
MAT 303 Spring 2013 Calculus IV with Applications

Homework #4 Solutions

Problems

• Section 2.1: 10, 12, 24

• Section 2.2: 2, 6, 12, 22

• Section 2.3: 2, 12, 20, 24, 30

2.1.10. Suppose that the fish population P(t) in a lake is attacked by a disease at time
t = 0, with the result that the fish cease to reproduce (so that the birth rate is β = 0) and
the death rate δ (deaths per week per fish) is thereafter proportional to 1/

√
P. If there

were initially 900 fish in the lake and 441 were left after 6 weeks, how long did it take all
the fish in the lake to die?

Solution: We first determine the DE describing the growth rate of the fish. A subtle point
is that the death rate factor δ is to be multiplied by P to get the death rate (in terms of fish
per week), so this term is −δP = −k 1√

P
P = −k

√
P. Since the birth rate is 0, the DE is

P′ = −k
√

P. Fortunately, this DE is separable (and indeed autonomous), so we separate
and integrate:

1√
P

P′ = −k
∫ 1√

P
dP =

∫
−k dt 2

√
P = −kt + C.

Applying the initial condition P(0) = 900, 2(30) = 0 + C, so C = 60. At t = 6, P = 441 =
212, so 2(21) = 60− 6k. Then 6k = 18, so k = 3. Finally, we set P = 0 and solve for t:
2(0) = 60− 3t, so t = 60/3 = 20. Hence, the fish all die after 20 weeks. �

2.1.12. The time rate of change of an alligator population P in a swamp is proportional
to the square of P. The swamp contained a dozen alligators in 1988, and two dozen in
1998. When will there be four dozen alligators in the swamp? What happens thereafter?

Solution: The DE governing the alligator population is P′ = kP2, and we have the pop-
ulation data P(0) = 12 and P(10) = 24, taking 1988 as t = 0. Separating this DE and
integrating,

1
P2 P′ = k,

∫ 1
P2 dP =

∫
k dt − 1

P
= kt + C.

At t = 0, P = 12, so − 1
12 = C, and C = − 1

12 . Then at t = 10, P = 24, so − 1
24 = 10k− 1

12 .
Then 10k = 1

24 , so k = 1
120 . We therefore have that 1

P = 1
12 −

1
240 t = 20−t

240 , so

P(t) =
240

20− t
.
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We compute when P(t) = 48: 48 = 240
20−t , so 20− t = 240

48 = 5, and t = 15. Thus, the
population will double again by 2003.

Past that, we observe that P(t) → +∞ as t → 20−, so as we approach the year 2008, we
expect an unlimited number of alligators in the population. �

2.1.24. Suppose that a community contains 15,000 people who are susceptible to
Michaud’s syndrome, a contagious disease. At time t = 0, the number N(t) of peo-
ple who have developed Michaud’s syndrome is 5000 and is increasing at the rate of 500
per day. Assume that N′(t) is proportional to the product of the number of those who
have caught the disease and those who have not. How long will it take for another 5000
people to develop Michaud’s syndrome?

Solution: Given the modeling assumptions, N(t) is goverened by the logistic DE N′ =
kN(M− N), where M = 15,000 is the total population and k is a parameter to be deter-
mined from the initial data. At t = 0, N0 = N(0) = 5000. Since N′(0) = 500 infections
per day,

500 = k(5000)(15,000− 5000) = (5000)(10,000)k ⇒ k =
1

100,000
.

Fortunately, we already have an explicit solution to this DE,

N(t) =
MN0

N0 + (M− N0)e−kMt ,

so we set N(t) = 10,000 and solve for t. Then

10,000 =
(15,000)(5000)

5000 + 10,000e−kMt =
15,000

1 + 2e−kMt ,

so 1+ 2e−kMt = 3
2 ,−kMt = ln 1

4 = − ln 4, and, since kM = 15,000
100,000 = 3

20 , t = 20
3 ln 4 ≈ 9.24.

Therefore, it should take slightly more than 9 days for the next 5000 people to become
infected. �

2.2.2. Consider the DE dx
dt = 3− x, letting f (x) = 3− x. Solve the equation f (x) = 0

to find the critical points of the autonomous DE. Analyze the sign of f (x) to determine
whether each critical point is stable or unstable, and construct the corresponding phase
diagram for the DE. Next, solve the DE explicitly for x(t) in terms of t. Finally, use either
the exact solution or a computer-generated slope field to sketch solution curves for the
given DE, and verify visually the stability of each critical point.

