Solutions to Midterm \#2 Practice Problems

1. Find general solutions to the following DEs:
(a) $y^{\prime \prime}-6 y^{\prime}+8 y=0$

Solution: The characteristic equation for this constant-coefficient, homogeneous DE is $r^{2}-6 r+8=0$, which factors as $(r-2)(r-4)=0$. Therefore, its roots are $r=2$ and $r=4$, so the general solution is

$$
y=c_{1} e^{2 x}+c_{2} e^{4 x} .
$$

(b) $y^{(3)}+2 y^{\prime \prime}-4 y^{\prime}-8 y=0$

Solution: The characteristic equation for this constant-coefficient, homogeneous DE is $r^{3}+2 r^{2}-4 r-8=0$. We see immediately that $r+2$ is a factor of the polynomial; factoring it out, we have $(r+2)\left(r^{2}-4\right)=(r+2)(r+2)(r-2)=0$. Therefore, $r=2$ is a single root, and $r=-2$ is a double root, so the general solution is

$$
y=c_{1} e^{2 x}+c_{2} e^{-2 x}+c_{3} x e^{-2 x} .
$$

(c) $y^{\prime \prime}+8 y^{\prime}+20 y=0$

Solution: The characteristic equation is $r^{2}+8 r+20=0$, which has no immediately obvious solutions. Using the quadratic formula,

$$
r=\frac{-8 \pm \sqrt{64-80}}{2}=\frac{-8 \pm \sqrt{-16}}{2}=\frac{-8 \pm 4 i}{2}=-4 \pm 2 i .
$$

From this pair of complex roots, the general solution is

$$
y=c_{1} e^{-4 x} \cos 2 x+c_{2} e^{-4 x} \sin 2 x .
$$

(d) $y^{(4)}=y$

Solution: Writing this DE as $y^{(4)}-y=0$, its chararcteristic equation is $r^{4}-1=0$. This factors as $(r-1)(r+1)\left(r^{2}+1\right)=0$, so it has roots $r=1, r=-1$, and $r= \pm i$. Therefore, the general solution is

$$
y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \sin x+c_{4} \cos x
$$

(e) $y^{(6)}+8 y^{(4)}+16 y^{\prime \prime}=0$

Solution: This DE has the characteristic equation $r^{6}+8 r^{4}+16 r^{2}=0$, which factors as $r^{2}\left(r^{2}+4\right)^{2}=0$. Then $r=0$ is a double root, and the pair $r= \pm 2 i$ is also a double root, so the general solution is

$$
y=c_{1}+c_{2} x+\left(c_{3}+c_{4} x\right) \cos 2 x+\left(c_{5}+c_{6} x\right) \sin 2 x .
$$

2. Find solutions to the following IVPs:
(a) $y^{\prime \prime}-3 y^{\prime}+2 y=0, y(0)=1, y^{\prime}(0)=0$

Solution: The DE has the characteristic equation $r^{2}-3 r+2=0$, and so has roots $r=1$ and $r=2$. Hence, its general solution is

$$
y=c_{1} e^{x}+c_{2} e^{2 x}
$$

We match this solution and its derivative, $y^{\prime}=c_{1} e^{x}+2 c_{2} e^{2 x}$, to the initial conditions $y(0)=1, y^{\prime}(0)=0$ at $x=0$. We then obtain the linear system

$$
c_{1}+c_{2}=1, \quad c_{1}+2 c_{2}=0 .
$$

Then $c_{1}=-2 c_{2}$; plugging this into the first equation, $-c_{2}=1$, so $c_{2}=-1$ and $c_{1}=2$. Therefore, the solution to the IVP is $y=2 e^{x}-e^{2 x}$.
(b) $9 y^{(3)}+12 y^{\prime \prime}+4 y^{\prime}=0, y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=\frac{10}{3}$

Solution: The DE has the characteristic equation $9 r^{3}+12 r^{2}+4 r=0$, which factors as $r(3 r+2)^{2}=0$. Hence, $r=0$ is a single root, and $r=-2 / 3$ is a double root, so the general solution is

$$
y=c_{1}+c_{2} e^{-2 x / 3}+c_{3} x e^{-2 x / 3}
$$

Taking derivatives,

$$
y^{\prime}=-\frac{2}{3} c_{2} e^{-2 x / 3}+c_{3}\left(1-\frac{2}{3} x\right) e^{-2 x / 3}, \quad y^{\prime \prime}=\frac{4}{9} c_{2} e^{-2 x / 3}+c_{3}\left(-\frac{4}{3}+\frac{4}{9} x\right) e^{-2 x / 3} .
$$

