
MAT 303 Spring 2013 Calculus IV with Applications

Solutions to Final Practice Problems
1. Find the general solution, possibly implicit, to each of the following DEs or systems of
DEs. If an initial condition is given, also find the particular solution matching it.
(a) x′ = 3x + 4y, y′ = 3x + 2y, x(0) = 1, y(0) = 1

Solution: We write this system as x′ = Ax, with A =

[
3 4
3 2

]
, and compute the eigen-

values of A:

det(A− λI) =
∣∣∣∣3− λ 4

3 2− λ

∣∣∣∣ = λ2 − 5λ− 6 = (λ− 6)(λ + 1).

Therefore, the eigenvalues are λ1 = 6 and λ2 = −1. We then find eigenvectors for
each eigenvalue. For λ1 = 6, we row reduce A− 6I:

A− 6I =
[
−3 4

3 −4

]
∼
[

3 −4
0 0

]
.

Then an eigenvector for λ1 = 6 is v1 =

[
4
3

]
. Repeating this process for λ2 = −1, we

row reduce

A + I =
[

4 4
3 3

]
∼
[

1 1
0 0

]
,

so v2 =

[
1
−1

]
is a choice of eigenvector for λ2 = −1. Hence, the general solution is

x(t) = c1e6t
[

4
3

]
+ c2e−t

[
1
−1

]
.

We also match the initial condition, which we write in vector format as x(0) =

[
1
1

]
.

Then

c1

[
4
3

]
+ c2

[
1
−1

]
=

[
1
1

]
,

which we solve by converting into augmented matrix format and row reducing:[
4 1 1

3 −1 1

]
∼
[

4 1 1

0 −7 1

]
∼
[

4 0 8
7

0 1 −1
7

]
∼
[

1 0 2
7

0 1 −1
7

]

Then the solution is

x(t) =
2
7

e6t
[

4
3

]
− 1

7
e−t
[

1
−1

]
=

1
7

[
8e6t − e−t

6e6t + e−t

]
.
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(b)
(

x3 +
y
x

)
dx + (y2 + ln x) dy = 0

Solution: Because of the format of the DE and the nonlinearity, we check this DE for

exactness, with M(x, y) = x3 +
y
x

and N(x, y) = y2 + ln x. Then My =
1
x

, and Nx =
1
x

,
so the DE is exact. We integrate M with respect to x:

F(x, y) =
∫

M dx =
∫

x3 +
y
x

dx =
1
4

x4 + y ln x + g(y),

where g(y) is an unknown function of y alone. Differentiating with respect to y and
comparing the result to N, we have

Fy(x, y) = ln x + g′(y) = y2 + ln x,

so g′(y) = y2. Hence, one antiderivative is g(y) = 1
3 y3, so the solutions are defined

implicitly by

F(x, y) =
1
4

x4 + y ln x +
1
3

y3 = C.

(c) x′1 = −x1 − 3x2 + 2x3, x′2 = x1 + 2x2 − x3, x′3 = −x1 − 2x2 + 2x3

Solution: We write this system as x′ = Ax, with A =

−1 −3 2
1 2 −1
−1 −2 2

, and compute

the eigenvalues of A:

det(A− λI) =

∣∣∣∣∣∣
−1− λ −3 2

1 2− λ −1
−1 −2 2− λ

∣∣∣∣∣∣
= −(1 + λ)

∣∣∣∣ 2− λ −1
−2 2− λ

∣∣∣∣+ 3
∣∣∣∣ 1 −1
−1 2− λ

∣∣∣∣+ 2
∣∣∣∣ 1 2− λ
−1 −2

∣∣∣∣
= −(1 + λ)((2− λ)2 − 2) + 3(2− λ− 1) + 2(−2 + 2− λ)

= −(1 + λ)(λ2 − 4λ + 2) + 3− 3λ− 2λ

= −(λ3 − 4λ2 + 2λ + λ2 − 4λ + 2) + 3− 5λ

= −λ3 + 3λ2 − 3λ + 1 = −(λ− 1)3.

