Homework \#2 Solutions

Problems

- Section 1.3: 2, 8, 12, 14, 28
- Section 1.5: 1, 2, 12, 14, 22, 36
- Extra Problem \#1
1.3.2. Sketch likely solution curves through the given slope field for $\frac{d y}{d x}=x+y$.
1.3.8. Sketch likely solution curves through the given slope field for $\frac{d y}{d x}=x^{2}-y$.

Solution: Here are slope fields with some solutions for these two problems:

1.3.12. Determine whether Theorem 1.3.1 does or does not guarantee existence and /or uniqueness for the IVP $y^{\prime}=x \ln y, y(1)=1$. If a solution does exist, is it unique?

Solution: We see that the DE is already in normal form, with $f(x, y)=x \ln y$. We then examine this function and its derivative $f_{y}(x, y)=\frac{x}{y}$ around $x=1$ and $y=1$. Since both functions are defined and continuous in a region around $(1,1)$, this IVP satisfies the hypotheses of Theorem 1, so it is guaranteed to have a unique solution $y(x)$ on some interval containing $x=1$.
1.3.14. Determine whether Theorem 1.3.1 does or does not guarantee existence and/or uniqueness for the IVP $y^{\prime}=\sqrt[3]{y}, y(0)=0$. If a solution does exist, is it unique?

Solution: We see that the DE is already in normal form, with $f(x, y)=\sqrt[3]{y}=y^{1 / 3}$. We then examine this function and its derivative $f_{y}(x, y)=\frac{1}{3} y^{-2 / 3}$ around $x=0$ and $y=0$. While f is continuous everywhere, f_{y} is not even defined for $y=0$. Hence, Theorem 1 does not apply, so neither existence nor uniqueness is guaranteed for this IVP.
By inspection, we can see that $y=0$ is actually a solution to this DE passing through the initial condition $(0,0)$, so we have verified existence empirically. Since the DE is a fairly simple separable equation, we could probably solve it explicitly for y in terms of x, but we are not required to for this problem.
1.3.28. Verify that if k is a constant, then the function $y(x) \equiv k x$ satisfies the differential equation $x y^{\prime}=y$. Construct a slope field and several of these straight-line solution curves. Then determine (in terms of a and b) how many different solutions the initial value problem $x y^{\prime}=y, y(a)=b$ has-one, none, or infinitely many.

Solution: We first check that $y=k x$ satisfies the DE. For these solutions, $y^{\prime}=k$, so $x y^{\prime}=$ $x(k)=k x=y$, as desired.
Putting the DE in normal form, $y^{\prime}=y / x$. Letting $f(x, y)=y / x$, we plot a slope field with slopes given by f and some solutions $y=k x$:

Note that $f(x, y)$ is not defined for $x=0$. We note that f and $f_{y}(x, y)=1 / x$ are continuous for $x \neq 0$, so the hypotheses of Theorem 1 are satisfied at all points in this region. Hence, there is a unique solution to this DE going through each (a, b) with $a \neq 0$, namely the line $y=b x / a$.
For $a=0$, we see that all the linear solutions intersect at $(0,0)$, so there are an infinite number of solutions for the IC $(a, b)=(0,0)$. Conversely, no lines go through $(0, b)$ with $b \neq 0$, so there are no solutions to the IVP for that IC.
1.5.1. Find the general solution to the $\mathrm{DE} y^{\prime}+y=2$. Find the particular solution satisfying the initial condition $y(0)=0$.

Solution: We recognize this as a linear DE with $P(x)=1$ and $Q(x)=2$. We then multiply the DE by the integrating factor $\mu(x)=e^{\int P(x) d x}=e^{x}$ to get

$$
\left(e^{x} y\right)^{\prime}=e^{x} y^{\prime}+e^{x} y=2 e^{x}
$$

Integrating, $e^{x} y=\int 2 e^{x} d x=2 e^{x}+C$. Isolating $y, y=2+C e^{x}, C$ any real number, so this is the general solution to the DE .
Applying the initial condition, $0=y(0)=2+C e^{0}=2+C$. Thus, $C=-2$, so $y=2-2 e^{x}$ is the particular solution.
1.5.2. Find the general solution to the $\mathrm{DE} y^{\prime}-2 y=3 e^{2 x}$. Find the particular solution satisfying the initial condition $y(0)=0$.

