
MAT 303 Spring 2013 Calculus IV with Applications

Solutions to Midterm #2 Practice Problems
1. Find general solutions to the following DEs:
(a) y′′ − 6y′ + 8y = 0

Solution: The characteristic equation for this constant-coefficient, homogeneous DE is
r2 − 6r + 8 = 0, which factors as (r− 2)(r− 4) = 0. Therefore, its roots are r = 2 and
r = 4, so the general solution is

y = c1e2x + c2e4x.

(b) y(3) + 2y′′ − 4y′ − 8y = 0
Solution: The characteristic equation for this constant-coefficient, homogeneous DE is
r3 + 2r2 − 4r − 8 = 0. We see immediately that r + 2 is a factor of the polynomial;
factoring it out, we have (r + 2)(r2 − 4) = (r + 2)(r + 2)(r− 2) = 0. Therefore, r = 2
is a single root, and r = −2 is a double root, so the general solution is

y = c1e2x + c2e−2x + c3xe−2x.

(c) y′′ + 8y′ + 20y = 0
Solution: The characteristic equation is r2 + 8r + 20 = 0, which has no immediately
obvious solutions. Using the quadratic formula,

r =
−8±

√
64− 80

2
=
−8±

√
−16

2
=
−8± 4i

2
= −4± 2i.

From this pair of complex roots, the general solution is

y = c1e−4x cos 2x + c2e−4x sin 2x.

(d) y(4) = y
Solution: Writing this DE as y(4) − y = 0, its chararcteristic equation is r4 − 1 = 0.
This factors as (r − 1)(r + 1)(r2 + 1) = 0, so it has roots r = 1, r = −1, and r = ±i.
Therefore, the general solution is

y = c1ex + c2e−x + c3 sin x + c4 cos x.
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(e) y(6) + 8y(4) + 16y′′ = 0
Solution: This DE has the characteristic equation r6 + 8r4 + 16r2 = 0, which factors as
r2(r2 + 4)2 = 0. Then r = 0 is a double root, and the pair r = ±2i is also a double
root, so the general solution is

y = c1 + c2x + (c3 + c4x) cos 2x + (c5 + c6x) sin 2x.

2. Find solutions to the following IVPs:
(a) y′′ − 3y′ + 2y = 0, y(0) = 1, y′(0) = 0

Solution: The DE has the characteristic equation r2− 3r + 2 = 0, and so has roots r = 1
and r = 2. Hence, its general solution is

y = c1ex + c2e2x.

We match this solution and its derivative, y′ = c1ex + 2c2e2x, to the initial conditions
y(0) = 1, y′(0) = 0 at x = 0. We then obtain the linear system

c1 + c2 = 1, c1 + 2c2 = 0.

Then c1 = −2c2; plugging this into the first equation, −c2 = 1, so c2 = −1 and c1 = 2.
Therefore, the solution to the IVP is y = 2ex − e2x.

(b) 9y(3) + 12y′′ + 4y′ = 0, y(0) = 0, y′(0) = 1, y′′(0) = 10
3

Solution: The DE has the characteristic equation 9r3 + 12r2 + 4r = 0, which factors as
r(3r + 2)2 = 0. Hence, r = 0 is a single root, and r = −2/3 is a double root, so the
general solution is

y = c1 + c2e−2x/3 + c3xe−2x/3.

Taking derivatives,

y′ = −2
3

c2e−2x/3 + c3

(
1− 2

3
x
)

e−2x/3, y′′ =
4
9

c2e−2x/3 + c3

(
−4

3
+

4
9

x
)

e−2x/3.

Evaluating these functions at x = 0 and matching the initial conditions, we obtain the
linear system

c1 + c2 = 0, −2
3

c2 + c3 = 1,
4
9

c2 −
4
3

c3 =
10
3

.

Then c3 = 1 + 2
3 c2, so from the third equation, 4

9 c2 − 4
3 −

8
9 c2 = 10

3 , and c2 = −14
3

9
4 =

−21
2 . Then c3 = 1− 21

3 = −6, so c1 = −c2 = 21
2 . Hence, the solution to the IVP is

y =
21
2
− 21

2
e−2x/3 − 6xe−2x/3.
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3. For each of the DEs below, find a particular solution to it:
(a) y′′ − 6y′ + 8y = 4x + 5

Solution: From Problem 1(a), we see that the roots of the associated homogeneous DE
are r = 2 and r = 4, neither of which corresponds to the polynomial function 4x + 5.
Therefore, we do not need to modify the guess y = Ax + B to avoid colliding with
terms in the complementary solution. Plugging this guess for y into the nonhomoge-
neous DE, we have

0− 6(A) + 8(Ax + B) = 4x + 5,

so equating the constant terms and the coefficients on the x terms, we have that 8A =
4 and 8B− 6A = 5. Then A = 1/2, so 8B = 5 + 3 = 8, and B = 1. Hence, a particular
solution is y = 1

2 x + 1.

