Homework \#6 Solutions

Problems

- Section 3.1: $26,34,40,46$
- Section 3.2: 2, $8,10,14,18,24,30$
3.1.26. Determine whether the functions $f(x)=2 \cos x+3 \sin x$ and $g(x)=3 \cos x-$ $2 \sin x$ are linearly dependent or linearly independent on the real line.

Solution: We compute the Wronskian of these functions:

$$
\begin{aligned}
W(f, g) & =\left|\begin{array}{cc}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
2 \cos x+3 \sin x & 3 \cos x-2 \sin x \\
-2 \sin x+3 \cos x & -3 \sin x-2 \cos x
\end{array}\right| \\
& =(2 \cos x+3 \sin x)(-3 \sin x-2 \cos x)-(3 \cos x-2 \sin x)(-2 \sin x+3 \cos x) \\
& =\left(-12 \cos x \sin x-9 \sin ^{2} x-4 \cos ^{2} x\right)+\left(12 \cos x \sin x-9 \cos ^{2} x-4 \sin ^{2} x\right) \\
& =13\left(\sin ^{2} x+\cos ^{2} x\right)=13
\end{aligned}
$$

Since the Wronskian is the constant function 13 , which is not the 0 function, these functions are linearly independent on the real line (and in fact on any subinterval of the real line).

3.1.34. Find the general solution of the DE $y^{\prime \prime}+2 y^{\prime}-15 y=0$.

Solution: Guessing the solution $y=e^{r x}$, we obtain the characteristic equation $r^{2}-2 r+$ $15=0$, which factors as $(r-5)(r+3)=0$. Therefore, $r=5$ and $r=-3$ are roots, so $y_{1}=e^{5 x}$ and $y_{2}=e^{-3 x}$ are solutions. Furthermore, by Theorem 5 in §3.1, the general solution to the DE is

$$
y=c_{1} e^{5 x}+c_{2} e^{-3 x}
$$

3.1.40. Find the general solution of the $\mathrm{DE} 9 y^{\prime \prime}-12 y^{\prime}+4 y=0$.

Solution: As above, the characteristic equation for the DE is $9 r^{2}-12 r+4=0$, which factors as $(3 r-2)^{2}=0$. Therefore, this equation has a double root at $r=2 / 3$. By Theorem 6 in §3.1, the general solution is then

$$
y=c_{1} x e^{2 x / 3}+c_{2} e^{2 x / 3} .
$$

3.1.46. Find a homogeneous second-order $\mathrm{DE} a y^{\prime \prime}+b y^{\prime}+c y=0$ with general solution $y=c_{1} e^{10 x}+c_{2} e^{100 x}$.

Solution: This constant coefficient DE must have $y_{1}=e^{10 x}$ and $y_{2}=e^{100 x}$ as solutions, so we expect $r-10$ and $r-100$ to be factors of its characteristic polynomial. Then we may take

$$
a r^{2}+b r+c=a(r-10)(r-100)=a\left(r^{2}-110 r+1000\right)
$$

so taking $a=1$, we have the corresponding DE $y^{\prime \prime}-110 y^{\prime}+1000 y=0$.
3.2.2. Show directly that the functions $f(x)=5, g(x)=2-3 x^{2}$, and $h(x)=10+15 x^{2}$ are linearly dependent on the real line.

Solution: We find a nontrivial linear combination $c_{1} f+c_{2} g+c_{3} h$ of these functions identically equal to 0 . Since all 3 functions are polynomials in x, the function is 0 exactly when the coefficients on all the powers of x are 0 . Since

$$
\begin{aligned}
c_{1} f+c_{2} g+c_{3} h & =c_{1}(5)+c_{2}\left(2-3 x^{2}\right)+c_{3}\left(10+15 x^{2}\right) \\
& =\left(5 c_{1}+2 c_{2}+10 c_{3}\right)+\left(-3 c_{2}+15 c_{3}\right) x^{2}
\end{aligned}
$$

we require that $5 c_{1}+2 c_{2}+10 c_{3}=0$ and $-3 c_{2}+15 c_{3}=0$. From the second equation, $c_{2}=5 c_{3}$. Substituting this into the first,

$$
5 c_{1}+2 c_{2}+10 c_{3}=5 c_{1}+2\left(5 c_{3}\right)+10 c_{3}=5 c_{1}+20 c_{3}=0
$$