Solution: We recognize this DE as being linear with $P(x)=-2$. Then $\int P(x) d x=-2 x$, so an integrating factor is $\mu(x)=e^{-2 x}$. Multiplying the DE by this $\mu(x)$, we have

$$
\left(e^{-2 x} y\right)^{\prime}=3 e^{2 x} e^{-2 x}=3
$$

and integrating yields $e^{-2 x} y=3 x+C$. Hence, $y=3 x e^{2 x}+C e^{2 x}$ is the general solution.
Applying the initial condition, $0=y(0)=3(0) e^{0}+C e^{0}=C$, so $C=0$. Thus, $y=3 x e^{2 x}$ is the particular solution for this IVP.
1.5.12. Find the general solution to the $\mathrm{DE} x y^{\prime}+3 y=2 x^{5}$. Find the particular solution satisfying the initial condition $y(2)=1$.

Solution: Normalizing the DE, it becomes $y^{\prime}+\frac{3}{x} y=2 x^{4}$. Then $P(x)=\frac{3}{x}$, so $\int P(x) d x=$ $3 \ln |x|$, and an integrating factor is $\mu(x)=e^{3 \ln |x|}=\left|x^{3}\right|$. In fact, we choose to take $\mu(x)=x^{3}$. Multiplying this through the normalized form of the equation,

$$
\left(x^{3} y\right)^{\prime}=x^{3} y^{\prime}+3 x^{2} y=2 x^{7} .
$$

Integrating, $x^{3} y=\int 2 x^{7} d x=\frac{1}{4} x^{8}+C$. Isolating $y, y=\frac{1}{4} x^{5}+C x^{-3}$.
Applying the IC, $1=y(2)=\frac{1}{4} 2^{5}+C 2^{-3}=8+C / 8$. Then $C / 8=-7$, so $C=-56$, and the particular solution to the IVP is $y=\frac{1}{4} x^{5}-56 x^{-3}$.
1.5.14. Find the general solution to the $\mathrm{DE} x y^{\prime}-3 y=x^{3}$. Find the particular solution satisfying the initial condition $y(1)=10$.

Solution: Normalizing the DE by dividing by x, we have $y^{\prime}-\frac{3}{x} y=x^{2}$. Then $P(x)=$ $-\frac{3}{x}$, so $\int P(x) d x=-3 \ln |x|$, and an integrating factor is $e^{-3 \ln |x|}=|x|^{-3}$. Actually, we take $\mu(x)=x^{-3}=1 / x^{3}$ as our integrating factor for convenience. Multiplying our normalized equation by this $\mu(x)$, we have

$$
\left(\frac{1}{x^{3}} y\right)^{\prime}=\frac{1}{x^{3}} y^{\prime}-\frac{3}{x^{4}} y=x^{2} \frac{1}{x^{3}}=\frac{1}{x}
$$

Integrating, $y / x^{3}=\ln x+C$, so $y=x^{3} \ln x+C x^{3}$ is the general solution to the DE.
Applying the initial condition, $10=y(1)=1^{3} \ln 1+C 1^{3}=0+C=C$, so $C=10$. Thus, the particular solution to the IVP is $y=x^{3} \ln x+10 x^{3}$.
1.5.22. Find the general solution to the $\mathrm{DE} y^{\prime}=2 x y+3 x^{2} e^{x^{2}}$. Find the particular solution satisfying the initial condition $y(0)=5$.

Solution: The DE is already given in normal form, so we move the y term to the left-hand side to get $y^{\prime}-2 x y=3 x^{2} e^{x^{2}}$. Then this DE is linear with $P(x)=-2 x$, so $\int P(x) d x=$ $-x^{2}$, and an integrating factor is $\mu(x)=e^{-x^{2}}$. Multiplying the DE on both sides by this function,

$$
\left(e^{-x^{2}} y\right)^{\prime}=e^{-x^{2}} y^{\prime}-2 x y=3 x^{2} e^{x^{2}} e^{-x^{2}}=3 x^{2}
$$

Then integrating yields $e^{-x^{2}} y=\int 3 x^{2} d x=x^{3}+C$. Isolating y gives the general solution $y=x^{3} e^{x^{2}}+C e^{x^{2}}$.
Applying the initial condition, $5=y(0)=0^{3} e^{0}+C e^{0}=C$, so $C=5$, and $y=\left(x^{3}+5\right) e^{x^{2}}$ is the particular solution to this IVP.
1.5.36. A tank initially contains 60 gallons of pure water. Brine containing 1 lb of salt per gallon enters the tank at $2 \mathrm{gal} / \mathrm{min}$, and the (perfectly mixed) solution leaves the tank at $3 \mathrm{gal} / \mathrm{min}$; thus, the tank is empty after exactly 1 hour.
(a) Find the amount of salt in the tank after t minutes.
(b) What is the maximum amount of salt ever in the tank?