(b) y(4) + 4y′′ = 12x− 16− 8e2x

Solution: Writing the characteristic equation for the associated homogeneous DE, we
have r4 + 4r2 = r2(r2 + 4) = 0. This equation has a double root at r = 0 and a pair of
complex roots r = ±2i, so the complementary solution is

yc = c1 + c2x + c3 cos 2x + c4 sin 2x.

From f (x) = 12x − 16 − 8e2x, we might initially guess a particular solution of the
form y = Ax + B + Ce2x, but the first two terms overlap with terms in yc. Hence, we
multiply only those terms by x2 to avoid the overlap, obtaining

y = Ax3 + Bx2 + Ce2x

as the form of a solution. Then y′′ = 6Ax + 2B + 4Ce2x and y(4) = 16Ce2x, so the DE
becomes

16Ce2x + 24Ax + 8B + 16Ce2x = 12x− 16− 8e2x.

Then 32C = −8, so C = −1
4 , 24A = 12, so A = 1

2 , and 8B = −16, so B = −2.
Consequently, a particular solution is

y =
1
2

x3 − 2x2 − 1
4

e2x.

(c) y′′ + 2y′ − 3y = −4xe−3x

Solution: The roots of the characteristic equation for this DE are r = −3 and r = 1, so
the complementary solution is yc = c1ex + c2e−3x. From the xe−3x in the f (x) function,
we might guess y = Axe−3x + Be−3x as a particular solution, but the lower-order term
overlaps with the complementary solution. Hence, we multiply these terms by x to
separate them from yc, and the form of our guess is

y = Ax2e−3x + Bxe−3x.
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Then its derivatives are

y′ = A(2x− 3x2)e−3x + B(1− 3x)e−3x, y′′ = A(9x2− 12x + 2)e−3x + B(9x− 6)e−3x.

Plugging these into the original nonhomogeneous DE, and observing that the x2e−3x

terms all cancel, we have

A(−12x + 2)e−3x + B(9x− 6)e−3x + 4Axe−3x + B(2− 6x)e−3x − 3Bxe−3x = −4xe−3x.

Grouping the coefficients on the xe−3x and e−3x terms separately, we have the linear
system

−8A = −4, 2A− 4B = 0.

Then A = 1/2, so B = 1
2 A = 1

4 , and a particular solution is

y =
1
2

x2e−3x +
1
4

xe−3x.

4. Consider a mass of 2 kg attached to a spring with spring constant 18 N/m. Find the
displacement x(t) with the initial conditions x(0) = 4 m, x′(0) = 9 m/s, assuming the
following damping c is present. If the system exhibits periodic behavior, find its (possibly
time-varying) amplitude and period.
(a) c = 0

Solution: Since c = 0, there is no damping is the system. We compute the circular
frequency ω0 of the system to be

√
k/m =

√
18/2 = 3 rad/s, so the general solution

for the displacement is of the form

x(t) = A cos 3t + B sin 3t.

Its velocity is then x′(t) = −3A sin 3t + 3B cos 3t. Matching these functions to the
initial conditions x(0) = 4 and x′(0) = 9 at t = 0, we have

A = 4, 3B = 9,

so A = 4 and B = 3, and therefore x(t) = 4 cos 3t + 3 sin 3t. The amplitude is given
by C =

√
A2 + B2 =

√
9 + 16 = 5, and the period T = 2π/ω0 = 2π/3 s.

(b) c = 4
Solution: We now have damping with c = 4. The characteristic equation for the DE
mx′′+ cx′+ kx = 0 is 2r2 + 4r + 18 = 0, so we check the discriminant of this quadratic
polynomial to determine whether we obtain real or complex roots. Since this is c2 −
4km = 16− 4(2)(18) = 16− 144 = −128, which is negative, we will get complex
roots, with values

r =
−4±

√
−128

2(2)
=
−4± 8

√
2

4
= −1± 2

√
2.
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Therefore, the general solution for the displacement and its velocity is

x(t) = Ae−t cos 2
√

2t + Be−t sin 2
√

2t

x′(t) = Ae−t(− cos 2
√

2t− 2
√

2 sin 2
√

2t) + Be−t(− sin 2
√

2t + 2
√

2 cos 2
√

2t),

which we match to the initial conditions x(0) = 4 and x′(0) = 9 to obtain the system

A = 4, −A + 2
√

2B = 9.

