
MAT 303 Spring 2013 Calculus IV with Applications

Homework #12 Solutions

Problems

• Section 5.5: 2, 4, 12, 22, 28

• Section 5.6: 2, 8, 24

5.5.2. Find a fundamental matrix for the system x′ =
[

2 −1
−4 2

]
x, and apply x(t) =

Φ(t)Φ(0)−1x0 to find a solution matching the initial condition x(0) =
[

2
−1

]
.

Solution: We first find the eigenvalues and eigenvectors of A =

[
2 −1
−4 2

]
. To find the

eigenvalues, we solve det(A− λI) = 0 for λ:

det(A− λI) =
[

2− λ −1
−4 2− λ

]
= λ2 − 4λ = λ(λ− 4) = 0.

Then λ1 = 0 and λ2 = 4 are the distinct, real eigenvalues of A. To find eigenvectors, we
row-reduce A− λI for each λi:

A− 0I =
[

2 −1
−4 2

]
∼
[

2 −1
0 0

]
A− 4I =

[
−2 −1
−4 −2

]
∼
[

2 1
0 0

]

Then we may take eigenvectors v1 =

[
1
2

]
and v2 =

[
1
−2

]
, so we build a fundamental

matrix from the solutions eλitvi:

Φ(t) =
[
eλ1tv1 eλ2tv2

]
=

[
1 e4t

2 −2e4t

]

Then Φ(0) =

[
1 1
2 −2

]
, so Φ(0)−1 =

1
−4

[
−2 −1

−2 1

]
=

[
1
2

1
4

1
2 −

1
4

]
. Then, using x(t) =

Φ(t)Φ(0)−1x(0),

x(t) =

[
1 e4t

2 −2e4t

] [
1
2

1
4

1
2 −

1
4

] [
2

−1

]
=

[
1 e4t

2 −2e4t

] [
3
4
5
4

]
=

[
3
4 +

5
4 e4t

3
2 −

5
2 e4t

]
.
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5.5.4. Find a fundamental matrix for the system x′ =
[

3 −1
1 1

]
x, and apply x(t) =

Φ(t)Φ(0)−1x0 to find a solution matching the initial condition x(0) =
[

1
0

]
.

Solution: We first find the eigenvalues and eigenvectors of A =

[
3 −1
1 1

]
. To find the

eigenvalues, we solve det(A− λI) = 0 for λ:

det(A− λI) =
[

3− λ −1
1 1− λ

]
= λ2 − 4λ + 4 = (λ− 2)2 = 0.

Then λ1 = 2 is the only eigenvalue of A, with multiplicity. To find an eigenvector, we
row-reduce A− 2I:

A− 2I =
[

1 −1
1 −1

]
∼
[

1 −1
0 0

]
Then there is only one linearly independent eigenvector for λ = 2, which we may take to

be v1 =

[
1
1

]
. To build two linearly independent solutions to the system of DEs, we find a

generalized eigenvector v2 so that (A− 2I)v2 = v1. Row-reducing [A− 2I | v1], this is[
1 −1 1
1 −1 1

]
∼
[

1 −1 1
0 0 0

]

Then we may take v2 =

[
1
0

]
, so two linearly independent solution to the system are e2tv1

and e2t(tv1 + v2). We arrange these into a fundamental matrix:

Φ(t) =
[
e2tv1 e2t(tv1 + v2)

]
= e2t

[
1 1 + t
1 t

]
.

Then Φ(0) =

[
1 1
1 0

]
, so Φ(0)−1 =

1
−1

[
0 −1
−1 1

]
=

[
0 1
1 −1

]
. Then, using x(t) =

Φ(t)Φ(0)−1x(0),

x(t) = e2t
[

1 1 + t
1 t

] [
0 1
1 −1

] [
1
0

]
= e2t

[
1 1 + t
1 t

] [
0
1

]
= e2t

[
1 + t

t

]
.
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5.5.12. Compute the matrix exponential eAt for the system x′ = Ax with A =

[
5 −4
3 −2

]
.