Then the only eigenvalue is λ = 1, with multiplicity 3. We compute its eigenvectors

v =

a
b
c

 by row reducing A− I:

A− I =

−2 −3 2
1 1 −1
−1 −2 1

 ∼
1 1 −1

0 −1 0
0 −1 0

 ∼
1 0 −1

0 1 0
0 0 0
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Then a = c and b = 0, so v1 =

1
0
1

 is the only linearly independent eigenvector for

this eigenvalue. Therefore, we must look for two more generalized eigenvectors in a
tower over this one. For the first of those, we seek a vector v2 so that (A− I)v2 = v1.
To solve this, we row reduce the augmented system [A− I | v1]: −2 −3 2 1

1 1 −1 0
−1 −2 1 1

 ∼
 1 1 −1 0

0 −1 0 1
0 −1 0 1

 ∼
 1 0 −1 1

0 1 0 −1
0 0 0 0



Then we may take v2 =

 1
−1

0

 (although choices differening by a multiple of v1 are

also valid). Finally, we must also find a vector v3 so that (A − I)v3 = v2. To solve
this, we row reduce the augmented system [A− I | v2]: −2 −3 2 1

1 1 −1 −1
−1 −2 1 0

 ∼
 1 1 −1 −1

0 −1 0 −1
0 −1 0 −1

 ∼
 1 0 −1 −2

0 1 0 1
0 0 0 0



Then we may take v3 =

−2
1
0

, again up to a multiple of v1. Hence, the final solution

is of the form

x(t) = c1et

1
0
1

+ c2et

t

1
0
1

+

 1
−1

0

+ c3et

 t2

2

1
0
1

+ t

 1
−1

0

+

−2
1
0

 .

(d) (1 + x)y dx + x dy = 0
Solution: As in part (b), we check this DE for exactness: M(x, y) = (1 + x)y and
N(x, y) = x, so My = 1 + x while Nx = 1. Since these are not equal, the DE is not
exact. We instead isolate y′ = dy

dx as

y′ = − (1 + x)y
x

= −
(

1 +
1
x

)
y,

so the DE is therefore separable. Separating and integrating, we have∫ 1
y

dy =
∫

1 +
1
x

dx, ⇒ ln |y| = −x− ln |x|+ C.

Then y = Ce−x−ln |x| = Ce−x

x . We note that y = 0 is a solution that we excluded after
the separation, but it is reincorporated into this general solution with C = 0.
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(e) x′ = −x + 2y + t, y′ = −x− 4y + 1 + t
Solution: We see that this is a nonhomogeneous linear system x′ = Ax + f(t), with

A =

[
−1 2
−1 −4

]
and f(t) =

[
t

1 + t

]
. We first find the complementary solution from

the homogeneous equation, starting with the eigenvalues of A:

det(A− λI) =
[
−1− λ 2
−1 −4− λ

]
= λ2 + 5λ + 6 = (λ + 2)(λ + 3).

Then the eigenvalues are λ1 = −2 and λ2 = −3. We find eigenvectors for them: for
λ1 = −2, we row reduce A + 2I:

A + 2I =
[

1 2
−1 −2

]
∼
[

1 2
0 0

]
,

so v1 =

[
2
−1

]
. Similarly, row reducing A + 3I,

A + 3I =
[

2 2
−1 −1

]
∼
[

1 1
0 0

]
,

so v2 =

[
1
−1

]
. Hence, the complementary solution is

xc(t) = c1e−2t
[

2
−1

]
+ c2e−3t

[
1
−1

]
.

We now find a particular solution xp(t) to match f(t). Rearranging the DE, it must

therefore satisfy x′ − Ax = f(t). Since f(t) =

[
0
1

]
+ t
[

1
1

]
, we take x(t) = a + tb for

unknown constant vectors a and b. Then x′ = b, so the DE becomes b− Aa− Abt =
f(t). Separating the t terms from the constants, we have the equations

−Ab =

[
1
1

]
, b− Aa =

[
0
1

]
.

The first equation involves only b, so we solve it:

A−1 =
1
6

[
−4 −2

1 −1

]
, b = −A−1

[
1
1

]
=

1
6

[
4 2
−1 1

] [
1
1

]
=

[
1
0

]
.