Then 2
√

2B = 9 + 4 = 13, so B = 13/2
√

2, and the displacement is

x(t) = 4e−t cos 2
√

2t +
13

2
√

2
e−t sin 2

√
2t.

We have that C =
√

A2 + B2 =
√

16 + 169/8 =
√

297/8 = 3
2

√
33
2 , so the amplitude

of this solution is 3
2

√
33
2 e−t. Since the pseudofrequency is ω1 = 2

√
2, the period is

2π/ω1 = π/
√

2.

(c) c = 12
Solution: We check the discriminant c2− 4km again when c = 12: now it is 122− 144 =
0, so we expect a double root at r = −c/2m = −12/4 = −3. Hence, the general forms
of the displacement and the velocity are

x(t) = c1e−3t + c2te−3t, x′(t) = −3c1e−3t + c2(1− 3t)e−3t.

Matching these to the initial conditions x(0) = 4 and x′(0) = 9, we have the system
c1 = 4 and −3c1 + c2 = 9, so c2 = 9 + 12 = 21. Thus, the displacement is x(t) =
(4 + 21t)e−3t. There is no trigonometric component to the solution, so there is no
amplitude or period.

(d) c = 20
Solution: For c = 20, we now expect an overdamped system with 2 real roots given by

r =
−20±

√
202 − 144
4

=
−20±

√
256

4
−20± 16

4
= −5± 4,

so the roots are r = −1 and r = −9. Therefore, the general forms of the displacement
and the velocity are

x(t) = c1e−t + c2e−9t, x′(t) = −c1e−t − 9c2e−9t.

Matching these to the initial conditions x(0) = 4 and x′(0) = 9, we have the system
c1 + c2 = 4, −c1 − 9c2 = 9. Adding these equations, −8c2 = 13, so c2 = −13/8, and
c1 = 4− c2 = 45/8. Thus, the displacement is

x(t) =
45
8

e−t − 13
8

e−9t,

and as in the critically damped case there is no amplitude or period.
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5. Find a differential equation with the general solution

y = (c1 + c2x)e3x + c3e−2x cos(
√

2x) + c4e−2x sin(
√

2x).

Solution: From the form of this general solution, we expect the characteristic equation of
the DE to have a double root at r = 3 and a pair of complex roots r = −2±

√
2i. Then the

polynomial in the characteristic equation is

(r− 3)2(r + 2−
√

2i)(r + 2 +
√

2i) = (r2 − 6r + 9)(r2 + 4r + 6)

= r4 + (−6 + 4)r3 + (6− 24 + 9)r2 + (36− 36)r + 54

= r4 − 2r3 − 9r2 + 54.

Thus, the differential equation y(4) − 2y(3) − 9y′′ + 54y = 0 (or any constant multiple of
it) corresponds to this characteristic equation, and hence has this general solution.

6.
(a) Show that the functions y1 = e−x and y2 = sin x are linearly independent.

Solution: We compute the Wronskian W(x) of these two functions:

W(x) =
∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ = ∣∣∣∣ e−x sin x
−e−x cos x

∣∣∣∣ = e−x cos x + e−x sin x = e−x(cos x + sin x).

Since W(x) is not identically 0 on the real line (as, for example, W(0) = e0(1+ 0) = 1),
these functions are linearly independent.

(b) Show that the functions y1 = 1 + tan2 x, y2 = 3− 2 tan2 x, and y3 = sec2 x are not
linearly independent.
Solution: The easy way to show these function are linearly independent is to note that
1 + tan2 x = sec2 x, so y1 = y3. Thus, −y1 + y3 is a nontrivial linear combination of
these functions equal to 0.