Evaluating these functions at $x=0$ and matching the initial conditions, we obtain the linear system

$$
c_{1}+c_{2}=0, \quad-\frac{2}{3} c_{2}+c_{3}=1, \quad \frac{4}{9} c_{2}-\frac{4}{3} c_{3}=\frac{10}{3} .
$$

Then $c_{3}=1+\frac{2}{3} c_{2}$, so from the third equation, $\frac{4}{9} c_{2}-\frac{4}{3}-\frac{8}{9} c_{2}=\frac{10}{3}$, and $c_{2}=-\frac{14}{3} \frac{9}{4}=$ $-\frac{21}{2}$. Then $c_{3}=1-\frac{21}{3}=-6$, so $c_{1}=-c_{2}=\frac{21}{2}$. Hence, the solution to the IVP is

$$
y=\frac{21}{2}-\frac{21}{2} e^{-2 x / 3}-6 x e^{-2 x / 3}
$$

3. For each of the DEs below, find a particular solution to it:
(a) $y^{\prime \prime}-6 y^{\prime}+8 y=4 x+5$

Solution: From Problem 1(a), we see that the roots of the associated homogeneous DE are $r=2$ and $r=4$, neither of which corresponds to the polynomial function $4 x+5$. Therefore, we do not need to modify the guess $y=A x+B$ to avoid colliding with terms in the complementary solution. Plugging this guess for y into the nonhomogeneous DE, we have

$$
0-6(A)+8(A x+B)=4 x+5
$$

so equating the constant terms and the coefficients on the x terms, we have that $8 A=$ 4 and $8 B-6 A=5$. Then $A=1 / 2$, so $8 B=5+3=8$, and $B=1$. Hence, a particular solution is $y=\frac{1}{2} x+1$.
(b) $y^{(4)}+4 y^{\prime \prime}=12 x-16-8 e^{2 x}$

Solution: Writing the characteristic equation for the associated homogeneous DE, we have $r^{4}+4 r^{2}=r^{2}\left(r^{2}+4\right)=0$. This equation has a double root at $r=0$ and a pair of complex roots $r= \pm 2 i$, so the complementary solution is

$$
y_{c}=c_{1}+c_{2} x+c_{3} \cos 2 x+c_{4} \sin 2 x
$$

From $f(x)=12 x-16-8 e^{2 x}$, we might initially guess a particular solution of the form $y=A x+B+C e^{2 x}$, but the first two terms overlap with terms in y_{c}. Hence, we multiply only those terms by x^{2} to avoid the overlap, obtaining

$$
y=A x^{3}+B x^{2}+C e^{2 x}
$$

as the form of a solution. Then $y^{\prime \prime}=6 A x+2 B+4 C e^{2 x}$ and $y^{(4)}=16 C e^{2 x}$, so the DE becomes

$$
16 C e^{2 x}+24 A x+8 B+16 C e^{2 x}=12 x-16-8 e^{2 x} .
$$

Then $32 C=-8$, so $C=-\frac{1}{4}, 24 A=12$, so $A=\frac{1}{2}$, and $8 B=-16$, so $B=-2$. Consequently, a particular solution is

$$
y=\frac{1}{2} x^{3}-2 x^{2}-\frac{1}{4} e^{2 x}
$$

(c) $y^{\prime \prime}+2 y^{\prime}-3 y=-4 x e^{-3 x}$

Solution: The roots of the characteristic equation for this DE are $r=-3$ and $r=1$, so the complementary solution is $y_{c}=c_{1} e^{x}+c_{2} e^{-3 x}$. From the $x e^{-3 x}$ in the $f(x)$ function, we might guess $y=A x e^{-3 x}+B e^{-3 x}$ as a particular solution, but the lower-order term overlaps with the complementary solution. Hence, we multiply these terms by x to separate them from y_{c}, and the form of our guess is

