Solutions to Midterm #2 Practice Problems

- 1. Find general solutions to the following DEs:
- (a) y'' 6y' + 8y = 0Solution: The characteristic equation for this constant-coefficient, homogeneous DE is $r^2 - 6r + 8 = 0$, which factors as (r - 2)(r - 4) = 0. Therefore, its roots are r = 2 and r = 4, so the general solution is

$$y = c_1 e^{2x} + c_2 e^{4x}.$$

(b) $y^{(3)} + 2y'' - 4y' - 8y = 0$

Solution: The characteristic equation for this constant-coefficient, homogeneous DE is $r^3 + 2r^2 - 4r - 8 = 0$. We see immediately that r + 2 is a factor of the polynomial; factoring it out, we have $(r + 2)(r^2 - 4) = (r + 2)(r + 2)(r - 2) = 0$. Therefore, r = 2 is a single root, and r = -2 is a double root, so the general solution is

$$y = c_1 e^{2x} + c_2 e^{-2x} + c_3 x e^{-2x}.$$

(c) y'' + 8y' + 20y = 0

Solution: The characteristic equation is $r^2 + 8r + 20 = 0$, which has no immediately obvious solutions. Using the quadratic formula,

$$r = \frac{-8 \pm \sqrt{64 - 80}}{2} = \frac{-8 \pm \sqrt{-16}}{2} = \frac{-8 \pm 4i}{2} = -4 \pm 2i.$$

From this pair of complex roots, the general solution is

$$y = c_1 e^{-4x} \cos 2x + c_2 e^{-4x} \sin 2x.$$

(d) $y^{(4)} = y$

Solution: Writing this DE as $y^{(4)} - y = 0$, its characteristic equation is $r^4 - 1 = 0$. This factors as $(r - 1)(r + 1)(r^2 + 1) = 0$, so it has roots r = 1, r = -1, and $r = \pm i$. Therefore, the general solution is

$$y = c_1 e^x + c_2 e^{-x} + c_3 \sin x + c_4 \cos x.$$

(e) $y^{(6)} + 8y^{(4)} + 16y'' = 0$

Solution: This DE has the characteristic equation $r^6 + 8r^4 + 16r^2 = 0$, which factors as $r^2(r^2 + 4)^2 = 0$. Then r = 0 is a double root, and the pair $r = \pm 2i$ is also a double root, so the general solution is

$$y = c_1 + c_2 x + (c_3 + c_4 x) \cos 2x + (c_5 + c_6 x) \sin 2x.$$

2. Find solutions to the following IVPs:

(a) y'' - 3y' + 2y = 0, y(0) = 1, y'(0) = 0Solution: The DE has the characteristic equation $r^2 - 3r + 2 = 0$, and so has roots r = 1 and r = 2. Hence, its general solution is

$$y = c_1 e^x + c_2 e^{2x}$$

We match this solution and its derivative, $y' = c_1 e^x + 2c_2 e^{2x}$, to the initial conditions y(0) = 1, y'(0) = 0 at x = 0. We then obtain the linear system

$$c_1 + c_2 = 1$$
, $c_1 + 2c_2 = 0$.

Then $c_1 = -2c_2$; plugging this into the first equation, $-c_2 = 1$, so $c_2 = -1$ and $c_1 = 2$. Therefore, the solution to the IVP is $y = 2e^x - e^{2x}$.

(b) $9y^{(3)} + 12y'' + 4y' = 0, y(0) = 0, y'(0) = 1, y''(0) = \frac{10}{3}$

Solution: The DE has the characteristic equation $9r^3 + 12r^2 + 4r = 0$, which factors as $r(3r + 2)^2 = 0$. Hence, r = 0 is a single root, and r = -2/3 is a double root, so the general solution is

$$y = c_1 + c_2 e^{-2x/3} + c_3 x e^{-2x/3}$$

Taking derivatives,

$$y' = -\frac{2}{3}c_2e^{-2x/3} + c_3\left(1 - \frac{2}{3}x\right)e^{-2x/3}, \qquad y'' = \frac{4}{9}c_2e^{-2x/3} + c_3\left(-\frac{4}{3} + \frac{4}{9}x\right)e^{-2x/3}.$$

Evaluating these functions at x = 0 and matching the initial conditions, we obtain the linear system

$$c_1 + c_2 = 0$$
, $-\frac{2}{3}c_2 + c_3 = 1$, $\frac{4}{9}c_2 - \frac{4}{3}c_3 = \frac{10}{3}$.