Then $c_{1}=-4 c_{3}$, and there are no more constraints on the c_{i}. Choosing to set $c_{3}=1$, $c_{1}=-4$ and $c_{2}=5$. We check that this nontrivial linear combination of functions is 0 :

$$
(-4)(5)+(5)\left(2-3 x^{2}\right)+(1)\left(10+15 x^{2}\right)=-20+10-15 x^{2}+10+15 x^{2}=0
$$

Rearranging this equation, we can express any single one of these functions as a linear combination of the other two: for example, $10+15 x^{2}=4(5)-5\left(10-3 x^{2}\right)$.
3.2.8. Use the Wronskian to prove that the functions $f(x)=e^{x}, g(x)=e^{2 x}$, and $h(x)=$ $e^{3 x}$ are linearly independent on the real line.

Solution: We compute $W(f, g, h)$:

$$
\begin{aligned}
W(f, g, h) & =\left|\begin{array}{ccc}
f & g & h \\
f^{\prime} & g^{\prime} & h^{\prime} \\
f^{\prime \prime} & g^{\prime \prime} & h^{\prime \prime}
\end{array}\right|=\left|\begin{array}{ccc}
e^{x} & e^{2 x} & e^{3 x} \\
e^{x} & 2 e^{2 x} & 3 e^{3 x} \\
e^{x} & 4 e^{2 x} & 9 e^{3 x}
\end{array}\right| \\
& =e^{x}\left(\left|\begin{array}{cc}
2 e^{2 x} & 3 e^{3 x} \\
4 e^{2 x} & 9 e^{3 x}
\end{array}\right|-\left|\begin{array}{cc}
e^{2 x} & e^{3 x} \\
4 e^{2 x} & 9 e^{3 x}
\end{array}\right|+\left|\begin{array}{cc}
e^{2 x} & e^{3 x} \\
2 e^{2 x} & 3 e^{3 x}
\end{array}\right|\right) \\
& =e^{x} e^{2 x} e^{3 x}((2 \cdot 9-4 \cdot 3)-(1 \cdot 9-1 \cdot 4)+(1 \cdot 3-1 \cdot 2)) \\
& =e^{6 x}(6-5+1)=2 e^{6 x} .
\end{aligned}
$$

Since $W(x)=2 e^{6 x}$, which is not zero on the real line (and in fact nowhere 0), these three functions are linearly independent.
3.2.10. Use the Wronskian to prove that the functions $f(x)=e^{x}, g(x)=x^{-2}$, and $h(x)=x^{-2} \ln x$ are linearly independent on the interval $x>0$.

Solution: We compute $W(f, g, h)$. First, we compute derivatives of h :

$$
\begin{aligned}
h^{\prime}(x) & =-2 x^{-3} \ln x+x^{-2} \frac{1}{x}=(1-2 \ln x) x^{-3} \\
h^{\prime \prime}(x) & =(-3)(1-2 \ln x) x^{-4}+\frac{-2}{x} x^{-3}=(6 \ln x-5) x^{-4}
\end{aligned}
$$

Plugging these into the Wronskian, we have

$$
W(f, g, h)=\left|\begin{array}{ccc}
f & g & h \\
f^{\prime} & g^{\prime} & h^{\prime} \\
f^{\prime \prime} & g^{\prime \prime} & h^{\prime \prime}
\end{array}\right|=\left|\begin{array}{ccc}
e^{x} & x^{-2} & x^{-2} \ln x \\
e^{x} & -2 x^{-3} & (1-2 \ln x) x^{-3} \\
e^{x} & 6 x^{-4} & (6 \ln x-5) x^{-4}
\end{array}\right| .
$$

Rather than expand this directly, we make use of some additional properties of the determinant. One of these is that the determinant is unchanged if a multiple of one column is added to or subtracted from a different column. We subtract $\ln x$ times the second column from the third to cancel the $\ln x$ terms there:

$$
W(f, g, h)=\left|\begin{array}{ccc}
e^{x} & x^{-2} & 0 \\
e^{x} & -2 x^{-3} & x^{-3} \\
e^{x} & 6 x^{-4} & -5 x^{-4}
\end{array}\right|
$$