$$
y=A x^{2} e^{-3 x}+B x e^{-3 x}
$$

Then its derivatives are
$y^{\prime}=A\left(2 x-3 x^{2}\right) e^{-3 x}+B(1-3 x) e^{-3 x}, \quad y^{\prime \prime}=A\left(9 x^{2}-12 x+2\right) e^{-3 x}+B(9 x-6) e^{-3 x}$.
Plugging these into the original nonhomogeneous DE, and observing that the $x^{2} e^{-3 x}$ terms all cancel, we have
$A(-12 x+2) e^{-3 x}+B(9 x-6) e^{-3 x}+4 A x e^{-3 x}+B(2-6 x) e^{-3 x}-3 B x e^{-3 x}=-4 x e^{-3 x}$.
Grouping the coefficients on the $x e^{-3 x}$ and $e^{-3 x}$ terms separately, we have the linear system

$$
-8 A=-4, \quad 2 A-4 B=0
$$

Then $A=1 / 2$, so $B=\frac{1}{2} A=\frac{1}{4}$, and a particular solution is

$$
y=\frac{1}{2} x^{2} e^{-3 x}+\frac{1}{4} x e^{-3 x} .
$$

4. Consider a mass of 2 kg attached to a spring with spring constant $18 \mathrm{~N} / \mathrm{m}$. Find the displacement $x(t)$ with the initial conditions $x(0)=4 \mathrm{~m}, x^{\prime}(0)=9 \mathrm{~m} / \mathrm{s}$, assuming the following damping c is present. If the system exhibits periodic behavior, find its (possibly time-varying) amplitude and period.
(a) $c=0$

Solution: Since $c=0$, there is no damping is the system. We compute the circular frequency ω_{0} of the system to be $\sqrt{k / m}=\sqrt{18 / 2}=3 \mathrm{rad} / \mathrm{s}$, so the general solution for the displacement is of the form

$$
x(t)=A \cos 3 t+B \sin 3 t
$$

Its velocity is then $x^{\prime}(t)=-3 A \sin 3 t+3 B \cos 3 t$. Matching these functions to the initial conditions $x(0)=4$ and $x^{\prime}(0)=9$ at $t=0$, we have

$$
A=4, \quad 3 B=9
$$

so $A=4$ and $B=3$, and therefore $x(t)=4 \cos 3 t+3 \sin 3 t$. The amplitude is given by $C=\sqrt{A^{2}+B^{2}}=\sqrt{9+16}=5$, and the period $T=2 \pi / \omega_{0}=2 \pi / 3 \mathrm{~s}$.
(b) $c=4$

Solution: We now have damping with $c=4$. The characteristic equation for the DE $m x^{\prime \prime}+c x^{\prime}+k x=0$ is $2 r^{2}+4 r+18=0$, so we check the discriminant of this quadratic polynomial to determine whether we obtain real or complex roots. Since this is $c^{2}-$ $4 k m=16-4(2)(18)=16-144=-128$, which is negative, we will get complex roots, with values

$$
r=\frac{-4 \pm \sqrt{-128}}{2(2)}=\frac{-4 \pm 8 \sqrt{2}}{4}=-1 \pm 2 \sqrt{2}
$$

Therefore, the general solution for the displacement and its velocity is

$$
\begin{aligned}
x(t) & =A e^{-t} \cos 2 \sqrt{2} t+B e^{-t} \sin 2 \sqrt{2} t \\
x^{\prime}(t) & =A e^{-t}(-\cos 2 \sqrt{2} t-2 \sqrt{2} \sin 2 \sqrt{2} t)+B e^{-t}(-\sin 2 \sqrt{2} t+2 \sqrt{2} \cos 2 \sqrt{2} t)
\end{aligned}
$$

which we match to the initial conditions $x(0)=4$ and $x^{\prime}(0)=9$ to obtain the system

$$
A=4, \quad-A+2 \sqrt{2} B=9
$$

Then $2 \sqrt{2} B=9+4=13$, so $B=13 / 2 \sqrt{2}$, and the displacement is

$$
x(t)=4 e^{-t} \cos 2 \sqrt{2} t+\frac{13}{2 \sqrt{2}} e^{-t} \sin 2 \sqrt{2} t
$$

We have that $C=\sqrt{A^{2}+B^{2}}=\sqrt{16+169 / 8}=\sqrt{297 / 8}=\frac{3}{2} \sqrt{\frac{33}{2}}$, so the amplitude of this solution is $\frac{3}{2} \sqrt{\frac{33}{2}} e^{-t}$. Since the pseudofrequency is $\omega_{1}=2 \sqrt{2}$, the period is $2 \pi / \omega_{1}=\pi / \sqrt{2}$.
(c) $c=12$