Solution: Regrettably, A is not of the form where we may write down eAt fairly directly,
so we instead compute it as Φ(t)Φ(0)−1 for some fundamental matrix Φ(t). Finding the
eigenvalues with det(A− λI) = 0,∣∣∣∣5− λ −4

3 −2− λ

∣∣∣∣ = λ2 − 3λ + 2 = (λ− 2)(λ− 1) = 0

Then λ1 = 2 and λ2 = 1 are the eigenvalues of A, and from

A− 2I =
[

3 −4
3 −4

]
∼
[

3 −4
0 0

]
A− I =

[
4 −4
3 −3

]
∼
[

1 −1
0 0

]

we acquire eigenvectors v1 =

[
4
3

]
and v2 =

[
1
1

]
. Then a fundamental matrix Φ(t) is

Φ(t) =
[
eλ1tv1 eλ2tv2

]
=

[
4e2t et

3e2t et

]

Then Φ(0) =
[

4 1
3 1

]
, so Φ(0)−1 =

[
1 −1
−3 4

]
, and

eAt =

[
4e2t et

3e2t et

] [
1 −1
−3 4

]
=

[
4e2t − 3et −4e2t + 4et

3e2t − 3et −3e2t + 4et

]
.

�

5.5.22. Show that the matrix A =

[
6 4
−9 −6

]
is nilpotent, and use this to compute the

matrix exponential eAt.

Solution: We compute powers of A:

A2 = AA =

[
6 4
−9 −6

] [
6 4
−9 −6

]
=

[
0 0
0 0

]
.

Then the power series eAt = ∑∞
n=0

1
n! Antn stops after the n = 1 term, so

eAt = I + At =
[

1 + 6t 4t
−9t 1− 6t

]
.
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5.5.28. Use that A =

 5 0 0
10 5 0
20 30 5

 is the sum of a nilpotent matrix and a multiple of the

identity matrix to solve the IVP x′ = Ax, x(0) =

40
50
60

.

Solution: Let B =

 0 0 0
10 0 0
20 30 0

, so that A = 5I + B. We show B is nilpotent:

B2 = BB =

 0 0 0
10 0 0
20 30 0

 0 0 0
10 0 0
20 30 0

 =

 0 0 0
0 0 0

300 0 0

 ,

so by the placement of the 0s it is clear that B3 = B2B = 0. Then

eBt = I + Bt +
1
2

B2t2 =

 1 0 0
10t 1 0

150t2 + 20t 30 1


eAt = e7IteBt = e7t

 1 0 0
10t 1 0

150t2 + 20t 30 1


Then the solution to the IVP is x(t) = eAtx(0):

x(t) = e7t

 1 0 0
10t 1 0

150t2 + 20t 30 1

40
50
60

 = e7t

 40
400t + 50

6000t2 + 2300t + 60


�

5.6.2. Use the method of undetermined coefficients to find a particular solution to the
system x′ = 2x + 3y + 5, y′ = 2x + y− 2t.

Solution: We write this system as x′ = Ax + f(t), where A =

[
2 3
2 1

]
and f(t) =

[
5
−2t

]
.

To make sure there are no overlaps with f(t), we compute the eigenvalues of A:

det A− λI =
∣∣∣∣2− λ 3

2 1− λ

∣∣∣∣ = λ2 − 3λ− 4 = (λ + 1)(λ− 4)

Then the eigenvalues are λ = −1 and λ = 4. Since the eigenvalue associated to the
functions 5 and −2t in the forcing function is 0, there is no overlap, and we guess xp =
a + tb as a particular solution to the system. Before we plug this guess into the system,
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we write it as x′ − Ax = f(t), so that the x-terms are all collected together. Then x′p = b,
so, plugging this in and separating the constant and the t terms,

x′ − Ax =

[
b1
b2

]
−
[

2a1 + 3a2
2a1 + a2

]
− t
[

2b1 + 3b2
2b1 + b2

]
=

[
−2a1 − 3a2 + b1
−2a1 − a2 + b2

]
+ t
[
−2b1 − 3b2
−2b1 − b2

]
=

[
5
0

]
+ t
[

0
−2

]
Fortunately, the t-terms involve only the variables b1 and b2 from the vector b, so we may
solve for them independently of the a-vector. Multiplying the equations by −1, we have
2b1 + 3b2 = 0 and 2b1 + b2 = 2, which we solve with augmented matrix reduction:[

2 3 0
2 1 2

]
∼
[

2 3 0
0 −2 2

]
∼
[

2 0 3
0 1 −1

]
∼
[

1 0 3
2

0 1 −1

]
So b1 = 3

2 , and b2 = −1. Plugging these solutions into the constant-vector equations,
−2a1 − 3a2 +

3
2 = 5 and −2a1 − a2 − 1 = 0, which we solve:[

2 3 −7
2

2 1 −1

]
∼
[

2 3 −7
2

0 −2 5
2

]
∼
[

2 0 1
4

0 1 −5
4

]
∼
[

1 0 1
8

0 1 −5
4

]

Then a1 = 1
8 and a2 = −5

4 , so xp =

[
1
8 +

3
2 t

−5
4 − t

]
. �

5.6.8. Use the method of undetermined coefficients to find a particular solution to the
system x′ = x− 5y + 2 sin t, y′ = x− y− 3 cos t.