Then $c_3 = 1 + \frac{2}{3}c_2$, so from the third equation, $\frac{4}{9}c_2 - \frac{4}{3} - \frac{8}{9}c_2 = \frac{10}{3}$, and $c_2 = -\frac{14}{3}\frac{9}{4} = -\frac{21}{2}$. Then $c_3 = 1 - \frac{21}{3} = -6$, so $c_1 = -c_2 = \frac{21}{2}$. Hence, the solution to the IVP is

$$y = \frac{21}{2} - \frac{21}{2}e^{-2x/3} - 6xe^{-2x/3}.$$

- 3. For each of the DEs below, find a particular solution to it:
- (a) y'' 6y' + 8y = 4x + 5

Solution: From Problem 1(a), we see that the roots of the associated homogeneous DE are r = 2 and r = 4, neither of which corresponds to the polynomial function 4x + 5. Therefore, we do not need to modify the guess y = Ax + B to avoid colliding with terms in the complementary solution. Plugging this guess for y into the nonhomogeneous DE, we have

$$0 - 6(A) + 8(Ax + B) = 4x + 5$$

so equating the constant terms and the coefficients on the *x* terms, we have that 8A = 4 and 8B - 6A = 5. Then A = 1/2, so 8B = 5 + 3 = 8, and B = 1. Hence, a particular solution is $y = \frac{1}{2}x + 1$.

(b) $y^{(4)} + 4y'' = 12x - 16 - 8e^{2x}$

Solution: Writing the characteristic equation for the associated homogeneous DE, we have $r^4 + 4r^2 = r^2(r^2 + 4) = 0$. This equation has a double root at r = 0 and a pair of complex roots $r = \pm 2i$, so the complementary solution is

$$y_c = c_1 + c_2 x + c_3 \cos 2x + c_4 \sin 2x.$$

From $f(x) = 12x - 16 - 8e^{2x}$, we might initially guess a particular solution of the form $y = Ax + B + Ce^{2x}$, but the first two terms overlap with terms in y_c . Hence, we multiply only those terms by x^2 to avoid the overlap, obtaining

$$y = Ax^3 + Bx^2 + Ce^{2x}$$

as the form of a solution. Then $y'' = 6Ax + 2B + 4Ce^{2x}$ and $y^{(4)} = 16Ce^{2x}$, so the DE becomes

$$16Ce^{2x} + 24Ax + 8B + 16Ce^{2x} = 12x - 16 - 8e^{2x}.$$

Then 32C = -8, so $C = -\frac{1}{4}$, 24A = 12, so $A = \frac{1}{2}$, and 8B = -16, so B = -2. Consequently, a particular solution is

$$y = \frac{1}{2}x^3 - 2x^2 - \frac{1}{4}e^{2x}.$$

(c) $y'' + 2y' - 3y = -4xe^{-3x}$

Solution: The roots of the characteristic equation for this DE are r = -3 and r = 1, so the complementary solution is $y_c = c_1 e^x + c_2 e^{-3x}$. From the $x e^{-3x}$ in the f(x) function, we might guess $y = Axe^{-3x} + Be^{-3x}$ as a particular solution, but the lower-order term overlaps with the complementary solution. Hence, we multiply these terms by x to separate them from y_c , and the form of our guess is

$$y = Ax^2e^{-3x} + Bxe^{-3x}.$$

Then its derivatives are

$$y' = A(2x - 3x^2)e^{-3x} + B(1 - 3x)e^{-3x}, \quad y'' = A(9x^2 - 12x + 2)e^{-3x} + B(9x - 6)e^{-3x}.$$