Solution: We check the discriminant $c^{2}-4 k m$ again when $c=12$: now it is $12^{2}-144=$ 0 , so we expect a double root at $r=-c / 2 m=-12 / 4=-3$. Hence, the general forms of the displacement and the velocity are

$$
x(t)=c_{1} e^{-3 t}+c_{2} t e^{-3 t}, \quad x^{\prime}(t)=-3 c_{1} e^{-3 t}+c_{2}(1-3 t) e^{-3 t}
$$

Matching these to the initial conditions $x(0)=4$ and $x^{\prime}(0)=9$, we have the system $c_{1}=4$ and $-3 c_{1}+c_{2}=9$, so $c_{2}=9+12=21$. Thus, the displacement is $x(t)=$ $(4+21 t) e^{-3 t}$. There is no trigonometric component to the solution, so there is no amplitude or period.
(d) $c=20$

Solution: For $c=20$, we now expect an overdamped system with 2 real roots given by

$$
r=\frac{-20 \pm \sqrt{20^{2}-144}}{4}=\frac{-20 \pm \sqrt{256}}{4} \frac{-20 \pm 16}{4}=-5 \pm 4
$$

so the roots are $r=-1$ and $r=-9$. Therefore, the general forms of the displacement and the velocity are

$$
x(t)=c_{1} e^{-t}+c_{2} e^{-9 t}, \quad x^{\prime}(t)=-c_{1} e^{-t}-9 c_{2} e^{-9 t}
$$

Matching these to the initial conditions $x(0)=4$ and $x^{\prime}(0)=9$, we have the system $c_{1}+c_{2}=4,-c_{1}-9 c_{2}=9$. Adding these equations, $-8 c_{2}=13$, so $c_{2}=-13 / 8$, and $c_{1}=4-c_{2}=45 / 8$. Thus, the displacement is

$$
x(t)=\frac{45}{8} e^{-t}-\frac{13}{8} e^{-9 t}
$$

and as in the critically damped case there is no amplitude or period.
5. Find a differential equation with the general solution

$$
y=\left(c_{1}+c_{2} x\right) e^{3 x}+c_{3} e^{-2 x} \cos (\sqrt{2} x)+c_{4} e^{-2 x} \sin (\sqrt{2} x)
$$

Solution: From the form of this general solution, we expect the characteristic equation of the DE to have a double root at $r=3$ and a pair of complex roots $r=-2 \pm \sqrt{2} i$. Then the polynomial in the characteristic equation is

$$
\begin{aligned}
(r-3)^{2}(r+2-\sqrt{2} i)(r+2+\sqrt{2} i) & =\left(r^{2}-6 r+9\right)\left(r^{2}+4 r+6\right) \\
& =r^{4}+(-6+4) r^{3}+(6-24+9) r^{2}+(36-36) r+54 \\
& =r^{4}-2 r^{3}-9 r^{2}+54 .
\end{aligned}
$$

Thus, the differential equation $y^{(4)}-2 y^{(3)}-9 y^{\prime \prime}+54 y=0$ (or any constant multiple of it) corresponds to this characteristic equation, and hence has this general solution.
6.
(a) Show that the functions $y_{1}=e^{-x}$ and $y_{2}=\sin x$ are linearly independent.

Solution: We compute the Wronskian $W(x)$ of these two functions:

$$
W(x)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-x} & \sin x \\
-e^{-x} & \cos x
\end{array}\right|=e^{-x} \cos x+e^{-x} \sin x=e^{-x}(\cos x+\sin x) .
$$

Since $W(x)$ is not identically 0 on the real line (as, for example, $W(0)=e^{0}(1+0)=1$), these functions are linearly independent.
(b) Show that the functions $y_{1}=1+\tan ^{2} x, y_{2}=3-2 \tan ^{2} x$, and $y_{3}=\sec ^{2} x$ are not linearly independent.
Solution: The easy way to show these function are linearly independent is to note that $1+\tan ^{2} x=\sec ^{2} x$, so $y_{1}=y_{3}$. Thus, $-y_{1}+y_{3}$ is a nontrivial linear combination of these functions equal to 0 .