Solution: We first compute the critical points of f : 3− x = 0, so x = 3 is the only one.
Since f (x) is positive for x < 3 and negative for x > 3, this critical point has the following
phase diagram,
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x
x′ sign0 −+

3

and is therefore a stable equilibrium.

We find its exact solution. This DE is linear, which we rewrite as x′ + x = 3. Then
the integrating factor is µ(t) = et, so (etx)′ = 3et. Integrating and dividing by µ(t),
x(t) = 3− Ce−t. We plot several of these solutions below:

1 2 3 4 5
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8

As expected, these solutions all converge towards the equilibrium x = 3. �

2.2.6. Consider the DE dx
dt = 9− x2, letting f (x) = 9− x2. Solve the equation f (x) = 0

to find the critical points of the autonomous DE. Analyze the sign of f (x) to determine
whether each critical point is stable or unstable, and construct the corresponding phase
diagram for the DE. Next, solve the DE explicitly for x(t) in terms of t. Finally, use either
the exact solution or a computer-generated slope field to sketch solution curves for the
given DE, and verify visually the stability of each critical point.

Solution: We first compute the critical points of f : 9− x2 = 0, so x2 = 9. Then x = 3 and
x = −3 are the equilibria. We note that f (x) is positive between −3 and 3 and negative
otherwise, so we obtain the following phase diagram:

x
x′ sign0 0 −+−

−3 3
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Thus, x = −3 is an unstable equilibrium, and x = 3 is a stable one.

We find the exact solution to the DE, which separates into 1
9−x2 x′ = 1. We decompose the

left-hand side into partial fractions as 1
6(

1
3+x + 1

3−x ), so, multiplying by 6,∫ 1
3 + x

+
1

3− x
dx =

∫
6 dt ⇒ ln |3 + x| − ln |3− x| = 6t + C

Then Ce−6t = 3−x
3+x = 6

3+x − 1, so x(t) = 6
1+Ce−6t − 3. Setting C = 0 yield the stable

equilibrium x = 3, but this general solution omits the singular solution x = −3 (which in
some sense corresponds to C = +∞). We plot several of these solutions below:

0.5 1.0 1.5 2.0

-4

-2

2

4

As expected, the solutions starting above x = −3 all converge towards the equilibrium
x = 3, and the solutions starting below that diverge to −∞ (in finite time, actually). �

2.2.12. Consider the DE dx
dt = (2− x)3, letting f (x) = (2− x)3. Solve the equation f (x) =

0 to find the critical points of the autonomous DE. Analyze the sign of f (x) to determine
whether each critical point is stable or unstable, and construct the corresponding phase
diagram for the DE. Next, solve the DE explicitly for x(t) in terms of t. Finally, use either
the exact solution or a computer-generated slope field to sketch solution curves for the
given DE, and verify visually the stability of each critical point.

Solution: Solving (2− x)3, we see that x = 2 is a triple root, and the only solution. Since
f (x) is positive for x < 2 and negative for x > 2, the critical point x = 2 is a stable
equilibrium, as we see on the phase diagram:

x
x′ sign0 −+

2
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We solve this separable DE exactly: separating, (2 − x)−3x′ = 1, so integrating yields
1

2(2−x)2 = t + C. Then 2− x = ± 1√
2(t+C)

, so x = 2± 1√
2(t+C)

. We note this is defined for

t > −C, so we let t0 = −C denote this “blow-up” time; then the solutions are

x(t) = 2± 1√
2(t− t0)

, t > t0

and the singular solution x = 2. We plot several of these solutions below:

1 2 3 4
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As expected, these solutions all converge towards the stable equilibrium x = 2. �

2.2.22. Consider the DE dx/dt = x + kx3 containing the parameter k. Analyze (as in
problem 21) the dependence of the number and nature of the critical points on the value
k, and construct the corresponding bifurcation diagram.

Solution: We solve for the critical points of f (x) with x + kx3 = 0. Then x = 0 or 1+ kx2 =
0, which yields x = ± 1√

−k
for k < 0. Hence, we see two qualitatively different cases for

equilibria: for k ≥ 0, there is a single equilibrium, x = 0, and for k < 0 there are two
additional equilibria, x = 1/

√
−k and x = −1/

√
−k.

We also determine the stability of these equilibria. For k ≥ 0, f (x) = x+ kx3 is monotonic,
with positive values for x > 0 and negative ones for x < 0. Hence, the sole equilibrium
x = 0 is unstable.