Next, Aa = b−
[

0
1

]
=

[
1
−1

]
, so

a = A−1
[
−1

1

]
=

1
6

[
−4 −2

1 −1

] [
1
−1

]
=

1
6

[
−2

2

]
=

[
−1

3
1
3

]
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Hence, xp =

[
t− 1

3
1
3

]
, so the general solution to the nonhomogeneous equation is

xc(t) =
[

t− 1
3

1
3

]
+ c1e−2t

[
2
−1

]
+ c2e−3t

[
1
−1

]
.

(f) y′ = (1− y) cos x, y(π) = 2
Solution: Distributing the cos x term on the right-hand side, we see that this equation
is linear: y′ + y cos x = cos x. Multiplying through by the integrating factor µ(x) =

e
∫

cos x dx = esin x, this equation is

(esin xy)′ = (cos x)esin x ⇒ esin xy =
∫
(cos x)esin x dx = esin x + C.

Then y = 1 + Ce− sin x. Applying the initial condition y(π) = 2, 2 = 1 + Ce0 = C + 1,
so C = 1, and y = 1 + e− sin x.

Alternately, the equation is also separable, as 1
1−y y′ = cos x. Integrating,− ln |1− y| =

sin x + C, so, isolating y, we have y = 1 + Ce− sin x.

2. Brine circulates at a rate of r = 10 gallons per minute between 3 tanks, from tank 1
to tank 2 to tank 3 and back to tank 1. The tanks have volumes V1 = 20, V2 = 50, and
V3 = 20 gallons, and at time t0 tank 1 contains x0 = 18 pounds of salt, while the other
tanks contain none.
(a) Write a system of differential equations that governs the amounts of salt xi(t) in each

tank.
Solution: The amount of salt per unit time transferred from one tank to another is the
rate r times the concentration xi/Vi, so adding up these quantities with the appropri-
ate signs will give us the net rates of change of the xi. Then

x′1 = − r
V1

x1 +
r

V3
x3 = −1

2
x1 +

1
2

x3,

x′2 =
r

V1
x1 −

r
V2

x2 =
1
2

x1 −
1
5

x2,

x′3 =
r

V2
x2 −

r
V3

x3 =
1
5

x2 −
1
2

x3.

(b) Find the general solution to this system of equations.
Solution: We write this system in the form x′ = Ax, where

A =


−1

2 0 1
2

1
2 −

1
5 0

0 1
5 −

1
2
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We compute the eigenvalues of A:

det(A− λI) =


−1

2 − λ 0 1
2

1
2 −1

5 − λ 0

0 1
5 −1

2 − λ


= −(1

2
+ λ)2(

1
5
+ λ) + (

1
2
)2 1

5
= − 1

20
λ(20λ2 + 24λ + 9).

Finding the roots of this quadratic, we have λ =
−24±
√

242−4(20)(9)
40 = −3

5 ±
3

10 i, in
addition to the λ = 0 from the λ factor. We find eigenvectors for λ1 = 0 and λ2 =
−3

5 −
3
10 i. Row reducing A− 0I = A,

A =


−1

2 0 1
2

1
2 −

1
5 0

0 1
5 −

1
2

 ∼


1 0 −1

5 −2 0

0 2 −5

 ∼


1 0 −1

0 2 −5

0 0 0


Then letting v =

[
a b c

]T, a = c and 2b = 5c, so let c = 2; then v =
[
2 5 2

]T.

Row reducing A + (3
5 +

3
10 i)I,

A− λ2 I =


1

10 +
3

10 i 0 1
2

1
2

2
5 +

3
10 i 0

0 1
5

1
10 +

3
10 i

 ∼


1 + 3i 0 5

5 4 + 3i 0

0 2 1 + 3i



∼


2 0 1− 3i

10 8 + 6i 0

0 2 1 + 3i

 ∼


2 0 1− 3i

10 0 5− 15i

0 2 1 + 3i

 ∼


2 0 1− 3i

0 2 1 + 3i

0 0 0



Then 2a = (−1+ 3i)c and 2b = (−1− 3i)c, so letting c = −2, v2 =

1− 3i
1 + 3i
−2

. We then

obtain 2 lineearly independent solutions from the real and imaginary parts of eλ2tv2:

eλtv2 = e−3/5t(cos
3

10
t− i sin

3
10

t)