If we do not notice this fact, we proceed by computing the derivatives of y_{1}, y_{2}, and y_{3}, using that $(\tan x)^{\prime}=\sec ^{2} x$ and $(\sec x)^{\prime}=\sec x \tan x$:

$$
\begin{array}{ll}
y_{1}^{\prime}=2 \sec ^{2} x \tan x, & y_{1}^{\prime \prime}=2\left(\left(2 \sec ^{2} x \tan ^{2} x\right)+\sec ^{4} x\right)=4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x \\
y_{2}^{\prime}=-4 \sec ^{2} x \tan x, & y_{2}^{\prime \prime}=-8 \sec ^{2} x \tan ^{2} x-4 \sec ^{4} x \\
y_{3}^{\prime}=2 \sec ^{2} x \tan x, & y_{3}^{\prime \prime}=4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x
\end{array}
$$

The Wronskian of these solutions is then the 3×3 determinant

$$
\begin{aligned}
W(x) & =\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1+\tan ^{2} x & 3-2 \tan ^{2} x & \sec ^{2} x \\
2 \sec ^{2} x \tan x & -4 \sec ^{2} x \tan x & 2 \sec ^{2} x \tan x \\
4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x & -8 \sec ^{2} x \tan ^{2} x-4 \sec ^{4} x & 4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x
\end{array}\right|
\end{aligned}
$$

We expand this determinant along the first row, but first we use the properties of the deteriminant to extract the common factors of the second and third rows:

$$
\begin{aligned}
W(x)= & \left(2 \sec ^{2} x \tan x\right)\left(4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x\right)\left|\begin{array}{ccc}
1+\tan ^{2} x & 3-2 \tan ^{2} x & \sec ^{2} x \\
1 & -2 & 1 \\
1 & -2 & 1
\end{array}\right| \\
= & \left(8 \sec ^{4} x \tan ^{3} x+4 \sec ^{6} x \tan x\right)\left(\left(1+\tan ^{2}\right)\left|\begin{array}{cc}
-2 & 1 \\
-2 & 1
\end{array}\right|\right. \\
& \left.-\left(3-2 \tan ^{2} x\right)\left|\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right|+\sec ^{2} x\left|\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right|\right) \\
= & \left(8 \sec ^{4} x \tan ^{3} x+4 \sec ^{6} x \tan x\right)(0-0+0)=0
\end{aligned}
$$

Since the Wronskian is identically 0 , the functions are linearly dependent.
7. Find the form of a particular solution to the $\mathrm{DE} y^{(3)}-2 y^{\prime \prime}+2 y^{\prime}=6 e^{x}+3 e^{x} \sin x-x^{2}$, but do not determine the values of the coefficients.

Solution: We first determine the complementary solution y_{c}, the general solution of the associated homogeneous equation. The characteristic equation is $r^{3}-2 r^{2}+2 r=r\left(r^{2}-\right.$ $2 r+2)=0$. Thus $r=0$ is a root, as are $r=\frac{2 \pm \sqrt{4-8}}{2}=1 \pm i$, so

$$
y_{c}=c_{1}+c_{2} e^{x} \cos x+c_{3} e^{x} \sin x .
$$

Examining the form of the forcing function $f(x)$, we would expect a particular solution of the form

$$
A e^{x}+B e^{x} \cos x+C e^{x} \sin x+D+E x+F x^{2}
$$

but the $B e^{x} \cos x, C e^{x} \sin x$, and D terms overlap with y_{c}. Therefore, we multiply these terms and the ones related to them by enough powers of x to prevent the overlap:

$$
y_{p}=A e^{x}+B x e^{x} \cos x+C x e^{x} \sin x+D x+E x^{2}+F x^{3} .
$$

8. Consider the nonhomogeneous $\mathrm{DE} x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=8 x^{3 / 2} \sin x$.
(a) Verify that $y_{1}=x^{-1 / 2} \cos x$ and $y_{2}=x^{-1 / 2} \sin x$ are linearly independent solutions to the associated homogeneous DE.
Solution: We compute the first and second derivatives of these solutions:

$$
\begin{array}{ll}
y_{1}^{\prime}=-\frac{1}{2} x^{-3 / 2} \cos x-x^{-1 / 2} \sin x & y_{1}^{\prime \prime}=\frac{3}{4} x^{-5 / 2} \cos x+x^{-3 / 2} \sin x-x^{-1 / 2} \cos x \\
y_{2}^{\prime}=-\frac{1}{2} x^{-3 / 2} \sin x+x^{-1 / 2} \cos x & y_{2}^{\prime \prime}=\frac{3}{4} x^{-5 / 2} \sin x-x^{-3 / 2} \cos x-x^{-1 / 2} \sin x
\end{array}
$$