Plugging these into the original nonhomogeneous DE, and observing that the x^2e^{-3x} terms all cancel, we have

$$A(-12x+2)e^{-3x} + B(9x-6)e^{-3x} + 4Axe^{-3x} + B(2-6x)e^{-3x} - 3Bxe^{-3x} = -4xe^{-3x}.$$

Grouping the coefficients on the xe^{-3x} and e^{-3x} terms separately, we have the linear system

$$-8A = -4$$
, $2A - 4B = 0$.

Then A = 1/2, so $B = \frac{1}{2}A = \frac{1}{4}$, and a particular solution is

$$y = \frac{1}{2}x^2e^{-3x} + \frac{1}{4}xe^{-3x}.$$

4. Consider a mass of 2 kg attached to a spring with spring constant 18 N/m. Find the displacement x(t) with the initial conditions x(0) = 4 m, x'(0) = 9 m/s, assuming the following damping *c* is present. If the system exhibits periodic behavior, find its (possibly time-varying) amplitude and period.

(a) c = 0

Solution: Since c = 0, there is no damping is the system. We compute the circular frequency ω_0 of the system to be $\sqrt{k/m} = \sqrt{18/2} = 3$ rad/s, so the general solution for the displacement is of the form

$$x(t) = A\cos 3t + B\sin 3t.$$

Its velocity is then $x'(t) = -3A \sin 3t + 3B \cos 3t$. Matching these functions to the initial conditions x(0) = 4 and x'(0) = 9 at t = 0, we have

$$A=4, \qquad 3B=9,$$

so A = 4 and B = 3, and therefore $x(t) = 4\cos 3t + 3\sin 3t$. The amplitude is given by $C = \sqrt{A^2 + B^2} = \sqrt{9 + 16} = 5$, and the period $T = 2\pi/\omega_0 = 2\pi/3$ s.

(b) *c* = 4

Solution: We now have damping with c = 4. The characteristic equation for the DE mx'' + cx' + kx = 0 is $2r^2 + 4r + 18 = 0$, so we check the discriminant of this quadratic polynomial to determine whether we obtain real or complex roots. Since this is $c^2 - 4km = 16 - 4(2)(18) = 16 - 144 = -128$, which is negative, we will get complex roots, with values

$$r = \frac{-4 \pm \sqrt{-128}}{2(2)} = \frac{-4 \pm 8\sqrt{2}}{4} = -1 \pm 2\sqrt{2}.$$

Therefore, the general solution for the displacement and its velocity is

$$x(t) = Ae^{-t}\cos 2\sqrt{2}t + Be^{-t}\sin 2\sqrt{2}t$$

$$x'(t) = Ae^{-t}(-\cos 2\sqrt{2}t - 2\sqrt{2}\sin 2\sqrt{2}t) + Be^{-t}(-\sin 2\sqrt{2}t + 2\sqrt{2}\cos 2\sqrt{2}t),$$

which we match to the initial conditions x(0) = 4 and x'(0) = 9 to obtain the system

$$A = 4, \qquad \qquad -A + 2\sqrt{2B} = 9.$$

Then $2\sqrt{2}B = 9 + 4 = 13$, so $B = \frac{13}{2}\sqrt{2}$, and the displacement is

$$x(t) = 4e^{-t}\cos 2\sqrt{2}t + \frac{13}{2\sqrt{2}}e^{-t}\sin 2\sqrt{2}t.$$

We have that $C = \sqrt{A^2 + B^2} = \sqrt{16 + 169/8} = \sqrt{297/8} = \frac{3}{2}\sqrt{\frac{33}{2}}$, so the amplitude of this solution is $\frac{3}{2}\sqrt{\frac{33}{2}}e^{-t}$. Since the pseudofrequency is $\omega_1 = 2\sqrt{2}$, the period is $2\pi/\omega_1 = \pi/\sqrt{2}$.