1− 3i

1 + 3i

−2



= e−3/5t


cos 3

10 t− 3 sin 3
10 t

cos 3
10 t + 3 sin 3

10 t

−2 cos 3
10 t

+ ie−3/5t


− sin 3

10 t− 3 cos 3
10 t

− sin 3
10 t + 3 cos 3

10 t

2 sin 3
10 t

 .
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Therefore, the general solution is

x(t) = c1


2

5

2

+ c2e−3/5t


cos 3

10 t− 3 sin 3
10 t

cos 3
10 t + 3 sin 3

10 t

−2 cos 3
10 t

+ c3e−3/5t


− sin 3

10 t− 3 cos 3
10 t

− sin 3
10 t + 3 cos 3

10 t

2 sin 3
10 t

 .

Note, of course, that the two trigonometric terms may appear in different, equivalent
linear combinations, depending on the choice of eigenvalue in the complex pair and
eigenvector for that eigenvalue.

(c) Find the solution matching the initial condition stated above.

Solution: Finally, we match the initial condition x(0) =
[
18 0 0

]T: evaluating the
general solution at t = 0 gives the linear system

c1

2
5
2

+ c2

 1
1
−2

+ c3

−3
3
0

 =

18
0
0


We then row reduce the corresponding augmented matrix: 2 1 −3 18

5 1 3 0
2 −2 0 0

 ∼
 1 −1 0 0

0 3 −3 18
0 6 3 0


∼

 1 −1 0 0
0 1 −1 6
0 0 3 −12

 ∼
 1 0 0 2

0 1 0 2
0 0 1 −4


Therefore, the solution matching this initial condition is

x(t) = 2


2

5

2

+ 2e−3/5t


cos 3

10 t− 3 sin 3
10 t

cos 3
10 t + 3 sin 3

10 t

−2 cos 3
10 t

− 4e−3/5t


− sin 3

10 t− 3 cos 3
10 t

− sin 3
10 t + 3 cos 3

10 t

2 sin 3
10 t



=


4 + e−3/5t(14 cos 3

10 t− 2 sin 3
10 t)

10 + e−3/5t(−10 cos 3
10 t + 10 sin 3

10 t)

4 + e−3/5t(−4 cos 3
10 t− 8 sin 3

10 t)

 .

3. Let A =

[
7 4
−1 3

]
.

(a) Find 2 linearly independent solutions x1(t) and x2(t) to the system x′ = Ax using
eigenvalue and eigenvector techniques. Show that the solutions you determine are
actually linearly independent.
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Solution: We compute the eigenvalues of A:

det(A− λI) =
[

7− λ 4
−1 3− λ

]
= λ2 − 10λ + 25 = (λ− 5)2.

Then λ = 5 is the only eigenvalue, of multiplicity 2. We compute its eigenvectors, by
row reducing A− 5I:

A− 5I =
[

2 4
−1 −2

]
∼
[

1 2
0 0

]
Then v1 =

[
2
−1

]
is the only eigenvector for this eigenvalue, up to scale. We therefore

look for a generalized eigenvector v2 such that (A − 5I)v2 = v1, which we find by
row reduction of [A− 5I | v1]:[

2 4 2
−1 −2 −1

]
∼
[

1 2 1
0 0 0

]

Then one choice for v2 is
[

1
0

]
. With this complete set of generalized eigenvectors, we

have solutions

x1(t) = e5t
[

2
−1

]
, x2(t) = e5t

[
2t + 1
−t

]
We also check that these solutions are linearly independent by computing the Wron-
skian:

W(t) =
∣∣∣∣ 2e5t (2t + 1)e5t

−e5t −te5t

∣∣∣∣ = −2te10t + (2t + 1)e10t = e10t

Since W(t) 6= 0 for all t, these solutions are indeed linearly independent.

(b) Form a fundamental matrix Φ(t) from these two solutions and use it to compute the
matrix exponential eAt.
Solution: Define the fundamental matrix

Φ(t) =
[
x1(t) x2(t)

]
=

[
2e5t (2t + 1)e5t

−e5t −te5t

]
.