We plug these into the associated homogeneous DE $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0$:

$$
\begin{aligned}
& \begin{array}{l}
x^{2} y_{1}^{\prime \prime}+x y_{1}^{\prime}+\left(x^{2}-\frac{1}{4}\right) y_{1}
\end{array} \\
& \begin{array}{l}
=x^{2}\left(\frac{3}{4} x^{-5 / 2} \cos x+x^{-3 / 2} \sin x-x^{-1 / 2} \cos x\right) \\
\quad+x\left(-\frac{1}{2} x^{-3 / 2} \cos x-x^{-1 / 2} \sin x\right)+\left(x^{2}-\frac{1}{4}\right)\left(x^{-1 / 2} \cos x\right) \\
=\left(\frac{3}{4}-\frac{1}{2}-\frac{1}{4}\right) x^{-1 / 2} \cos x+(1-1) x^{1 / 2} \sin x+(-1+1) x^{3 / 2} \cos x=0
\end{array} \\
& \begin{array}{r}
x^{2} y_{2}^{\prime \prime}+x y_{2}^{\prime}+\left(x^{2}-\frac{1}{4}\right) y_{2} \\
=x^{2}\left(\frac{3}{4} x^{-5 / 2} \sin x-x^{-3 / 2} \cos x-x^{-1 / 2} \sin x\right)
\end{array} \\
& \quad \quad+x\left(-\frac{1}{2} x^{-3 / 2} \sin x+x^{-1 / 2} \cos x\right)+\left(x^{2}-\frac{1}{4}\right)\left(x^{-1 / 2} \sin x\right) \\
& =\left(\frac{3}{4}-\frac{1}{2}-\frac{1}{4}\right) x^{-1 / 2} \sin x+(-1+1) x^{1 / 2} \cos x+(-1+1) x^{3 / 2} \sin x=0
\end{aligned}
$$

We also check their linear independence by computing the Wronskian:

$$
\begin{aligned}
W(x) & =\left|\begin{array}{cc}
x^{-1 / 2} \cos x & x^{-1 / 2} \sin x \\
-\frac{1}{2} x^{-3 / 2} \cos x-x^{-1 / 2} \sin x & -\frac{1}{2} x^{-3 / 2} \sin x+x^{-1 / 2} \cos x
\end{array}\right| \\
& =-\frac{1}{2} x^{-2} \sin x \cos x+x^{-1} \cos ^{2} x+\frac{1}{2} x^{-2} \sin x \cos x+x^{-1} \sin ^{2} x=\frac{1}{x}
\end{aligned}
$$

Since this function is not identically 0 , the functions are linearly independent.
(b) Use variation of parameters to find a general solution to the nonhomogeneous DE. (Hint: Use the identities $\sin x \cos x=\frac{1}{2} \sin 2 x$ and $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$.)
Solution: We use the formula of variation of parameters to determine a particular solution to the nonhomogeneous DE. First, we must normalize the DE, so that $y^{\prime \prime}$ has a coefficient of 1 :

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{1}{4 x^{2}}\right) y=8 x^{-1 / 2} \sin x
$$

Then $f(x)=8 x^{-1 / 2} \sin x$, so the formula for variation of parameters is

$$
\begin{aligned}
y= & -y_{1} \int \frac{y_{2} f(x)}{W(x)} d x+y_{2} \int \frac{y_{1} f(x)}{W(x)} d x \\
= & -x^{-1 / 2} \cos x \int \frac{\left(x^{-1 / 2} \sin x\right)\left(8 x^{-1 / 2} \sin x\right)}{1 / x} d x \\
& +x^{-1 / 2} \sin x \int \frac{\left(x^{-1 / 2} \cos x\right)\left(8 x^{-1 / 2} \sin x\right)}{1 / x} d x
\end{aligned}
$$