Solution: We write this system as x′ = Ax + f(t), where A =

[
1 −5
1 −1

]
and f(t) =[

2 sin t
−3 cos t

]
. To make sure there are no overlaps with f(t), we compute the eigenvalues

of A:

det A− λI =
∣∣∣∣1− λ −5

1 −1− λ

∣∣∣∣ = λ2 + 4.

Then the eigenvalues are the pure imaginary pair λ = ±2i. Since the sin t and cos t
correspond to the imaginary pair ±i, there is no overlap, and we guess a solution of the
form xp = a cos t + b sin t. Again writing the system as x′ − Ax = f(t), we plug in this
guess and collect the sin t and cos t terms:

x′ − Ax = − sin t
[

a1
a2

]
+ cos t

[
b1
b2

]
− cos t

[
a1 − 5a2
a1 − a2

]
− sin t

[
b1 − 5b2
b1 − b2

]
= cos t

[
−a1 + 5a2 + b1
−a1 + a2 + b2

]
+ sin t

[
−a1 − b1 + 5b2
−a2 − b1 + b2

]
= cos t

[
0
−3

]
+ sin t

[
2
0

]
.
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Separating the sin t and cos t components, we obtain a system of 4 equations in a1, a2, b1,
and b2, which we solve with augmented row reduction:

−1 0 −1 5 2

0 −1 −1 1 0

−1 5 1 0 0

−1 1 0 1 −3

 ∼


1 0 1 −5 −2

0 1 1 −1 0

0 5 2 −5 −2

0 1 1 −4 −5

 ∼


1 0 1 −5 −2

0 1 1 −1 0

0 0 −3 0 −2

0 0 0 −3 −5



∼


1 0 1 −5 −2

0 1 1 −1 0

0 0 1 0 2
3

0 0 0 1 5
3

 ∼


1 0 0 0 17
3

0 1 0 0 1

0 0 1 0 2
3

0 0 0 1 5
3


Then xp = cos t

[
17
3

1

]
+ sin t

[
2
3
5
3

]
. �

5.6.24. Use the method of variation of parameters to solve the IVP x′ = Ax + f(t)

with A =

[
3 −1
9 −3

]
, f(t) =

[
0

t−2

]
, and initial condition x(1) =

[
3
7

]
, using that

eAt =

[
1 + 3t −t

9t 1− 3t

]
.

Solution: We first find a particular solution xp(t) to the nonhomogeneous system using
variation of parameters. By the formula, xp(t) = eAt ∫ e−Atf(t) dt, which we evaluate
from the inside out:

e−Atf(t) =
[

1− 3t t
−9t 1 + 3t

] [
0

t−2

]
=

[
t−1

t−2 + 3t−1

]
∫

e−Atf(t) dt =
∫ [

t−1

t−2 + 3t−1

]
dt =

[
ln t

−t−1 + 3 ln t

]
eAt

∫
e−Atf(t) dt =

[
1 + 3t −t

9t 1− 3t

] [
ln t

−t−1 + 3 ln t

]
=

[
1 + ln t

3− t−1 + 3 ln t

]
We now solve for solution matching the initial condition, using that x(t) = eAtc + xp(t).
Then at t = 1,

x(1) =
[

3
7

]
=

[
1 + 3t −t

9t 1− 3t

]
t=1

c + xp(1) =
[

4 −1
9 −2

]
c +

[
1
2

]
Then

[
4 −1
9 −2

]
c =

[
2
5

]
, so

c =

[
4 −1
9 −2

]−1 [2
5

]
=

[
−2 1
−9 4

] [
2
5

]
=

[
1
2

]
.
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Finally, the solution is

x(t) = eAtc + xp(t) =
[

1 + 3t −t
9t 1− 3t

] [
1
2

]
+

[
1 + ln t

3− t−1 + 3 ln t

]
=

[
1 + t

2 + 3t

]
+

[
1 + ln t

3− t−1 + 3 ln t

]
=

[
2 + t + ln t

5 + 3t− t−1 + 3 ln t

]
�
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