For the case when k < 0, we make things easier by developing a “first derivative test” for
stability. Consider f ′(x) = d f

dx at a point c where f (c) = 0.
• If f ′(c) is positive, then f (x) is positive for x slightly greater than c, and f (x) is

negative for x slightly less than c, so x = c must be an unstable equilibrium.
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• Conversely, if f ′(c) is negative, f (x) changes from positive to negative across x = c,
so x = c is a stable equilibrium.

Hence, we check the sign of f ′(x) = 1 + 3kx2 at the three equilibria:
• At x = 0, f ′(0) = 1 + 0 = 1, which is positive, so x = 0 is (still) unstable.

• At x = ±1/
√
−k, f ′(±1/

√
−k) = 1 + 3k

−k = 1− 3 = −2, which is negative, so these
are both stable equilibria.

The bifurcation diagram is plotted below, with stable branches in green and unstable ones
in red:

-4 -2 2 4
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-2

2

4

�

2.3.2. Suppose that a body moves through a resisting medium with resistance propor-
tional to its velocity v, so that dv/dt = −kv.
(a) Show that its velocity and position at time t are given by v(t) = v0e−kt and x(t) =

x0 +
v0
k (1− e−kt).

(b) Conclude that the body travels only a finite distance, and find that distance.

Solution (a): This equation is linear, with integrating factor µ(t) = ekt. Then (ektv)′ = 0,
so ektv = C, and v = Ce−kt. Applying the IC v(0) = v0 gives C = v0, so v(t) = v0e−kt.

Integrating v(t) from t = 0 to t gives x(t)− x0:

x(t)− x0 =
∫ t

0
v0e−kt = −v0

k
(e−kt − 1) =

v0

k
(1− e−kt),

so x(t) = x0 +
v0
k (1− e−kt). �

Solution (b): Taking limt→∞ x(t), we see that the e−kt term goes to 0, so the limiting x-
value is x0 +

v0
k . This is the finite position to which the body travels; the actual distance

covered is only v0
k . �
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2.3.12. It is proposed to dispose of nuclear wastes—in drums with weight 640 lb and
volume 8 ft3—by dropping them into the ocean (v0 = 0). The force equation for a drum
falling through water is

m
dv
dt

= −W + B + FR,

where the buoyant force B is equal to the weight (at 62.5 lb/ft3) of the volume of water
displaced by the drum (Archimedes’s principle) and FR is the force of water resistance,
found empirically to be 1 lb for each foot per second of the velocity of a drum. If the
drums are likely to burst upon an impact of more than 75 ft/s, what is the maximum
depth to which they can be dropped in the ocean without likelihood of bursting?

Solution: We compute some of the quantities in this model, working in foot-pound-sec-
ond (fps) units. The buoyancy force is 62.5(8) = 500 lb, and the weight is W = 640 lb.
The mass of the barrel is m = W/g = 640/32 = 20 slug, where the slug (or lb-s2/ft) is the
fps unit of mass. Finally, FR = −(1)v = −v, because of the empirically determined water
resistance constant, so the DE is

20v′ = −140− v.

This DE is linear, normalizing to v′ + 1
20 v = 7, so with integrating factor µ(t) = et/20,

(et/20v)′ = 7et/20, et/20v = −140et/20 + C, and v = −140 + Ce−t/20. Since v(0) = 0,
C = 140, and v(t) = 140(e−t/20 − 1).

We determine the time and distance where v reaches −75 ft/s:

−75 = 140(e−t/20 − 1) ⇒ e−t/20 =
65
140

=
13
28

⇒ t = 20 ln
28
13
≈ 15.345 s

Integrating v(t) and applying y0 = 0,

y(t) =
∫ t

0
140(e−t/20 − 1) dt = 140(20(1− e−t/20)− t).

At t = 20 ln 28
13 , y = 140(75

7 − 20 ln 28
13) ≈ −648 ft. So 648 ft is the maximum depth to which

the barrels can be dropped without bursting from the impact. �

2.3.20. An arrow is shot straight upwards from the ground with an initial velocity of
160 ft/s. It experiences both the deceleration of gravity and deceleration v2/800 due to
air resistance. How high in the air does it go?