Then

Φ(0) =
[

2 1
−1 0

]
Φ(0)−1 =

1
1

[
0 −1
1 2

]
=

[
0 −1
1 2

]
,

so therefore

eAt = Φ(t)Φ(0)−1 =

[
2e5t (2t + 1)e5t

−e5t −te5t

] [
0 −1
1 2

]
=

[
(2t + 1)e5t 4te5t

−te5t (1− 2t)e5t

]
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(c) Use that A = 5I + B, where B is a nilpotent matrix, to compute eAt directly, without
requiring the eigenvalues and eigenvectors computed above. Check that you obtain
the same answer as in the previous part.

Solution: We check that B = A− 5I =
[

2 4
−1 −2

]
is nilpotent:

B2 =

[
2 4
−1 −2

] [
2 4
−1 −2

]
=

[
0 0
0 0

]
Then eBt = I + Bt, so because 5I and B commute, eAt = e5IteBt = e5t(I + Bt). Expand-
ing this,

eAt = e5t
[

1 + 2t 4t
−t 1− 2t

]
,

which is the same as the result computed in part (b).

(d) Use variation of parameters to find the unique solution to the nonhomogeneous initial
value problem

x′ =
[

7 4
−1 3

]
x +

[
0

e5t

]
, x(2) =

[
7e10

−2e10

]
Solution: We first find a particular solution xp(t) to this nonhomogeneous system via
variation of parameters. Then

xp(t) = eAt
∫

e−Atf(t) dt = eAt
∫

e−5t
[

1− 2t −4t
t 1 + 2t

] [
0

e5t

]
dt = eAt

∫ [ −4t
1 + 2t

]
dt

= eAt
[
−2t2

t + t2

]
= e5t

[
1 + 2t 4t
−t 1− 2t

] [
−2t2

t + t2

]
= e5t

[
−2t2(1 + 2t) + 4t(t + t2)

2t3 + (t + t2)(1− 2t)

]
= e5t

[
2t2

t− t2

]
The general solution is then x(t) = eAtc + xp(t). At t = 2, e2Ac = x(2) − xp(2), so

c = e−2A(x(2)− xp(2)). Since x(2)− xp(2) =
[

7e10

−2e10

]
−
[

8e10

−2e10

]
=

[
−e10

0

]
,

c = e−2A(x(2)− xp(2)) = e−10
[
−3 −8

2 5

] [
−e10

0

]
=

[
3
−2

]
.

Then the solution matching the initial condition is

x(t) = e5t
[

1 + 2t 4t
−t 1− 2t

] [
3
−2

]
+ e5t

[
2t2

t− t2

]
= e5t

[
3− 2t + 2t2

−2 + 2t− t2

]
.
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4. Consider the higher-order linear system x′′ − 5x′ + 9x− 3y = 0, y′ + 2y− 5x = 0.
(a) Introduce the variable z = x′ and rewrite this system as a first-order system.

Solution: Let z = x′. Then the first-order system is x′ = z, y′ = 5x − 2y, z′ = −9x +
3y + 5z.

(b) Find the general solution x(t) =

x(t)
y(t)
z(t)

 of the system.

Solution: We write the system as x′ = Ax with A =

 0 0 1
5 −2 0
−9 3 5

. We then compute

the eigenvalues of A:

det(A− λI) =

−λ 0 1
5 −2− λ 0
−9 3 5− λ

 = −λ

[
−2− λ 0

3 5− λ

]
+

[
5 −2− λ
−9 3

]
= −λ(−2− λ)(5− λ) + 15− 9(2 + λ) = −λ3 + 3λ2 + λ− 3
= −(λ− 3)(λ− 1)(λ + 1)

Then A has distinct real eigenvalues λ1 = 3, λ2 = 1, and λ3 = −1, for which we find
eigenvectors v =