(c) c = 12

Solution: We check the discriminant $c^2 - 4km$ again when c = 12: now it is $12^2 - 144 = 0$, so we expect a double root at r = -c/2m = -12/4 = -3. Hence, the general forms of the displacement and the velocity are

$$x(t) = c_1 e^{-3t} + c_2 t e^{-3t},$$
 $x'(t) = -3c_1 e^{-3t} + c_2 (1-3t) e^{-3t}.$

Matching these to the initial conditions x(0) = 4 and x'(0) = 9, we have the system $c_1 = 4$ and $-3c_1 + c_2 = 9$, so $c_2 = 9 + 12 = 21$. Thus, the displacement is $x(t) = (4 + 21t)e^{-3t}$. There is no trigonometric component to the solution, so there is no amplitude or period.

(d) c = 20

Solution: For c = 20, we now expect an overdamped system with 2 real roots given by

$$r = \frac{-20 \pm \sqrt{20^2 - 144}}{4} = \frac{-20 \pm \sqrt{256}}{4} - \frac{-20 \pm 16}{4} = -5 \pm 4$$

so the roots are r = -1 and r = -9. Therefore, the general forms of the displacement and the velocity are

$$x(t) = c_1 e^{-t} + c_2 e^{-9t},$$
 $x'(t) = -c_1 e^{-t} - 9c_2 e^{-9t}.$

Matching these to the initial conditions x(0) = 4 and x'(0) = 9, we have the system $c_1 + c_2 = 4$, $-c_1 - 9c_2 = 9$. Adding these equations, $-8c_2 = 13$, so $c_2 = -13/8$, and $c_1 = 4 - c_2 = 45/8$. Thus, the displacement is

$$x(t) = \frac{45}{8}e^{-t} - \frac{13}{8}e^{-9t}$$

and as in the critically damped case there is no amplitude or period.

5. Find a differential equation with the general solution

$$y = (c_1 + c_2 x)e^{3x} + c_3 e^{-2x}\cos(\sqrt{2}x) + c_4 e^{-2x}\sin(\sqrt{2}x).$$

Solution: From the form of this general solution, we expect the characteristic equation of the DE to have a double root at r = 3 and a pair of complex roots $r = -2 \pm \sqrt{2}i$. Then the polynomial in the characteristic equation is

$$(r-3)^{2}(r+2-\sqrt{2}i)(r+2+\sqrt{2}i) = (r^{2}-6r+9)(r^{2}+4r+6)$$

= $r^{4} + (-6+4)r^{3} + (6-24+9)r^{2} + (36-36)r + 54$
= $r^{4} - 2r^{3} - 9r^{2} + 54$.

Thus, the differential equation $y^{(4)} - 2y^{(3)} - 9y'' + 54y = 0$ (or any constant multiple of it) corresponds to this characteristic equation, and hence has this general solution.

6.

(a) Show that the functions $y_1 = e^{-x}$ and $y_2 = \sin x$ are linearly independent. *Solution*: We compute the Wronskian W(x) of these two functions:

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{-x} & \sin x \\ -e^{-x} & \cos x \end{vmatrix} = e^{-x} \cos x + e^{-x} \sin x = e^{-x} (\cos x + \sin x).$$

Since W(x) is not identically 0 on the real line (as, for example, $W(0) = e^0(1+0) = 1$), these functions are linearly independent.

(b) Show that the functions $y_1 = 1 + \tan^2 x$, $y_2 = 3 - 2\tan^2 x$, and $y_3 = \sec^2 x$ are not linearly independent.

Solution: The easy way to show these function are linearly independent is to note that $1 + \tan^2 x = \sec^2 x$, so $y_1 = y_3$. Thus, $-y_1 + y_3$ is a nontrivial linear combination of these functions equal to 0.

