Midterm \#2 Practice Problems

1. Find general solutions to the following DEs:
(a) $y^{\prime \prime}-6 y^{\prime}+8 y=0$
(b) $y^{(3)}+2 y^{\prime \prime}-4 y^{\prime}-8 y=0$
(c) $y^{\prime \prime}+8 y^{\prime}+20 y=0$
(d) $y^{(4)}=y$
(e) $y^{(6)}+8 y^{(4)}+16 y^{\prime \prime}=0$
2. Find solutions to the following IVPs:
(a) $y^{\prime \prime}-3 y^{\prime}+2 y=0, y(0)=1, y^{\prime}(0)=0$
(b) $9 y^{(3)}+12 y^{\prime \prime}+4 y^{\prime}=0, y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=\frac{10}{3}$
3. For each of the DEs below, find a particular solution to it:
(a) $y^{\prime \prime}-6 y^{\prime}+8 y=4 x+5$
(b) $y^{(4)}+4 y^{\prime \prime}=12 x-16-8 e^{2 x}$
(c) $y^{\prime \prime}+2 y^{\prime}-3 y=-4 x e^{-3 x}$
4. Consider a mass of 2 kg attached to a spring with spring constant $18 \mathrm{~N} / \mathrm{m}$. Find the displacement $x(t)$ with the initial conditions $x(0)=4 \mathrm{~m}, x^{\prime}(0)=9 \mathrm{~m} / \mathrm{s}$, assuming the following damping c is present. If the system exhibits periodic behavior, find its (possibly time-varying) amplitude and period.
(a) $c=0$
(b) $c=4$
(c) $c=12$
(d) $c=20$
5. Find a differential equation with the general solution

$$
y=\left(c_{1}+c_{2} x\right) e^{3 x}+c_{3} e^{-2 x} \cos (\sqrt{2} x)+c_{4} e^{-2 x} \sin (\sqrt{2} x)
$$

6.

(a) Show that the functions $y_{1}=e^{-x}$ and $y_{2}=\sin x$ are linearly independent.
(b) Show that the functions $y_{1}=1+\tan ^{2} x, y_{2}=3-2 \tan ^{2} x$, and $y_{3}=\sec ^{2} x$ are not linearly independent.
7. Find the form of a particular solution to the $\mathrm{DE} y^{(3)}-2 y^{\prime \prime}+2 y^{\prime}=6 e^{x}+3 e^{x} \sin x-x^{2}$, but do not determine the values of the coefficients.
8. Consider the nonhomogeneous DE $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=8 x^{3 / 2} \sin x$.
(a) Verify that $y_{1}=x^{-1 / 2} \cos x$ and $y_{2}=x^{-1 / 2} \sin x$ are linearly independent solutions to the associated homogeneous DE.
(b) Use variation of parameters to find a general solution to the nonhomogeneous DE. (Hint: Use the identities $\sin x \cos x=\frac{1}{2} \sin 2 x$ and $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$.)
9. A spring is stretched 6 inches by a mass m that weighs 8 lb . The mass is attached to a dashpot that has a damping force of $2 \mathrm{lb}-\mathrm{s} / \mathrm{ft}$, and an external force of $4 \cos 2 t \mathrm{lb}$ acts on it.
(a) Describe the steady state response of the system (that is, the particular solution to the nonhomogeneous equation).
(b) Find the value of the mass m that maximizes the amplitude of this response, with all other parameters remaining constant. What is this maximum amplitude? What does this mass weigh in pounds?