If we do not notice this fact, we proceed by computing the derivatives of y1, y2, and
y3, using that (tan x)′ = sec2 x and (sec x)′ = sec x tan x:

y′1 = 2 sec2 x tan x, y′′1 = 2((2 sec2 x tan2 x) + sec4 x) = 4 sec2 x tan2 x + 2 sec4 x

y′2 = −4 sec2 x tan x, y′′2 = −8 sec2 x tan2 x− 4 sec4 x

y′3 = 2 sec2 x tan x, y′′3 = 4 sec2 x tan2 x + 2 sec4 x

The Wronskian of these solutions is then the 3× 3 determinant

W(x) =

∣∣∣∣∣∣
y1 y2 y3
y′1 y′2 y′3
y′′1 y′′2 y′′3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 + tan2 x 3− 2 tan2 x sec2 x

2 sec2 x tan x −4 sec2 x tan x 2 sec2 x tan x
4 sec2 x tan2 x + 2 sec4 x −8 sec2 x tan2 x− 4 sec4 x 4 sec2 x tan2 x + 2 sec4 x

∣∣∣∣∣∣
6
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We expand this determinant along the first row, but first we use the properties of the
deteriminant to extract the common factors of the second and third rows:

W(x) = (2 sec2 x tan x)(4 sec2 x tan2 x + 2 sec4 x)

∣∣∣∣∣∣
1 + tan2 x 3− 2 tan2 x sec2 x

1 −2 1
1 −2 1

∣∣∣∣∣∣
= (8 sec4 x tan3 x + 4 sec6 x tan x)

(
(1 + tan2)

∣∣∣∣−2 1
−2 1

∣∣∣∣
−(3− 2 tan2 x)

∣∣∣∣1 1
1 1

∣∣∣∣+ sec2 x
∣∣∣∣1 −2
1 −2

∣∣∣∣)
= (8 sec4 x tan3 x + 4 sec6 x tan x)(0− 0 + 0) = 0.

Since the Wronskian is identically 0, the functions are linearly dependent.

7. Find the form of a particular solution to the DE y(3) − 2y′′ + 2y′ = 6ex + 3ex sin x− x2,
but do not determine the values of the coefficients.

Solution: We first determine the complementary solution yc, the general solution of the
associated homogeneous equation. The characteristic equation is r3 − 2r2 + 2r = r(r2 −
2r + 2) = 0. Thus r = 0 is a root, as are r = 2±

√
4−8

2 = 1± i, so

yc = c1 + c2ex cos x + c3ex sin x.

Examining the form of the forcing function f (x), we would expect a particular solution
of the form

Aex + Bex cos x + Cex sin x + D + Ex + Fx2,

but the Bex cos x, Cex sin x, and D terms overlap with yc . Therefore, we multiply these
terms and the ones related to them by enough powers of x to prevent the overlap:

yp = Aex + Bxex cos x + Cxex sin x + Dx + Ex2 + Fx3.

8. Consider the nonhomogeneous DE x2y′′ + xy′ + (x2 − 1
4)y = 8x3/2 sin x.

(a) Verify that y1 = x−1/2 cos x and y2 = x−1/2 sin x are linearly independent solutions to
the associated homogeneous DE.
Solution: We compute the first and second derivatives of these solutions:

y′1 = −1
2

x−3/2 cos x− x−1/2 sin x y′′1 =
3
4

x−5/2 cos x + x−3/2 sin x− x−1/2 cos x

y′2 = −1
2

x−3/2 sin x + x−1/2 cos x y′′2 =
3
4

x−5/2 sin x− x−3/2 cos x− x−1/2 sin x

7
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We plug these into the associated homogeneous DE x2y′′ + xy′ + (x2 − 1
4)y = 0:

x2y′′1 + xy′1 +
(

x2 − 1
4

)
y1

= x2
(

3
4

x−5/2 cos x + x−3/2 sin x− x−1/2 cos x
)

+ x
(
−1

2
x−3/2 cos x− x−1/2 sin x

)
+

(
x2 − 1

4

)(
x−1/2 cos x

)
=

(
3
4
− 1

2
− 1

4

)
x−1/2 cos x + (1− 1) x1/2 sin x + (−1 + 1) x3/2 cos x = 0

x2y′′2 + xy′2 +
(

x2 − 1
4

)
y2

= x2
(

3
4

x−5/2 sin x− x−3/2 cos x− x−1/2 sin x
)

+ x
(
−1

2
x−3/2 sin x + x−1/2 cos x

)
+

(
x2 − 1

4

)(
x−1/2 sin x

)
=

(
3
4
− 1

2
− 1

4

)
x−1/2 sin x + (−1 + 1) x1/2 cos x + (−1 + 1) x3/2 sin x = 0

We also check their linear independence by computing the Wronskian:

W(x) =
∣∣∣∣ x−1/2 cos x x−1/2 sin x
−1

2 x−3/2 cos x− x−1/2 sin x −1
2 x−3/2 sin x + x−1/2 cos x

∣∣∣∣
= −1

2
x−2 sin x cos x + x−1 cos2 x +

1
2

x−2 sin x cos x + x−1 sin2 x =
1
x

Since this function is not identically 0, the functions are linearly independent.

