Homework \#5 Solutions

Problems

- Section 2.4: 6, 8
- Section 3.1: 4, 6, 10, 14, 18
2.4.6. Given the IVP $y^{\prime}=-2 x y, y(0)=2$, apply Euler's method to approximate a solution on the interval $[0,1 / 2]$, first with step size $h=0.25$, and then with step size $h=0.1$. Compare the three-decimal-place values of the two approximations at $x=1 / 2$ with the value $y(1 / 2)$ of the actual solution, $y(x)=2 e^{-x^{2}}$.

Solution: Computing $x_{n}=x_{n-1}+h$ and $y_{n}=y_{n-1}+h f\left(x_{n-1}, y_{n-1}\right)$ iteratively with $f(x, y)=-2 x y$ and step sizes $h=0.25$ and $h=0.1$,

n	x_{n}	y_{n}	n	x_{n}	y_{n}
0	0	2	0	0	2
1	0.25	2	1	0.1	2
2	0.5	1.75	2	0.2	1.96
			3	0.3	1.882
			4	0.4	1.769
			0	0.5	1.627

Therefore, the approximate values are 1.750 and 1.627 , respectively. The actual value is $e^{-1 / 4} \approx 1.558$, so the absolute and relative errors are

$$
\begin{array}{ll}
A E_{0.25}=|1.750-1.558|=0.192 & R E_{0.25}=\frac{A E_{0} .25}{1.558}=0.124=12.4 \% \\
A E_{0.25}=|1.627-1.558|=0.069 & R E_{0.25}=\frac{A E_{0} .25}{1.558}=0.045=4.5 \%
\end{array}
$$

2.4.8. Given the IVP $y^{\prime}=e^{-y}, y(0)=0$, apply Euler's method to approximate a solution on the interval $[0,1 / 2]$, first with step size $h=0.25$, and then with step size $h=0.1$. Compare the three-decimal-place values of the two approximations at $x=1 / 2$ with the value $y(1 / 2)$ of the actual solution, $y(x)=\ln (x+1)$.

Solution: Computing $x_{n}=x_{n-1}+h$ and $y_{n}=y_{n-1}+h f\left(x_{n-1}, y_{n-1}\right)$ iteratively with $f(x, y)=e^{-y}$ and step sizes $h=0.25$ and $h=0.1$,

n	x_{n}	y_{n}	n	x_{n}	y_{n}
0	0	0	0	0	0
1	0.25	0.25	1	0.1	0.1
2	0.5	0.445	2	0.2	0.190
			3	0.3	0.273
			4	0.4	0.349
			5	0.5	0.420

Therefore, the approximate values are 0.445 and 0.420 , respectively. The actual value is $\ln (1.5) \approx 0.405$, so the absolute and relative errors are

$$
\begin{array}{ll}
A E_{0.25}=|0.445-0.405|=0.040 & R E_{0.25}=\frac{A E_{0} .25}{0.405}=0.097=9.7 \% \\
A E_{0.25}=|0.420-0.405|=0.015 & R E_{0.25}=\frac{A E_{0} .25}{0.405}=0.037=3.7 \%
\end{array}
$$

3.1.4. Verify that $y_{1}=\cos 5 x$ and $y_{2}=\sin 5 x$ are solutions to $y^{\prime \prime}+25 y=0$. Find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ so that $y(0)=10$ and $y^{\prime}(0)=-10$.

Solution: We first compute the derivatives of these solutions:

$$
\begin{array}{ll}
y_{1}^{\prime}=-5 \sin 5 x & y_{2}^{\prime}=5 \cos 5 x \\
y_{1}^{\prime \prime}=-25 \cos 5 x & y_{2}^{\prime \prime}=-25 \sin 5 x
\end{array}
$$

Then

$$
\begin{aligned}
& y_{1}^{\prime \prime}+25 y_{1}=-25 \cos 5 x+25 \cos 5 x=0 \\
& y_{2}^{\prime \prime}+25 y_{2}=-25 \sin 5 x+25 \sin 5 x=0
\end{aligned}
$$

so both are solutions. To solve the IVP, we set up the system

$$
y(0)=c_{1} \cos (5(0))+c_{2} \sin (5(0))=10 \quad y^{\prime}(0)=-5 c_{1} \sin (5(0))+5 c_{2} \cos (5(0))=-10
$$

Then $c_{1}=10$, and $5 c_{2}=-10$, so $c_{2}=-2$. Therefore, $y=10 \cos 5 x-2 \sin 5 x$.
3.1.6. Verify that $y_{1}=e^{2 x}$ and $y_{2}=e^{-3 x}$ are solutions to $y^{\prime \prime}+y^{\prime}-6 y=0$. Find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ so that $y(0)=7$ and $y^{\prime}(0)=-1$.