[
a b c

]T. First, row reducing A− λI with λ1 = 3,

A− 3I =

−3 0 1
5 −5 0
−9 3 2

 ∼
1 −1 0

0 −3 1
0 −6 2

 ∼
1 −1 0

0 3 −1
0 0 0


Then a = b and 3b = c, so taking c = 3, v1 =

[
1 1 3

]T. Next, for λ2 = 1,

A− I =

−1 0 1
5 −3 0
−9 3 4

 ∼
1 0 −1

0 −3 5
0 3 −5

 ∼
1 0 −1

0 3 −5
0 0 0


Then a = c and 3b = 5c, so taking c = 3, v2 =

[
3 5 3

]T. Finally, for λ3 = −1,

A + I =

 1 0 1
5 −1 0
−9 3 6

 ∼
1 0 1

0 −1 −5
0 3 15

 ∼
1 0 1

0 1 5
0 0 0


Then a = −c and b = −5c, so taking c = −1, v2 =

[
1 5 −1

]T. Thus, the general
solution is x(t)

y(t)
z(t)

 = c1e3t

1
1
3

+ c2et

3
5
3

+ c3e−t

 1
5
−1
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5. Consider the coupled mass-spring system pictured below:

k1 k2m1 m2

eq x1(t) eq x2(t)

Assume that m1 = 2 kg, m2 = 1 kg, k1 = 16 N/m, k2 = 8 N/m.
(a) Use force diagrams and Newton’s second law (F = ma) on each mass to write a set of

coupled second-order linear DEs describing the displacements x1(t) and x2(t).
Solution: The forces acting on mass m1 are k1x1 to the left and k2(x2 − x1) to the right,
so

m1x′′1 = −k1x1 + k2(x2 − x1) = −(k1 + k2)x1 + k2x2.

The only force acting on mass m2 is k2(x2 − x1) to the left, so

m2x′′2 = −k2(x2 − x1) = k2x1 + k2x2.

Plugging in the values for the masses and spring constants and normalizing,

x′′1 = −12x1 + 4x2, x′′2 = 8x1 − 8x2.

(b) Using new variables y1 = x′1 and y2 = x′2, rewrite the system as a homogeneous first-
order system in 4 variables. Find the eigenvalues and eigenvectors of the resulting
system and use them to write a general solution to the system.
Solution: Adding these variables and writing the equation as x′ = Ax,

x1
x2
y1
y2


′

=


y1
y2

−12x1 + 4x2
8x1 − 8x2

 =


0 0 1 0
0 0 0 1

−12 4 0 0
8 −8 0 0




x1
x2
y1
y2

 .

We find the eigenvalues of this matrix A:

det(A− λI) =

∣∣∣∣∣∣∣∣
−λ 0 1 0

0 −λ 0 1
−12 4 −λ 0

8 −8 0 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣
−λ 0 1

4 −λ 0
−8 0 −λ

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 −λ 1
−12 4 0

8 −8 −λ

∣∣∣∣∣∣
= −λ((−λ)3 + 1(λ)(−8))) + 12λ2 + ((−12)(−8)− (4)(8))

= λ4 + 20λ2 + 64 = (λ2 + 16)(λ2 + 4).
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Then the eigenvalues are λ = ±2i and λ = ±4i. We compute eigenvectors v =[
a b c d

]T for λ = −2i and λ = −4i. Row reducing A + 2iI,

A + 2iI =


2i 0 1 0
0 2i 0 1

−12 4 2i 0
8 −8 0 2i

 ∼


2 0 −i 0
0 2 0 −i
0 4 −4i 0
0 −8 4i 2i



∼


2 0 −i 0
0 2 0 −i
0 0 −4i 2i
0 0 4i −2i

 ∼


2 0 −i 0
0 2 0 −i
0 0 2 −1
0 0 0 0

 ∼


4 0 0 −i
0 2 0 −i
0 0 2 −1
0 0 0 0


Then 4a = id, 2b = id, and 2c = d, so taking d = 4, v1 =

[
i 2i 2 4

]T. For λ = −4i,

A + 4iI =


4i 0 1 0
0 4i 0 1

−12 4 4i 0
8 −8 0 4i

 ∼


4 0 −i 0
0 4 0 −i
0 4 i 0
0 −8 −2i 4i



∼


4 0 −i 0
0 4 0 −i
0 0 i i
0 0 −2i −2i

 ∼


4 0 0 i
0 4 0 −i
0 0 1 1
0 0 0 0


Then 4a = −id, 4b = id, and c = −d, so taking d = −4, v2 =

[
i −i 4 −4

]T. We get
a pair of solutions from each eigenvector: first,

e−2itv1 = (cos 2t− i sin 2t)