Solution (a): We produce a model for this system. Let $x(t)$ denote the amount of salt in the tank at time t, t in minutes since the brine starts flowing into the tank. The flow rate in is $r_{i}=2 \mathrm{gal} / \mathrm{min}$, and the flow rate out is $r_{o}=3 \mathrm{gal} / \mathrm{min}$, so the volume in the tank at time t is $V(t)=60+(2-3) t=60-t$, in gallons.

The concentration of salt in the tank (and hence of the solution flowing out of the tank) is then $c_{o}(t)=x(t) / V(t)=\frac{1}{60-t} x(t)$. Since the incoming concentration is $c_{i}=1 \mathrm{lb} / \mathrm{gal}$, the net rate of change of the salt is

$$
\frac{d x}{d t}=r_{i} c_{i}-r_{o} c_{0}=(2)(1)-(3) \frac{1}{60-t} x(t)=2-\frac{3}{60-t} x(t),
$$

which is a linear DE. Rearranging it so that $x(t)$ and $x^{\prime}(t)$ are on the left-hand side, we have $x^{\prime}+\frac{3}{60-t} x=2$. Then $P(t)=\frac{3}{60-t}$, so $\int P(t) d t=-3 \ln |60-t|$, with the minus sign coming from the chain rule with $60-t$. Hence, an integrating factor is $e^{-3 \ln |60-t|}=$ $|60-t|^{-3}$. We choose to take $\mu(t)=(60-t)^{-3}$, without the absolute values, since we expect solutions only for $0 \leq t \leq 60$.

Multiplying the DE by this integrating factor, we have

$$
\left(\frac{1}{(60-t)^{3}} x\right)^{\prime}=\frac{1}{(60-t)^{3}} x^{\prime}+\frac{3}{(60-t)^{4}} x=\frac{2}{(60-t)^{3}} .
$$

Integrating, $\frac{1}{(60-t)^{3}} x=\int \frac{2}{(60-t)^{3}} d t=\frac{1}{(60-t)^{2}}+C$, so $x=60-t+C(60-t)^{3}$.
Finally, we note that there is also an initial condition: $x(0)=0$, since the tank starts with no salt. Thus, $0=x(0)=60-0+C(60-0)^{3}=60+60^{3} C$, so $C=1 / 60^{2}$, and the total amount of salt in the tank at time t is

$$
x(t)=60-t-\frac{1}{3600}(60-t)^{3}
$$

Solution (b): We find the maximum value of $x(t)$ on $[0,60]$. Computing $x^{\prime}(t)$,

$$
x^{\prime}(t)=-1-\frac{1}{3600}(3)(-1)(60-t)^{2}=-1+\frac{1}{1200}(60-t)^{2}
$$

At a local extremum, $x^{\prime}(t)=0$, since $x^{\prime}(t)$ exists everywhere on this interval. Then $0=$ $-1+\frac{1}{1200}(60-t)^{2}$, so $(60-t)^{2}=1200$, and $t=60-20 \sqrt{3}$. Finally,

$$
x(60-20 \sqrt{3})=20 \sqrt{3}-\frac{1}{3600}(20 \sqrt{3})^{3}=20 \sqrt{3}-\frac{1}{3} 20 \sqrt{3}=\frac{40}{3} \sqrt{3} \approx 23.09 \mathrm{lbs} .
$$

Since $x(0)=x(60)=0$, this is the maximum amount of salt in the tank.

Extra Problem \#1. Consider the DE $y^{\prime}=x+2-y$.
(a) Plot a slope field for this DE in the region $-3 \leq x \leq 3,-3 \leq y \leq 3$. Sketch solution curves through the points $(0,0),(0,2)$, and $(1,2)$. Sketch at least two other solution curves of your choice.
(b) Find the general solution to this DE. Find a particular solution satisfying the initial condition $y(1)=2-\frac{2}{e}$. Sketch it on your slope field.

Solution (a): Here is the slope field, with solutions through $(0,0),(0,2)$, and $(1,2)$, as well as $(0,-1)$ and $(-2,2)$:

Solution (b): Writing the DE as $y^{\prime}+y=x+2$, we see it is linear. We multiply by the integrating factor $\mu(x)=e^{x}$, so $\left(e^{x} y\right)^{\prime}=x e^{x}+2 e^{x}$. Integrating and applying integration by parts for the right-hand side,

$$
e^{x} y=\left(x e^{x}-e^{x}\right)+2 e^{x}+C=(x+1) e^{x}+C
$$

so $y=x+1+C e^{-x}$ is the general solution to the DE.
We solve for C with the IC $y(1)=2-\frac{2}{e}=1+1+C e^{-1}$. Then $C=-2$, so $y=x+1-$ $2 e^{-x}$. In fact, $y(0)=1-2=-1$, so this is the curve through $(0,-1)$, which we already sketched above.

