t) below for 0 ≤ t ≤ 10:
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5.4.2. Find the general solution of the system x′ =
[

3 −1
1 1

]
x.

Solution: We first compute the eigenvalues of A =

[
3 −1
1 1

]
:

det(A− λI) =
∣∣∣∣3− λ −1

1 1− λ

∣∣∣∣ = λ2 − 4λ + 4 = (λ− 2)2 = 0.

Then the only eigenvalue is λ = 2, with multiplicity 2. We find any associated eigenvec-
tors:

A− 2I =
[

1 −1
1 −1

]
∼
[

1 −1
0 0

]
,

so the only eigenvector is v1 =

[
1
1

]
. We therefore look for a generalized eigenvector v2 so

that (A− 2I)v2 = v1, setting up the augmented matrix[
1 −1 1
1 −1 1

]
∼
[

1 −1 1
0 0 0

]

Then, writing v2 =

[
a
b

]
, a = b + 1. Taking b = 0, we have v2 =

[
0
1

]
, although other

choices are just as valid, and will differ by a multiple of the genuine eigenvector v1. In
any case, we construct the general solution

x(t) = c1e2t
[

1
1

]
+ c2e2t

(
t
[

1
1

]
+

[
0
1

])
= e2t

[
c1 + c2t

c1 + c2(t + 1)

]
.

�
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5.4.6. Find the general solution of the system x′ =
[

1 −4
4 9

]
x.

Solution: We first compute the eigenvalues of A =

[
1 −4
4 9

]
:

det(A− λI) =
∣∣∣∣1− λ −4

4 9− λ

∣∣∣∣ = λ2 − 10λ + 25 = (λ− 5)2 = 0.

Then the only eigenvalue is λ = 5, with multiplicity 2. We find any associated eigenvec-
tors:

A− 5I =
∣∣∣∣−4 −4

4 4

∣∣∣∣ ∼ ∣∣∣∣1 1
0 0

∣∣∣∣
Then there is only one eigenvector, and we may take it to be v1 =

[
1
−1

]
. Since we have

only one eigenvector, we must find a generalized eigenvector v2 =

[
a
b

]
so that (A −

5I)v2 = v1. Setting this up as an augmented system,[
−4 −4 1

4 4 −1

]
∼
[

1 1 −1
4

0 0 0

]

Then a = −b− 1
4 , so we may take v2 =

[
−1

4
0

]
(again with the same potential v1 indeter-

minacy). Hence, we can write our general solution as

x(t) = c1e5t
[

1
−1

]
+ c2e5t

(
t
[

1
−1

]
+

[
−1

4
0

])
= e5t

[
c1 + c2(t− 1

4)
−c1 − c2t

]
�

5.4.12. Find the general solution of the system x′ =

−1 0 1
0 −1 1
1 −1 −1

 x.

Solution: As above, we first compute the eigenvalues of A =

−1 0 1
0 −1 1
1 −1 −1

:

det(A− λI) =

∣∣∣∣∣∣
−1− λ 0 1

0 −1− λ 1
1 −1 −1− λ

∣∣∣∣∣∣
= (−1− λ)

∣∣∣∣−1− λ 1
−1 −1− λ

∣∣∣∣+ (1)
∣∣∣∣ 0 −1− λ

1 −1

∣∣∣∣
= −(1 + λ)((1 + λ)2 + 1)− (1 + λ) = −(1 + λ)3
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Then the only eigenvalue is λ = −1, with multiplicity 3. We find any associated eigen-
vectors:

A + I =

0 0 1
0 0 1
1 −1 0

 ∼
1 −1 0

0 0 1
0 0 0



Then the only choice (up to scale) for an eigenvector is v1 =

1
1
0

. Hence, we must find

two more generalized eigenvectors forming a chain v1, v2, v3 of length 3. We find v2 so
that (A + I)v2 = v1:  0 0 1 1

0 0 1 1
1 −1 0 0

 ∼
 1 −1 0 0

0 0 1 1
0 0 0 0



Then v2 = a

1
1
0

+

0
0
1

, so we take a = 0 for v2 =

0
0
1

. Next, we find v3 so (A + I)v3 =

v2:  0 0 1 0
0 0 1 0
1 −1 0 1

 ∼
 1 −1 0 0

1 0 1 0
0 0 0 0



Then v3 = a

1
1
0

 +

1
0
0

, so we take a = 0 for v3 =

1
0
0

. Consequently, the general

solution is

x(t) = c1e−t

1
1
0

+ c2e−t

t

1
1
0

+

0
0
1

+ c3e−t

 t2

2

1
1
0

+ t

0
0
1

+

1
0
0


= e−t

c1 + c2t + 1
2 c3t2 + c3

c1 + c2t + 1
2 c3t2

c2 + c3t

 �
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A.P. #1. In problem 4.1.24, we derived the system

m1x′′1 = −(k1 + k2)x1 + k2x2, m2x′′2 = k2x1 − (k2 + k3)x2

to model the displacements x1(t) and x2(t) of the two masses m1 and m2 in the mass-
spring system depicted in Figure 4.1.11. Introducing variables y1 = x′1 and y2 = x′2 and
normalizing, we write this as the first-order system

x1

x2

y1

y2


′

=


0 0 1 0

0 0 0 1

− k1+k2
m1

k2
m1

0 0
k2
m2

− k2+k3
m2

0 0




x1

x2

y1

y2


Assume that m1 = m2 = 1, k1 = k3 = 2, and k2 = 1.
(a) Use the eigenvalue and eigenvector techniques from section 5.2 to find the general

solution of this linear system.

(b) Find the solution matching the initial conditions x1(0) = 3, x2(0) = 1, x′1(0) = 0,
and x′2(0) = 0.