If we do not notice this fact, we proceed by computing the derivatives of y_1 , y_2 , and y_3 , using that $(\tan x)' = \sec^2 x$ and $(\sec x)' = \sec x \tan x$:

$$y'_{1} = 2 \sec^{2} x \tan x, \qquad y''_{1} = 2((2 \sec^{2} x \tan^{2} x) + \sec^{4} x) = 4 \sec^{2} x \tan^{2} x + 2 \sec^{4} x$$

$$y'_{2} = -4 \sec^{2} x \tan x, \qquad y''_{2} = -8 \sec^{2} x \tan^{2} x - 4 \sec^{4} x$$

$$y'_{3} = 2 \sec^{2} x \tan x, \qquad y''_{3} = 4 \sec^{2} x \tan^{2} x + 2 \sec^{4} x$$

The Wronskian of these solutions is then the 3×3 determinant

$$W(x) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y'_1 & y'_2 & y'_3 \\ y''_1 & y''_2 & y''_3 \end{vmatrix}$$
$$= \begin{vmatrix} 1 + \tan^2 x & 3 - 2\tan^2 x & \sec^2 x \\ 2\sec^2 x \tan x & -4\sec^2 x \tan x & 2\sec^2 x \tan x \\ 4\sec^2 x \tan^2 x + 2\sec^4 x & -8\sec^2 x \tan^2 x - 4\sec^4 x & 4\sec^2 x \tan^2 x + 2\sec^4 x \end{vmatrix}$$

We expand this determinant along the first row, but first we use the properties of the determinant to extract the common factors of the second and third rows:

$$W(x) = (2 \sec^2 x \tan x)(4 \sec^2 x \tan^2 x + 2 \sec^4 x) \begin{vmatrix} 1 + \tan^2 x & 3 - 2 \tan^2 x & \sec^2 x \\ 1 & -2 & 1 \\ 1 & -2 & 1 \end{vmatrix}$$
$$= (8 \sec^4 x \tan^3 x + 4 \sec^6 x \tan x) \left((1 + \tan^2) \begin{vmatrix} -2 & 1 \\ -2 & 1 \end{vmatrix}$$
$$-(3 - 2 \tan^2 x) \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} + \sec^2 x \begin{vmatrix} 1 & -2 \\ 1 & -2 \end{vmatrix} \right)$$
$$= (8 \sec^4 x \tan^3 x + 4 \sec^6 x \tan x)(0 - 0 + 0) = 0.$$

Since the Wronskian is identically 0, the functions are linearly dependent.

7. Find the form of a particular solution to the DE $y^{(3)} - 2y'' + 2y' = 6e^x + 3e^x \sin x - x^2$, but do not determine the values of the coefficients.

Solution: We first determine the complementary solution y_c , the general solution of the associated homogeneous equation. The characteristic equation is $r^3 - 2r^2 + 2r = r(r^2 - 2r + 2) = 0$. Thus r = 0 is a root, as are $r = \frac{2\pm\sqrt{4-8}}{2} = 1 \pm i$, so

$$y_c = c_1 + c_2 e^x \cos x + c_3 e^x \sin x.$$

Examining the form of the forcing function f(x), we would expect a particular solution of the form

$$Ae^x + Be^x \cos x + Ce^x \sin x + D + Ex + Fx^2$$
,

but the $Be^x \cos x$, $Ce^x \sin x$, and D terms overlap with y_c . Therefore, we multiply these terms and the ones related to them by enough powers of x to prevent the overlap:

$$y_p = Ae^x + Bxe^x \cos x + Cxe^x \sin x + Dx + Ex^2 + Fx^3.$$

- 8. Consider the nonhomogeneous DE $x^2y'' + xy' + (x^2 \frac{1}{4})y = 8x^{3/2} \sin x$.
- (a) Verify that $y_1 = x^{-1/2} \cos x$ and $y_2 = x^{-1/2} \sin x$ are linearly independent solutions to the associated homogeneous DE.