Solution: We use the solution to the upwards-moving v2-resistance model given on p. 103
of the text:

v(t) =
√

g
ρ

tan(C1 − t
√

ρg), C1 = tan−1(v0

√
ρ

g
).
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Since we are given accelerations directly, the DE in the model is v′ = −32− 1
800 v2, in fps

units, with v0 = 160. Then ρ = 1/800, and g = 32, so

v0

√
ρ

g
= 160

√
1

800(32)
=

160
160

= 1,

a lucky break. Then C1 = tan−1(1) = π/4. We can then solve for the t-value T at which
v = 0: this occurs when C1 = T

√
ρg = 0, or T = 1√

ρg C1. Since ρg = 32
800 = 1

25 , T = 5π/4.

Finally, we use this T value to calculate the arrow’s height y. Since y0 = 0,

y(T) =
1
ρ

ln
∣∣∣∣cos(C1 − T

√
ρg)

cos C1

∣∣∣∣ .

By construction, C1 − T
√

ρg = 0, so its cosine is 1, and cos C1 = cos π/4 = 1/
√

2, so

y(T) =
1
ρ

ln
√

2 =
800
2

ln 2 = 400 ln 2 ≈ 277.26 ft.
�

2.3.24. The mass of the sun is 329,320 times that of the earth and its radius is 109 times
that of the earth.
(a) To what radius (in meters) would the earth have to be compressed in order for it to

become a black hole, with the escape velocity from its surface equal to the velocity
c = 3× 108 m/s of light?

(b) Repeat part (a) with the sun in place of the earth.

Solution (a): We compute the radius R so that the escape velocity ve =
√

2GM
R = c. Then

c2 = 2GM
R , so R = 2GM

c2 . (This distance is known in physics as the Schwarzchild radius.)
Using Me = 5.975× 1024 kg for the mass of the earth and the given values for G and c,

Re =
2(6.67× 10−11)(5.975× 1024)

(3× 108)2 ≈ 8.86 mm.
�

Solution (b): The radius R is actually proportional to the mass M, so the Schwarzchild
radius of the sun is 329,320 that of Earth’s:

Rs = 329,320(8.86 mm) ≈ 2.92 km. �
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2.3.30. In Jules Verne’s original problem, the projectile launched from the surface of the
earth is attracted by both the earth and the moon, so its distance r(t) from the center of
the earth satisfies the IVP

d2r
dt2 = −GMe

r2 +
GMm

(S− r)2 , r(0) = R, r′(0) = v0,

where Me and Mm are the masses of the earth and the moon, R is the radius of the earth,
and S = 384,400 km is the distance between the centers of the earth and the moon. To
reach the moon, the projectile must only just pass the point between the moon and the
earth where its net acceleration vanishes. Thereafter, it is “under the control” of the
moon, and falls from there to the lunar surface. Find the minimal launch velocity v0 that
suffices for the projectile to make it “From the Earth to the Moon”.

Solution: We first calculate the radius Rb at which the gravitational forces of the moon
and the earth balance:

0 = −GMe

R2
b

+
GMm

(S− Rb)2 ⇒ (S− Rb)
2

R2
b

=
Mm

Me
⇒ S

Rb
− 1 =

√
Mm

Me
.

Then Rb =
S
√

Me√
Me+

√
Mm

(approximately 346,000 km), and S− Rb =
√

Mm
Me

Rb =
S
√

Mm√
Me+

√
Mm

.

We now calculate the initial velocity required to reach this balance point from the surface
of the earth. The second-order DE govering the radius is

r′′ = −GMe

r2 +
GMm

(S− r)2 ,

so we convert it to a first-order DE in v(r) = dr
dt , with r′′ = v dv

dr = vv′. Integrating from
r = R to r = Rb, at which point we wish v = 0, we have

−1
2

v2
0 =

[
GMe

r
+

GMm

S− r

]r=Rb

r=R
=

GMe

Rb
+

GMm

S− Rb
− GMe

R
− GMm

S− R
.

Multiplying by −2 and substituting in our expressions for Rb and S− Rb,

v2
0 = 2G

(
Me

R
+

Mm

S− R
− Me

Rb
− Mm

S− Rb

)
= 2G

(
Me

R
+

Mm

S− R
−
√

Me(
√

Me +
√

Mm)

S
−
√

Mm(
√

Me +
√

Mm)

S

)
= 2G

(
Me

R
+

Mm

S− R
− (
√

Me +
√

Mm)2

S

)
Plugging in values for Me, Mm, R, S, and G from the text, we determine that the required
initial velocity is

v0 =

√
2G
(

Me

R
+

Mm

S− R
− (
√

Me +
√

Mm)2

S

)
≈ 11,067

m
s

.

Rounding to significant figures, this is 11.1 km/s. �
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