i

2i
2
4

 =


sin 2t

2 sin 2t
2 cos 2t
4 cos 2t

+ i


cos 2t

2 cos 2t
−2 sin 2t
−4 sin 2t



e−4itv2 = (cos 4t− i sin 4t)


i
−i

4
−4

 =


sin 4t
− sin 4t

4 cos 4t
−4 cos 4t

+ i


cos 4t
− cos 4t
−4 sin 4t

4 sin 4t


Hence, the general solution is

x(t) = c1


sin 2t

2 sin 2t
2 cos 2t
4 cos 2t

+ c2


cos 2t

2 cos 2t
−2 sin 2t
−4 sin 2t

+ c3


sin 4t
− sin 4t

4 cos 4t
−4 cos 4t

+ c4


cos 4t
− cos 4t
−4 sin 4t

4 sin 4t

 .

12
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(c) Find frequencies ω1, ω2 and constant vectors v1, v2 so that the general solution to x1(t)
and x2(t) is in the form[

x1(t)
x2(t)

]
= c1 cos(ω1t− α1)v1 + c2 cos(ω2t− α2)v2,

where the amplitudes c1, c2 and the phases α1, α2 are parameters depending on the
initial values of x1, x2, and their derivatives.
Solution: We isolate the x1 and x2 components:[

x1(t)
x2(t)

]
=

[
c1 sin 2t + c2 cos 2t + c3 sin 4t + c4 cos 4t

2c1 sin 2t + 2c2 cos 2t− c3 sin 4t− c4 cos 4t

]
= C1 cos(2t− α1)

[
1
2

]
+ C2 cos(4t− α2)

[
1
−1

]
.

Thus, the frequencies are 2 and 4, and the vectors are
[

1
2

]
and

[
1
−1

]
.

6. Each of the following linear or affine-linear systems has a single critical point. Find
this critical point and characterize its type and stability.
(a) x′ = 2x− y, y′ = 3x− 2y

Solution: Since there are no constant terms in this system, the only critical point is at

(0, 0). Writing the system as x′ = Ax, A =

[
2 −1
3 −2

]
. We compute the eigenvalues of

A:

det(A− λI) =
∣∣∣∣2− λ −1

3 −2− λ

∣∣∣∣ = λ2 − 1 = (λ− 1)(λ + 1).

Then A has the distinct real eigenvalues −1 and 1. Since one is positive and the other
negative, the critical point is a saddle point, which is unstable.

(b) x′ = 2x− 5y− 1, y′ = x− 2y− 1

Solution: We first find the critical point of this system. Let A =

[
2 −5
1 −2

]
. Then we

must solve Ax = b, where b =

[
1
1

]
, which we do by row reduction:[

2 −5 1
1 −2 1

]
∼
[

1 −2 1
0 1 1

]
∼
[

1 0 3
0 1 1

]
Therefore, the critical point is at (3, 1). The linearization of the system at this critical
point is just A, so we find its eigenvalues:

det(A− λI) =
∣∣∣∣2− λ −5

1 −2− λ

∣∣∣∣ = λ2 + 1

The characteristic polynomial has roots λ = ±i, so the eigenvalues are a pure imagi-
nary pair, and the system has a (stable) center at (3, 1).

13
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(c) x′ = −x + 4y, y′ = −2x + 3y
Solution: Since there are no constant terms in this system, the only critical point is at

(0, 0). Writing the system as x′ = Ax, A =

[
−1 4
−2 3

]
. We compute the eigenvalues of

A:

det(A− λI) =
∣∣∣∣−1− λ 4
−2 3− λ

∣∣∣∣ = λ2 − 2λ + 5

Using the quadratic formula or inspection, we see that the eigenvalues are then λ =
1 ± 2i. Since this is a complex pair with positive real part, the critical point is an
unstable spiral point.