Solution: We compute the first and second derivatives of these solutions:

$$y_1' = -\frac{1}{2}x^{-3/2}\cos x - x^{-1/2}\sin x \quad y_1'' = \frac{3}{4}x^{-5/2}\cos x + x^{-3/2}\sin x - x^{-1/2}\cos x$$
$$y_2' = -\frac{1}{2}x^{-3/2}\sin x + x^{-1/2}\cos x \quad y_2'' = \frac{3}{4}x^{-5/2}\sin x - x^{-3/2}\cos x - x^{-1/2}\sin x$$

We plug these into the associated homogeneous DE $x^2y'' + xy' + (x^2 - \frac{1}{4})y = 0$:

$$\begin{aligned} x^2 y_1'' + x y_1' + \left(x^2 - \frac{1}{4}\right) y_1 \\ &= x^2 \left(\frac{3}{4} x^{-5/2} \cos x + x^{-3/2} \sin x - x^{-1/2} \cos x\right) \\ &\quad + x \left(-\frac{1}{2} x^{-3/2} \cos x - x^{-1/2} \sin x\right) + \left(x^2 - \frac{1}{4}\right) \left(x^{-1/2} \cos x\right) \\ &= \left(\frac{3}{4} - \frac{1}{2} - \frac{1}{4}\right) x^{-1/2} \cos x + (1 - 1) x^{1/2} \sin x + (-1 + 1) x^{3/2} \cos x = 0 \\ x^2 y_2'' + x y_2' + \left(x^2 - \frac{1}{4}\right) y_2 \\ &= x^2 \left(\frac{3}{4} x^{-5/2} \sin x - x^{-3/2} \cos x - x^{-1/2} \sin x\right) \\ &\quad + x \left(-\frac{1}{2} x^{-3/2} \sin x + x^{-1/2} \cos x\right) + \left(x^2 - \frac{1}{4}\right) \left(x^{-1/2} \sin x\right) \\ &= \left(\frac{3}{4} - \frac{1}{2} - \frac{1}{4}\right) x^{-1/2} \sin x + (-1 + 1) x^{1/2} \cos x + (-1 + 1) x^{3/2} \sin x = 0 \end{aligned}$$

We also check their linear independence by computing the Wronskian:

$$W(x) = \begin{vmatrix} x^{-1/2} \cos x & x^{-1/2} \sin x \\ -\frac{1}{2} x^{-3/2} \cos x - x^{-1/2} \sin x & -\frac{1}{2} x^{-3/2} \sin x + x^{-1/2} \cos x \end{vmatrix}$$
$$= -\frac{1}{2} x^{-2} \sin x \cos x + x^{-1} \cos^2 x + \frac{1}{2} x^{-2} \sin x \cos x + x^{-1} \sin^2 x = \frac{1}{x}$$

Since this function is not identically 0, the functions are linearly independent.

(b) Use variation of parameters to find a general solution to the nonhomogeneous DE. (Hint: Use the identities $\sin x \cos x = \frac{1}{2} \sin 2x$ and $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$.) *Solution*: We use the formula of variation of parameters to determine a particular solution to the nonhomogeneous DE. First, we must normalize the DE, so that y'' has a coefficient of 1:

$$y'' + \frac{1}{x}y' + \left(1 - \frac{1}{4x^2}\right)y = 8x^{-1/2}\sin x.$$

Then $f(x) = 8x^{-1/2} \sin x$, so the formula for variation of parameters is

$$y = -y_1 \int \frac{y_2 f(x)}{W(x)} dx + y_2 \int \frac{y_1 f(x)}{W(x)} dx$$

= $-x^{-1/2} \cos x \int \frac{(x^{-1/2} \sin x)(8x^{-1/2} \sin x)}{1/x} dx$
 $+ x^{-1/2} \sin x \int \frac{(x^{-1/2} \cos x)(8x^{-1/2} \sin x)}{1/x} dx$

