
MAT 303 Spring 2013 Calculus IV with Applications

Homework #1 Solutions

Problems

• Section 1.1: 1, 4, 6, 34, 40

• Section 1.2: 1, 4, 8, 30, 42

• Section 1.4: 1, 2, 3, 4, 8, 22, 24, 46

1.1.1. Verify that y = x3 + 7 is a solution to y′ = 3x2.

Solution: From this y, we compute y′ = 3x2, which matches the DE. �

1.1.4. Verify that y1 = e3x and y2 = e−3x are solutions to y′′ = 9y.

Solution: We check y1 and y2 individually:
• Computing derivatives, y′1 = 3e3x and y′′1 = 3(3e3x) = 9e3x, which is the same as

9y = 9e3x.

• Computing derivatives, y′2 = −3e−3x and y′′2 = −3(−3e−3x) = 9e−3x, which is the
same as 9y = 9e−3x. �

1.1.6. Verify that y1 = e−2x and y2 = xe−2x are solutions to y′′ + 4y′ + 4y = 0.

Solution: We check y1 and y2 individually:
• Computing derivatives, y′1 = −2e−2x and y′′1 = −2(−2e−2x) = 4e−2x. Then y′′ +

4y′ + 4y = 4e−2x + 4(−2e−2x) + 4(e−2x) = 0.

• Computing derivatives via the product rule,

y′1 = −2xe−2x + e−2x = (1− 2x)e−2x,

y′′1 = −2(1− 2x)e−2x − 2e−2x = (4x− 4)e−2x.

Then y′′ + 4y′ + 4y = (4x− 4)e−2x + 4(1− 2x)e−2x + 4xe−2x = 0. �
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1.1.34. Write a differential equation that is a mathematical model of the following situ-
ation: The acceleration of a Lamborghini is proportional to the difference between 250
km/h and the velocity of the car.

Solution: Let v be the velocity of the car, in km/h, and let t be the time, in hours. Then the

acceleration is
dv
dt

, which should be proportional to 250− v in the units we have chosen.
Thus, the DE is

dv
dt

= k(250− v),

where k is a constant of proportionality. �

1.1.40. Determine by inspection at least one solution to the DE (y′)2 + y2 = 1, then check
your solution.

Solution: Answers may vary, but a general solution is y = sin(x + C), which forms the
general solution with the addition of the singular solutions y = 1 and y = −1. The latter
are easy to verify as solutions. For y = sin(x + C), y′ = cos(x + C), and

(y′)2 + y2 = cos2(x + C) + sin2(x + C) = 1

by the Pythagorean identity. �

1.2.1. Find a function y = f (x) satisfying the DE
dy
dx

= 2x + 1 and the IC y(0) = 3.

Solution: Integrating, we find the general solution y =
∫

2x + 1 dx = x2 + x + C. Apply-
ing the initial condition, 3 = y(0) = 02 + 0 + C = C, so C = 3. The particular solution is
then y = x2 + x + 3. �

1.2.4. Find a function y = f (x) satisfying the DE
dy
dx

=
1
x2 and the IC y(1) = 5.

Solution: Integrating, we find the general solution y =
∫ 1

x2 dx = −1
x
+ C. Applying the

initial condition, 5 = y(1) = −1
1 + C = C− 1. Then C = 5 + 1 = 6, so y = 6− 1

x
. �
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1.2.8. Find a function y = f (x) satisfying the DE
dy
dx

= cos 2x and the IC y(0) = 1.

Solution: Integrating, we find the general solution y =
∫

cos 2x dx = 1
2 sin(2x) + C. Ap-

plying the initial condition, 1 = y(0) = 1
2 sin(2(0)) + C = 0 + C = C. Then C = 1, so

y = 1
2 sin(2x) + 1. �

1.2.30. A car traveling at 60 mi/h (88 ft/s) skids 176 ft after its brakes are suddenly
applied. Under the assumption that the braking system provides constant deceleration,
what is that deceleration? For how long does the skid continue?