(c) Write the x1(t) and x2(t) components of your solution in the form[
x1(t)
x2(t)

]
= cos(ω1t− α1)v1 + cos(ω2t− α2)v2

for frequencies ωi, phases αi, and amplitude vectors vi. Interpret each of these two
terms with respect to the motion of the masses in the system.

Solution (a): With m1 = m2 = 1, k1 = k3 = 2, and k2 = 1, the matrix A above is
0 0 1 0
0 0 0 1
−3 1 0 0

1 −3 0 0


We find its eigenvalues, computing det(A− λI) by row expansion:

det(A− λI) =

∣∣∣∣∣∣∣∣
−λ 0 1 0

0 −λ 0 1
−3 1 −λ 0

1 −3 0 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣
−λ 0 1

1 −λ 0
−3 0 −λ

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 −λ 1
−3 1 0

1 −3 −λ

∣∣∣∣∣∣
= (−λ)(−λ)

∣∣∣∣−λ 1
−3 −λ

∣∣∣∣+ λ

∣∣∣∣−3 0
1 −λ

∣∣∣∣+ λ

∣∣∣∣−3 1
1 −3

∣∣∣∣
= λ2(λ2 + 3) + 3λ + 8 = λ4 + 6λ2 + 8.

8



MAT 303 Spring 2013 Calculus IV with Applications

This factors as (λ2 + 4)(λ2 + 2), so the eigenvalues are the pure-imaginary pairs λ = ±2i
and λ = ±i

√
2.

We compute the eigenvectors for λ1 = −2i first. Row reducing A + 2iI,

A + 2iI =


2i 0 1 0
0 2i 0 1
−3 1 2i 0

1 −3 0 2i

 ∼


2 0 −i 0
0 2 0 −i
0 1 1

2 i 0
0 −3 0 3

2 i



∼


2 0 −i 0
0 2 0 −i
0 0 1

2 i 1
2 i

0 0 0 0

 ∼


2 0 0 i
0 2 0 −i
0 0 1 1
0 0 0 0


Then 2a + id = 0, 2b− id = 0, and c + d = 0; taking d = −2, a = i, b = −i, and c = 2, so
a choice for the eigenvector is v1 =

[
i −i 2 −2

]T. Hence, the complex solution is

e−2itv1 = (cos 2t− i sin 2t)


i
−i
2
−2

 =


sin 2t + i cos 2t
− sin 2t− i cos 2t
2 cos 2t− 2i sin 2t
−2 cos 2t + 2i sin 2t

 ,

so taking its real and imaginary parts gives two real solutions,

x1(t) =


sin 2t
− sin 2t

2 cos 2t
−2 cos 2t

 , x2(t) =


cos 2t
− cos 2t
−2 sin 2t

2 sin 2t

 .

We repeat this process for λ2 = −i
√

2:

A + i
√

2I =


i
√

2 0 1 0
0 i
√

2 0 1
−3 1 i

√
2 0

1 −3 0 i
√

2

 ∼


2 0 −i
√

2 0
0 2 0 −i

√
2

0 0 −i
√

2
2 i

√
2

2
0 0 i

√
2

2 −i
√

2
2



∼


2 0 −i

√
2 0

0 2 0 −i
√

2
0 0 1 −1
0 0 0 0

 ∼


2 0 0 −i
√

2
0 2 0 −i

√
2

0 0 1 −1
0 0 0 0

 ∼

√

2 0 0 −i
0
√

2 0 −i
0 0 1 −1
0 0 0 0


Then

√
2a = id,

√
2b = id, and c = d, so taking d =

√
2, we have the eigenvector

v2 =
[
i i

√
2
√

2
]T

, and hence the complex solution

e−i
√

2tv1 = (cos
√

2t− i sin
√

2t)


i
i√
2√
2

 =


sin
√

2t + i cos
√

2t
sin
√

2t + i cos
√

2t√
2 cos 2t− i

√
2 sin 2t√

2 cos 2t− i
√

2 sin 2t

 .
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Its real and imaginary parts give the remaining two real solutions:

x3(t) =


sin
√

2t
sin
√

2t√
2 cos 2t√
2 cos 2t

 , x4(t) =


cos
√

2t
cos
√

2t
−
√

2 sin 2t
−
√

2 sin 2t

 .

The general solution is then

x(t) = c1


sin 2t
− sin 2t

2 cos 2t
−2 cos 2t

+ c2


cos 2t
− cos 2t
−2 sin 2t

2 sin 2t

+ c3


sin
√

2t
sin
√

2t√
2 cos 2t√
2 cos 2t

+ c4


cos
√

2t
cos
√

2t
−
√

2 sin 2t
−
√

2 sin 2t

 .

�

Solution (b): The initial condition is x0 =
[
3 1 0 0

]T, which we equate to x(0):

c1


0
0
2
−2

+ c2


1
−1

0
0

+ c3


0
0√
2√
2

+ c4


1
1
0
0

 =


3
1
0
0

 .

Solving this linear system, c1 = c3 = 0, c2 = 1, and c4 = 2, so

x(t) =


cos 2t
− cos 2t
−2 sin 2t

2 sin 2t

+ 2


cos
√

2t
cos
√

2t
−
√

2 sin 2t
−
√

2 sin 2t


�

Solution (c): Writing the xi(t) components from above in their own vector, we have[
x1(t)
x2(t)

]
= 2

[
cos
√

2t
cos
√

2t

]
+

[
cos 2t
− cos 2t

]
= cos

√
2t
[

2
2

]
+ cos 2t

[
1
−1

]
.

This expresses the displacements as the sum of two different vibrational modes: the first
term represents the motion of the two masses in the same direction at the lower frequency√

2 rad/s, and the second their motion in opposite directions at the higher frequency
2 rad/s. �
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