Calculus IV with Applications

Simplifying and applying the identities $\sin x \cos x = \frac{1}{2} \sin 2x$, $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$, and $\cos 2x = 2 \cos^2 x - 1$,

$$y = -x^{-1/2} \cos x \int 8 \sin^2 x \, dx + x^{-1/2} \sin x \int 8 \sin x \cos x \, dx$$

= $-x^{-1/2} \cos x \int 4(1 - \cos 2x) \, dx + x^{-1/2} \sin x \int 4 \sin 2x \, dx$
= $-x^{-1/2} \cos x (4x - 2 \sin 2x) + x^{-1/2} \sin x (-2 \cos 2x)$
= $-x^{-1/2} \cos x (4x - 4 \sin x \cos x) + x^{-1/2} \sin x (-2(2 \cos^2 x - 1)))$
= $-4x^{1/2} \cos x + 2x^{-1/2} \sin x.$

The second term is already part of the complementary solution, so we can reduce this particular solution to $y = -4x^{1/2} \cos x$.

9. A spring is stretched 6 inches by a mass *m* that weighs 8 lb. The mass is attached to a dashpot that has a damping force of 2 lb-s/ft, and an external force of $4 \cos 2t$ lb acts on it.

(a) Describe the steady state response of the system (that is, the particular solution to the nonhomogeneous equation).

Solution: We compute the parameters associated to the system: the mass is m = 8/32 = 1/4 slug, assuming g = 32 ft/s², and the spring constant is k = 8/(0.5) = 16 lb/ft. The damping constant is c = 2, as given above. On the forcing side, the amplitude is $F_0 = 4$, and the frequency is $\omega = 2$.

Since the system is damped, the pure-sinusoidal forcing function will not overlap with the transient solution, so we expect the steady-state function will be of the form

$$x(t) = A\cos 2t + B\sin 2t.$$

Plugging this and its derivatives into the nonhomogeneous DE $mx'' + cx' + kx = 4 \cos 2t$, we have

$$(A(k-4m)+2Bc)\cos 2t + ((k-4m)B-2Ac)\sin 2t = 4\cos 2t.$$

Then A(k-4m) + 2Bc = 4 and (k-4m)B - 2Ac = 0, which we solve to obtain

$$A = \frac{4(k-4m)}{(k-4m)^2 + 4c^2}, \quad B = \frac{8c}{(k-4m)^2 + 4c^2}$$

Plugging in k = 16, $m = \frac{1}{4}$, and c = 2, k - 4m = 15 and 2c = 4, $(k - 4m)^2 + 4c^2 = 15^2 + 16 = 241$, so A = 60/241 and B = 16/241. Then the steady state solution is

$$x(t) = \frac{60}{241}\cos 2t + \frac{16}{241}\sin 2t.$$

We may also unify this into a single oscillation $C \cos(2t - \alpha)$, with

$$C = \sqrt{A^2 + B^2} = \frac{4}{\sqrt{(k - 4m)^2 + 4c^2}}, \quad \tan \alpha = \frac{B}{A} = \frac{2c}{k - 4m}.$$

Then

$$C = \frac{4}{\sqrt{255 + 16}} = \frac{4}{\sqrt{241}}, \qquad \alpha = \tan^{-1}\frac{4}{15}, \qquad x(t) = \frac{4}{\sqrt{241}}\cos(2t - \alpha).$$

(b) Find the value of the mass *m* that maximizes the amplitude of this response, with all other parameters remaining constant. What is this maximum amplitude? What does this mass weigh in pounds?

Solution: We see that, as a function of m, the amplitude C is maximized when the denominator, or its square

$$(k-4m)^2+4c^2,$$

is minimized. Since this is a sum of two squares, only one of which contains *m*, this is minimized when that term is 0. That occurs when k - 4m = 0, so m = k/4 = 16/4 = 4 slug. This mass weighs 128 lb, and the corresponding amplitude is $C = 4/c\omega = 4/4 = 1$ ft.