Solution: In general, we expect that the position and velocity of the car are given by x(t) =
1
2 at2 + v0t + x0 and v(t) = at + v0, where v(0) = v0 and x(0) = x0 are the initial velocity
and position of the car. In this case, v0 = 88, using units of feet for x and seconds for t.
We also set x0 = 0.
Let T denote the stopping time for the car, and let L = 176 denote the length of the skid,
in feet. Then v(T) = 0, and x(T) = L. We now must solve

v(T) = aT + v0 = 0, x(T) =
1
2

aT2 + v0T = L

for a and T simultaneously. From the first equation, aT = −v0, so T = − v0
a . Substituting

this into the second equation, 1
2

v2
0

a −
v2

0
a = L, so v2

0 = −2aL, and a = − v2
0

2L . Thus, T =

−v0(−2L
v2

0
) = 2L

v0
. Plugging in the values v0 = 88 and L = 176,

a = − (88)2

2(176)
= −88

4
= −22

ft
s2 , T =

2(176)
88

= 4 s. �

1.2.42. A spacecraft is in free fall towards the surface of the moon at a speed of 1000 mph
(mi/h). Its retrorockets, when fired, provide a constant deceleration of 20, 000 mi/h2. At
what height above the lunar surface should the astronauts fire the retrorockets to insure
a safe touchdown? (As in Example 1.2.2, ignore the moon’s gravitational field.)

Solution: Let y denote the height of the spacecraft above the surface of the moon, and
suppose that the spacecraft fires its retrorockets at t = 0. Then, in mi/h, v0 = −1000, since
the spacecraft is descending, and, in mi/h2, a = 20,000, since the retrorockets provide an
upward force. The velocity v(t) and height y(t) of the spacecraft are then

v(t) = at + v0, y(t) =
1
2

at2 + v0t + y0,

where y0 is then the height of the craft when it starts to fire the rockets.
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Let t = L be the time at which the craft lands. For a soft landing, we expect to have
v(L) = 0 and x(L) = 0, so

v(L) = aL + v0 = 0, y(L) =
1
2

aL2 + v0L + y0 = 0.

Solving the first equation, L = −v0/a = 1000/20,000 = 0.05 h. We plug this into the
second equation to get

0 =
1
2
(20,000)(0.05)2 − 1000(0.05) + y0 = 25− 50 + y0 = y0 − 25,

so y0 = 25 mi. Thus, the craft should start firing its rockets 25 miles above the surface to
land softly. �

1.4.1. Find the general solution (implicit if necessary, explicit if possible) to the DE
dy
dx

+

2xy = 0.

Solution: Writing the equation in normal form, we obtain y′ = −2xy, which is separable.
Assuming y 6= 0, we separate variables to form 1

y y′ = −2x. Integrating, we obtain∫ 1
y

dy =
∫
−2x dx

ln |y| = −x2 + C,

where C is any real number. Then y = ±e−x2+C = ±eCe−x2
. We observe that ±eC is just

another constant, and that its range of values is all real numbers except 0. We therefore
redefine C to be this value, so that y = Ce−x2

, C 6= 0.
This family is one set of solutions to the DE, but because of the assumptions made when
separating variables, we may have missed y = 0 as a solution. Fortunately, y = 0 = 0e−x2

exactly corresponds to the one value of C that we excluded, so our general solution is
y = Ce−x2

, where C is any real.

We also check that this general solution is indeed valid: y′ = −2xCe−x2
= −2xy, for all

values of C. �

1.4.2. Find the general solution (implicit if necessary, explicit if possible) to the DE
dy
dx

+

2xy2 = 0.

Solution: Writing the equation in normal form, we obtain y′ = −2xy2, which is separable.
Assuming y 6= 0, we separate variables to form 1

y2 y′ = −2x. Integrating, we obtain∫ 1
y2 dy =

∫
−2x dx

−1
y
= −x2 + C,
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where C is any real number. Then 1
y = x2 + C (reversing the sign on C), so y = 1

x2+C is a
general solution. We check that it is a valid solution:

y′ = (−1)(2x)(x2 + C)−2 = −2x
(

1
x2 + C

)2

= −2xy2.

Furthermore, we must go back and check the potential solution y = 0, which we excluded
algebraically when separating. This, too, is a valid solution: y′ = 0 = −2x(0)2 = −2xy2.
Additionally, there is no value of C so that 1

x2+C = 0 as functions of x, so this solution
remains separate from the other family of solutions.
Thus, the complete general solution to the DE is y = 1

x2+C or y = 0. (Actually, in a sense,
y = 0 is the limit of the family as C → ∞, but we do not make that precise in this course.)�

1.4.3. Find the general solution (implicit if necessary, explicit if possible) to the DE
dy
dx

=

y sin x.