(b) Use variation of parameters to find a general solution to the nonhomogeneous DE.
(Hint: Use the identities sin x cos x = 1

2 sin 2x and sin2 x = 1
2(1− cos 2x).)

Solution: We use the formula of variation of parameters to determine a particular
solution to the nonhomogeneous DE. First, we must normalize the DE, so that y′′ has
a coefficient of 1:

y′′ +
1
x

y′ +
(

1− 1
4x2

)
y = 8x−1/2 sin x.

Then f (x) = 8x−1/2 sin x, so the formula for variation of parameters is

y = −y1

∫ y2 f (x)
W(x)

dx + y2

∫ y1 f (x)
W(x)

dx

= −x−1/2 cos x
∫

(x−1/2 sin x)(8x−1/2 sin x)
1/x

dx

+ x−1/2 sin x
∫

(x−1/2 cos x)(8x−1/2 sin x)
1/x

dx
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Simplifying and applying the identities sin x cos x = 1
2 sin 2x, sin2 x = 1

2(1− cos 2x),
and cos 2x = 2 cos2 x− 1,

y = −x−1/2 cos x
∫

8 sin2 x dx + x−1/2 sin x
∫

8 sin x cos x dx

= −x−1/2 cos x
∫

4(1− cos 2x) dx + x−1/2 sin x
∫

4 sin 2x dx

= −x−1/2 cos x(4x− 2 sin 2x) + x−1/2 sin x(−2 cos 2x)

= −x−1/2 cos x(4x− 4 sin x cos x) + x−1/2 sin x(−2(2 cos2 x− 1))

= −4x1/2 cos x + 2x−1/2 sin x.

The second term is already part of the complementary solution, so we can reduce this
particular solution to y = −4x1/2 cos x.

9. A spring is stretched 6 inches by a mass m that weighs 8 lb. The mass is attached to a
dashpot that has a damping force of 2 lb-s/ft, and an external force of 4 cos 2t lb acts on
it.
(a) Describe the steady state response of the system (that is, the particular solution to the

nonhomogeneous equation).
Solution: We compute the parameters associated to the system: the mass is m =
8/32 = 1/4 slug, assuming g = 32 ft/s2, and the spring constant is k = 8/(0.5) =
16 lb/ft. The damping constant is c = 2, as given above. On the forcing side, the
amplitude is F0 = 4, and the frequency is ω = 2.

Since the system is damped, the pure-sinusoidal forcing function will not overlap
with the transient solution, so we expect the steady-state function will be of the form

x(t) = A cos 2t + B sin 2t.

Plugging this and its derivatives into the nonhomogeneous DE mx′′ + cx′ + kx =
4 cos 2t, we have

(A(k− 4m) + 2Bc) cos 2t + ((k− 4m)B− 2Ac) sin 2t = 4 cos 2t.

Then A(k− 4m) + 2Bc = 4 and (k− 4m)B− 2Ac = 0, which we solve to obtain

A =
4(k− 4m)

(k− 4m)2 + 4c2 , B =
8c

(k− 4m)2 + 4c2 .

Plugging in k = 16, m = 1
4 , and c = 2, k − 4m = 15 and 2c = 4, (k − 4m)2 + 4c2 =

152 + 16 = 241, so A = 60/241 and B = 16/241. Then the steady state solution is

x(t) =
60

241
cos 2t +

16
241

sin 2t.

9
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We may also unify this into a single oscillation C cos(2t− α), with

C =
√

A2 + B2 =
4√

(k− 4m)2 + 4c2
, tan α =

B
A

=
2c

k− 4m
.

Then

C =
4√

255 + 16
=

4√
241

, α = tan−1 4
15

, x(t) =
4√
241

cos(2t− α).

(b) Find the value of the mass m that maximizes the amplitude of this response, with all
other parameters remaining constant. What is this maximum amplitude? What does
this mass weigh in pounds?
Solution: We see that, as a function of m, the amplitude C is maximized when the
denominator, or its square

(k− 4m)2 + 4c2,

is minimized. Since this is a sum of two squares, only one of which contains m, this is
minimized when that term is 0. That occurs when k− 4m = 0, so m = k/4 = 16/4 =
4 slug. This mass weighs 128 lb, and the corresponding amplitude is C = 4/cω =
4/4 = 1 ft.
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