Using another property of the determinant, we factor the scalar e^{x} out of the first column, so that it multiplies the determinant of the remaining matrix:

$$
W(f, g, h)=e^{x}\left|\begin{array}{ccc}
1 & x^{-2} & 0 \\
1 & -2 x^{-3} & x^{-3} \\
1 & 6 x^{-4} & -5 x^{-4}
\end{array}\right|
$$

With these simplifications, we expand along the first row, which conveniently contains a 0 entry:

$$
\begin{aligned}
W(f, g, h) & =e^{x}\left(\left|\begin{array}{cc}
-2 x^{-3} & x^{-3} \\
6 x^{-4} & -5 x^{-4}
\end{array}\right|-x^{-2}\left|\begin{array}{cc}
1 & x^{-3} \\
1 & -5 x^{-4}
\end{array}\right|+0\right) \\
& =e^{x}\left(10 x^{-7}-6 x^{-7}-x^{-2}\left(-5 x^{-4}-x^{-3}\right)\right) \\
& =e^{x} x^{-7}\left(x^{2}+5 x+4\right)=\frac{e^{x}(x+1)(x+4)}{x^{7}} .
\end{aligned}
$$

This function is defined and continuous for all $x>0$. Furthermore, none of the factors in its numerator is 0 for $x>0$, so it is in fact nowhere 0 on this interval. Since their Wronskian is not identically 0 , these functions are linearly independent on this interval.
3.2.14. Find a particular solution to the $\mathrm{DE} y^{(3)}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0$ matching the initial conditions $y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=3$ that is a linear combination of $y_{1}=e^{x}$, $y_{2}=e^{2 x}$, and $y_{3}=e^{3 x}$.

Solution: We let $y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}$. Then $y^{\prime}=c_{1} e^{x}+2 c_{2} e^{2 x}+3 c_{3} e^{3 x}$ and $y^{\prime \prime}=$ $c_{1} e^{x}+4 c_{2} e^{2 x}+9 c_{3} e^{3 x}$, so evaluating these functions at $x=0$ and matching them to the initial conditions, we obtain the linear system

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =0 \\
c_{1}+2 c_{2}+3 c_{3} & =0 \\
c_{1}+4 c_{2}+9 c_{3} & =3
\end{aligned}
$$

We solve this linear system by row reduction of an augmented matrix to echelon form:

$$
\begin{array}{rlrl}
{\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
1 & 2 & 3 & 0 \\
1 & 4 & 9 & 3
\end{array}\right]} & \sim\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 3 & 8 & 3
\end{array}\right] \quad & R_{2} \leftarrow R_{2}-R_{1}, R_{3} \leftarrow R_{3}-R_{1} \\
& \sim\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 2 & 3
\end{array}\right] \quad R_{3} \leftarrow R_{3}-3 R_{2} \\
& \sim\left[\begin{array}{lll|r}
1 & 1 & 0 & -\frac{3}{2} \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & \frac{3}{2}
\end{array}\right] \quad & R_{3} \leftarrow \frac{1}{2} R_{3}, R_{2} \leftarrow R_{2}-2 R_{3}, R_{1} \leftarrow R_{1}-R_{3} \\
& \sim\left[\begin{array}{rrr|r}
1 & 0 & 0 & \frac{3}{2} \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & \frac{3}{2}
\end{array}\right] & & R_{1} \leftarrow R_{1}-R_{2}
\end{array}
$$

Then $c_{1}=c_{3}=\frac{3}{2}$ and $c_{2}=-3$, so $y=\frac{3}{2} e^{x}-3 e^{2 x}+\frac{3}{2} e^{3 x}$ is the solution to the IVP.
3.2.18. Find a particular solution to the $\mathrm{DE} y^{(3)}-3 y^{\prime \prime}+4 y^{\prime}-2 y=0$ matching the initial conditions $y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=0$ that is a linear combination of $y_{1}=e^{x}$, $y_{2}=e^{x} \cos x$, and $y_{3}=e^{x} \sin x$.