(d) x′ = x− 2y, y′ = 3x− 4y− 2

Solution: We first find the critical point of this system. Let A =

[
1 −2
3 −4

]
. Then we

must solve Ax = b, where b =

[
0
2

]
, which we do by row reduction:

[
1 −2 0
3 −4 2

]
∼
[

1 −2 0
0 2 2

]
∼
[

1 0 2
0 1 1

]
Therefore, the critical point is at (2, 1). The linearization of the system at this critical
point is just A, so we find its eigenvalues:

det(A− λI) =
∣∣∣∣1− λ −2

3 −4− λ

∣∣∣∣ = λ2 + 3λ + 2 = (λ + 1)(λ + 2)

Then A has the distinct real eigenvalues −1 and −2. Since both values are negative,
the critical point is an asymptotically stable node.

7. Find all of the critical points of the autonomous system x′ = (y − x)(1 − x − y),
y′ = x(2 + y). Linearize the system at each critical point to characterize its type and
stability, if possible.
Solution: We first find the critical points of the system. From the x′ equation, we see that
either y = x or y = 1− x, and from the y′ equation, we see that either x = 0 or y = −2.
We address these different cases:

• If x = 0 and y = x, then y = 0, so (0, 0) is a critical point.

• If x = 0 and y = 1− x, then y = 1, so (0, 1) is a critical point.

• If y = −2 and y = x, then x = −2, so (−2,−2) is a critical point.

• If y = −2 and y = 1− x, then x = 3, so (3,−2) is a critical point.
Then (0, 0), (0, 1), (−2,−2), and (3,−2) are the four critical points of this system. We
characterize the system at each of them. First, we construct the Jacobian matrix of the

14
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system:

x′ = F(x, y) = (y− x)(1− x− y) = y− y2 − x + x2

y′ = G(x, y) = 2x + xy,

J(x, y) =
[

Fx Fy
Gx Gy

]
=

[
2x− 1 1− 2y
2 + y x

]
We then compute the eigenvalues of J(x, y) at each critical point:

• At (0, 0),

det(J(0, 0)− λI) =
∣∣∣∣−1− λ 1

2 −λ

∣∣∣∣ = λ2 + λ− 2 = (λ + 2)(λ− 1)

Since the eigenvalues are −2 and 1, this critical point is a saddle point, which is
unstable.

• At (0, 1),

det(J(0, 1)− λI) =
∣∣∣∣−1− λ −1

3 −λ

∣∣∣∣ = λ2 + λ + 3.

The roots of this characteristic polynomial are λ = −1±
√

1−12
2 = −1±i

√
11

2 . Since these
are complex with negative real part, the system has an asymptotically stable spiral
point here.

• At (−2,−2), J(−2,−2) =

[
−5 5

0 −2

]
, which is upper triangular. Therefore, the

eigenvalues are the values on the main diagonal,−5 and−2. Since these real values
are both negative, the system has an asymptotically stable node at this point.

• At (3,−2), J(3,−2) =

[
5 5
0 3

]
, which is upper triangular. Therefore, the eigenval-

ues are the values on the main diagonal, 5 and 3. Since these real values are both
positive, the system has an unstable node at this point.

8. The linear system x′ = Ax has the general solution

x(t) = c1e2t
[

4
1

]
+ c2e−t

[
3
1

]
.

Use this information to recover A. (Hint: Φ′(t) = AΦ(t).)

Solution: Since any fundamental matrix Φ(t) satisfies the matrix differential equation
Φ′(t) = AΦ(t), we may evaluate this at t = 0 to obtain Φ′(0) = AΦ(0). Isolating A,
A = Φ′(0)Φ(0)−1. From the general solution, we obtain one choice of Φ(t):

Φ(t) =
[

4e2t 3e−t

e2t e−t

]
Φ′(t) =

[
8e2t −3e−t

2e2t −e−t

]
Φ(0) =

[
4 3
1 1

]
Φ′(0) =

[
8 −3
2 −1

]
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Using the formula for the inverse of a 2× 2 matrix, we find that

Φ(0)−1 =
1
1

[
1 −3
−1 4

]
=

[
1 −3
−1 4

]
.

Then

A = Φ′(0)Φ(0)−1 =

[
8 −3
2 −1

] [
1 −3
−1 4

]
=

[
11 −36
3 −10

]
.
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