Simplifying and applying the identities $\sin x \cos x=\frac{1}{2} \sin 2 x, \sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$, and $\cos 2 x=2 \cos ^{2} x-1$,

$$
\begin{aligned}
y & =-x^{-1 / 2} \cos x \int 8 \sin ^{2} x d x+x^{-1 / 2} \sin x \int 8 \sin x \cos x d x \\
& =-x^{-1 / 2} \cos x \int 4(1-\cos 2 x) d x+x^{-1 / 2} \sin x \int 4 \sin 2 x d x \\
& =-x^{-1 / 2} \cos x(4 x-2 \sin 2 x)+x^{-1 / 2} \sin x(-2 \cos 2 x) \\
& =-x^{-1 / 2} \cos x(4 x-4 \sin x \cos x)+x^{-1 / 2} \sin x\left(-2\left(2 \cos ^{2} x-1\right)\right) \\
& =-4 x^{1 / 2} \cos x+2 x^{-1 / 2} \sin x
\end{aligned}
$$

The second term is already part of the complementary solution, so we can reduce this particular solution to $y=-4 x^{1 / 2} \cos x$.
9. A spring is stretched 6 inches by a mass m that weighs 8 lb . The mass is attached to a dashpot that has a damping force of $2 \mathrm{lb}-\mathrm{s} / \mathrm{ft}$, and an external force of $4 \cos 2 t \mathrm{lb}$ acts on it.
(a) Describe the steady state response of the system (that is, the particular solution to the nonhomogeneous equation).
Solution: We compute the parameters associated to the system: the mass is $m=$ $8 / 32=1 / 4$ slug, assuming $g=32 \mathrm{ft} / \mathrm{s}^{2}$, and the spring constant is $k=8 /(0.5)=$ $16 \mathrm{lb} / \mathrm{ft}$. The damping constant is $c=2$, as given above. On the forcing side, the amplitude is $F_{0}=4$, and the frequency is $\omega=2$.

Since the system is damped, the pure-sinusoidal forcing function will not overlap with the transient solution, so we expect the steady-state function will be of the form

$$
x(t)=A \cos 2 t+B \sin 2 t .
$$

Plugging this and its derivatives into the nonhomogeneous DE $m x^{\prime \prime}+c x^{\prime}+k x=$ $4 \cos 2 t$, we have

$$
(A(k-4 m)+2 B c) \cos 2 t+((k-4 m) B-2 A c) \sin 2 t=4 \cos 2 t
$$

Then $A(k-4 m)+2 B c=4$ and $(k-4 m) B-2 A c=0$, which we solve to obtain

$$
A=\frac{4(k-4 m)}{(k-4 m)^{2}+4 c^{2}}, \quad B=\frac{8 c}{(k-4 m)^{2}+4 c^{2}} .
$$

Plugging in $k=16, m=\frac{1}{4}$, and $c=2, k-4 m=15$ and $2 c=4,(k-4 m)^{2}+4 c^{2}=$ $15^{2}+16=241$, so $A=60 / 241$ and $B=16 / 241$. Then the steady state solution is

$$
x(t)=\frac{60}{241} \cos 2 t+\frac{16}{241} \sin 2 t
$$

We may also unify this into a single oscillation $C \cos (2 t-\alpha)$, with

$$
C=\sqrt{A^{2}+B^{2}}=\frac{4}{\sqrt{(k-4 m)^{2}+4 c^{2}}}, \quad \tan \alpha=\frac{B}{A}=\frac{2 c}{k-4 m} .
$$

Then

$$
C=\frac{4}{\sqrt{255+16}}=\frac{4}{\sqrt{241}}, \quad \alpha=\tan ^{-1} \frac{4}{15}, \quad x(t)=\frac{4}{\sqrt{241}} \cos (2 t-\alpha)
$$

(b) Find the value of the mass m that maximizes the amplitude of this response, with all other parameters remaining constant. What is this maximum amplitude? What does this mass weigh in pounds?
Solution: We see that, as a function of m, the amplitude C is maximized when the denominator, or its square

$$
(k-4 m)^{2}+4 c^{2}
$$

is minimized. Since this is a sum of two squares, only one of which contains m, this is minimized when that term is 0 . That occurs when $k-4 m=0$, so $m=k / 4=16 / 4=$ 4 slug. This mass weighs 128 lb , and the corresponding amplitude is $C=4 / c \omega=$ $4 / 4=1 \mathrm{ft}$.