Solution: We let $y=c_{1} e^{x}+c_{2} e^{x} \cos x+c_{3} e^{x} \sin x$. Then

$$
\begin{aligned}
y^{\prime} & =c_{1} e^{x}+c_{2} e^{x}(\cos x-\sin x)+c_{3} e^{x}(\sin x+\cos x) \\
y^{\prime \prime} & =c_{1} e^{x}-2 c_{2} e^{x} \sin x+2 c_{3} e^{x} \cos x
\end{aligned}
$$

Evaluating these functions at $x=0$ and matching them to the initial conditions, we obtain the linear system

$$
\begin{array}{ll}
c_{1}+c_{2} & =1 \\
c_{1}+c_{2}+c_{3} & =0 \\
c_{1}+\quad 2 c_{3} & =0
\end{array}
$$

By the third equation, $c_{1}=-2 c_{3}$. Substituting this into the second, $c_{2}-c_{3}=0$, so $c_{2}=c_{3}$. Finally, in the first equation, $-2 c_{3}+c_{3}=1$, so $c_{3}=-1, c_{2}=-1$, and $c_{1}=-2(-1)=2$. Then $y=2 e^{x}-e^{x} \cos x-e^{x} \sin x=e^{x}(2-\cos x-\sin x)$ is the solution to the IVP.
3.2.24. The nonhomogeneous $\mathrm{DE} y^{\prime \prime}-2 y^{\prime}+2 y=2 x$ has the particular solution $y_{p}=x+$ 1 and the complementary solution $y_{c}=c_{1} e^{x} \cos x+c_{2} e^{x} \sin x$. Find a solution satisfying the initial conditions $y(0)=4, y^{\prime}(0)=8$.

Solution: The general solution to this DE is of the form

$$
y=y_{p}+y_{c}=x+1+c_{1} e^{x} \cos x+c_{2} e^{x} \sin x
$$

Then

$$
y^{\prime}=1+c_{1} e^{x}(\cos x-\sin x)+c_{2} e^{x}(\sin x+\cos x)
$$

Evaluating at $x=0$ and applying the initial conditions, $y(0)=1+c_{1}=4$ and $y^{\prime}(0)=$ $1+c_{1}+c_{2}=8$. Then $c_{1}=3$ and $c_{2}=4$, so the solution to the IVP is

$$
y=x+1+e^{x}(3 \cos x+4 \sin x)
$$

3.2.30. Verify that $y_{1}=x$ and $y_{2}=x^{2}$ are linearly independent solutions on the entire real line of the equation $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0$, but that $W\left(x, x^{2}\right)$ vanishes at $x=0$. Why do these observations not contradict part (b) of Theorem 3?

Solution: We first check that these are solutions:

$$
\begin{aligned}
& x^{2} y_{1}^{\prime \prime}-2 x y_{1}^{\prime}+2 y_{1}=x^{2}(0)-2 x(1)+2(x)=x(-2+2)=0 \\
& x^{2} y_{2}^{\prime \prime}-2 x y_{2}^{\prime}+2 y_{2}=x^{2}(2)-2 x(2 x)+2\left(x^{2}\right)=x^{2}(2-4+2)=0
\end{aligned}
$$

We then compute their Wronskian:

$$
W\left(x, x^{2}\right)=\left|\begin{array}{ll}
x & x^{2} \\
1 & 2 x
\end{array}\right|=x(2 x)-1\left(x^{2}\right)=x^{2}
$$

This function is not identically 0 , so the two functions x and x^{2} are linearly independent on the real line, but it is 0 at precisely $x=0$.
We note that Theorem 3 applies only to normalized homogeneous linear DEs. Normalizing this DE, we obtain

$$
y^{\prime \prime}-\frac{2}{x} y^{\prime}+\frac{2}{x^{2}} y=0
$$

the coefficient functions of which are continuous for $x \neq 0$. Thus, any interval on which the theorem applies does not include $x=0$, the only point at which $W(x)=0$, so $W\left(x, x^{2}\right)$ is nonzero on every such interval. This is consistent with the linear independence of the solutions x and x^{2}.