Solution: We first compute the derivatives of these solutions:

$$
\begin{array}{ll}
y_{1}^{\prime}=2 e^{2 x} & y_{2}^{\prime}=4 e^{2 x} \\
y_{1}^{\prime \prime}=-3 e^{-3 x} & y_{2}^{\prime \prime}=9 e^{-3 x}
\end{array}
$$

Then

$$
\begin{aligned}
& y_{1}^{\prime \prime}+y_{1}^{\prime}-6 y_{1}=4 e^{2 x}+2 e^{2 x}-6 e^{2 x}=0 \\
& y_{2}^{\prime \prime}+y_{2}^{\prime}-6 y_{2}=9 e^{-3 x}-3 e^{-3 x}+6 e^{-3 x}=0
\end{aligned}
$$

so both are solutions. To solve the IVP, we set up the system

$$
y(0)=c_{1} e^{2(0)}+c_{2} e^{-3(0)}=7 \quad y^{\prime}(0)=2 c_{1} e^{2(0)}-3 c_{2} e^{-3(0)}=-1 .
$$

Then $c_{1}+c_{2}=7$, and $2 c_{1}-3 c_{2}=-1$. Solving this linear system, $c_{1}=4$ and $c_{2}=3$, so $y=4 e^{2 x}+3 e^{-3 x}$.
3.1.10. Verify that $y_{1}=e^{5 x}$ and $y_{2}=x e^{5 x}$ are solutions to $y^{\prime \prime}-10 y^{\prime}+25 y=0$. Find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ so that $y(0)=3$ and $y^{\prime}(0)=13$.

Solution: We first compute the derivatives of these solutions:

$$
\begin{array}{ll}
y_{1}^{\prime}=5 e^{5 x} & y_{2}^{\prime}=25 e^{5 x} \\
y_{1}^{\prime \prime}=e^{5 x}+5 x e^{5 x}=(1+5 x) e^{5 x} & y_{2}^{\prime \prime}=5 e^{5 x}+5(1+5 x) e^{5 x}=(10+25 x) e^{5 x}
\end{array}
$$

Then

$$
\begin{aligned}
& y_{1}^{\prime \prime}-10 y_{1}^{\prime}+25 y_{1}=(25-50+25) e^{5 x}=0 \\
& y_{2}^{\prime \prime}-10 y_{2}^{\prime}+25 y_{2}=(10+25 x-10-50 x+25 x) e^{5 x}=0
\end{aligned}
$$

so both are solutions. To solve the IVP, we set up the system

$$
y(0)=c_{1} e^{5(0)}+c_{2}(0) e^{5(0)}=3 \quad y^{\prime}(0)=5 c_{1} e^{5(0)}+c_{2}(1+5(0)) e^{5(0)}=13 .
$$

Then $c_{1}=3$, and $5 c_{1}+c_{2}=13$, so $c_{2}=13-15=-2$. Thus, the solution is $y=$ $3 e^{5 x}-2 x e^{5 x}$.
3.1.14. Verify that $y_{1}=x^{2}$ and $y_{2}=x^{-3}$ are solutions to $x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0$. Find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ so that $y(2)=10$ and $y^{\prime}(2)=15$.

Solution: We first compute the derivatives of these solutions:

$$
\begin{array}{ll}
y_{1}^{\prime}=2 x & y_{2}^{\prime}=2 \\
y_{1}^{\prime \prime}=-3 x^{-4} & y_{2}^{\prime \prime}=12 x^{-5}
\end{array}
$$

Then

$$
\begin{aligned}
& x^{2} y_{1}^{\prime \prime}+2 x y_{1}^{\prime}-6 y_{1}=2 x^{2}+4 x^{2}-6 x^{2}=0 \\
& x^{2} y_{2}^{\prime \prime}+2 x y_{2}^{\prime}-6 y_{2}=12 x^{-2}-6 x^{-2}-6 x^{-2}=0
\end{aligned}
$$

so both are solutions. To solve the IVP, we set up the system

$$
y(2)=c_{1} 2^{2}+c_{2} 2^{-3}=10 \quad y^{\prime}(2)=2 c_{1}(2)-3 c_{2} 2^{-4}=15
$$

Then $4 c_{1}+c_{2} / 8=10$, and $4 c_{1}-3 c_{2} / 16=15$. Subtracting the second equation from the first, $5 c_{2} / 16=-5$, so $c_{2}=-16$, and $c_{1}=3$. Thus, $y=3 x^{2}-16 x^{-3}$.
3.1.18. Show that $y=x^{3}$ is a solution of $y y^{\prime \prime}=6 x^{4}$, but that if $c^{2} \neq 1$, then $y=c x^{3}$ is not a solution.

Solution: Letting $y=c x^{3}, y^{\prime}=3 c x^{2}$, and $y^{\prime \prime}=6 c x$. Plugging these into the DE, $y y^{\prime \prime}=$ $\left(c x^{3}\right)(6 c x)=6 c^{2} x^{4}$. Thus, this is equal to $6 x^{4}$ if and only if $c^{2}=1$. Therefore, $y=x^{3}$ and $y=-x^{3}$ are the only solutions to the DE of this form.