Solution: The equation is already in normal form, and is separable, so we separate the
variables to form 1

y y′ = sin x. We observe this will exclude the potential solution y = 0.
Intergrating,∫ 1

y
dy =

∫
sin x dx ⇒ ln |y| = − cos x + C

Then y = ±eCe− cos x = Ce− cos x, where C (redefined) is nonzero. We check that this is a
solution: y′ = C(sin x)e− cos x = y sin x.
We also note that if y = 0, y′ = 0 = (0)(sin x) = y sin x, so this is an additional solution
to the DE that corresponds to the general solution above when C = 0. Thus, the general
solution to the DE is y = Ce− cos x, C any real. �

1.4.4. Find the general solution (implicit if necessary, explicit if possible) to the DE (1 +

x)
dy
dx

= 4y.

Solution: We observe that this DE is separable, so we form 1
y y′ = 4

1+x and integrate:

∫ 1
y

dy =
∫ 4

1 + x
dx ⇒ ln |y| = 4 ln |1 + x|+ C = ln(1 + x)4 + C

Then y = C(1 + x)4; including the omitted solution y = 0 as corresponding to C = 0,
C can be any real number. We check that these are solutions to the original DE: y′ =
4C(1 + x)3, so

(1 + x)y′ = 4C(1 + x)4 = 4y. �
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1.4.8. Find the general solution (implicit if necessary, explicit if possible) to the DE
dy
dx

=

2x sec y.

Solution: Separating, we obtain 1
sec y y′ = 2x, or (cos y)y′ = 2x. Then integrating,∫

cos y dy =
∫

2x dx ⇒ sin y = x2 + C.

Then y = sin−1(x2 + C). We actually omitted no solutions during the separation process,
as sec is never 0. The domain on these solutions is restricted to −1 ≤ x2 + C ≤ 1; for
C > 1, the function is not defined at all.
For good measure, we check that this general solution is valid: by the chain rule,

y′ = (2x)
1√

1− (x2 + C)2
=

2x
cos y

= 2x sec y.
�

1.4.22. Find an explicit particular solution of the initial value problem
dy
dx

= 4x3y− y,

y(1) = −3.

Solution: We separate variables to obtain 1
y y′ = 4x3 − 1. Integrating,∫ 1

y
dy =

∫
4x3 − 1 dx ⇒ ln |y| = x4 − x + C.

Then y = Cex4−x for any real C, with the solution y = 0 filling the C = 0 hole missed
during integration.
We apply the initial condition: −3 = Ce1−1 = C(1) = C, so C = −3, and the solution is
y = −3ex4−x. We also check that this is valid for the original DE:

y′ = −3(4x3 − 1)ex4−x = (4x3 − 1)y = 4x3y− y. �

1.4.24. Find an explicit particular solution of the initial value problem (tan x)
dy
dx

= y,

y(1
2 π) = 1

2 π.

Solution: We separate variables to obtain 1
y y′ = cot x = cos x

sin x . Integrating,∫ 1
y

dy =
∫ cos x

sin x
dx ⇒ ln |y| = ln | sin x|+ C.

Then y = C| sin x| for any real C, with the solution y = 0 filling the C = 0 hole missed
during integration. In fact, the solutions are unique only away from x = nπ, where
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sin x = 0, so we may write each solution as C sin x, since sin x has a single sign on each
interval (nπ, (n + 1)π).
We apply the initial condition: 1

2 π = C sin(1
2 π) = C(1) = C, so C = 1

2 π, and the solution
is y = 1

2 π sin x. We also check that this is valid for the original DE: y′ = 1
2 π cos x, so

(tan x)y′ =
sin x
cos x

(
1
2

π cos x
)
=

1
2

π sin x = y.

We note that the DE initially does not appear to be meaningful at x = π
2 , since tan x is

not defined there, but in some sense this is a “removable discontinuity” that disappears
when the equation is put into normal form as y′ = y cot x. �

1.4.46. The barometric pressure p (in inches of mercury) at an altitude x miles above sea

level satisfies the initial value problem
dp
dx

= −0.2p, p(0) = 29.92.

(a) Calculate the barometric pressure at 10,000 ft and again at 30,000 ft.

(b) Without prior conditioning, few people can survive when the pressure drops to less
than 15 inches of mercury. How high is that?

Solution (a): The DE is one of the form p′ = kp, with k = −0.2/mi, and so has the solution
p(x) = p(0)e−0.2x = 29.92e−0.2x, with x in miles. Then, since there are 5280 feet in a mile,

p(10,000 ft) = 29.92e−0.2(10,000/5280) = 20.49 in Hg

p(30,000 ft) = 29.92e−0.2(30,000/5280) = 9.60 in Hg. �

Solution (b): We solve 29.92e−0.2x = 15:

x = − 1
0.2

ln
15

29.92
= −5 ln

15
29.92

≈ 3.45 mi ≈ 18,200 ft.
�
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