Homework \#7 Solutions

Problems

- Section 3.3: $4,18,22,24,34,40$
- Section 3.4: 4, 12abc, 16, 18, 22. Omit the graphing part on problems 16 and 18.
3.3.4. Find the general solution to the differential equation $2 y^{\prime \prime}-7 y^{\prime}+3 y=0$.

Solution: We determine that the characteristic equation for this linear polynomial is $2 r^{2}-$ $7 r+3=0$, which factors as $(2 r-1)(r-3)=0$. Thus, the roots are $r=1 / 2$ and $r=3$, so the general solution is $y=c_{1} e^{x / 2}+c_{2} e^{3 x}$.
3.3.18. Find the general solution to the differential equation $y^{(4)}=16 y$.

Solution: Writing the DE as $y^{(4)}-16 y=0$, we see that its characteristic equation is $r^{4}-$ $16=0$. Since this is a difference of squares, it factors as

$$
\left(r^{2}-4\right)\left(r^{2}+4\right)=(r-2)(r+2)\left(r^{2}+4\right)=0 .
$$

Therefore, it has the roots $r=2$ and $r=-2$ from the linear factors, and the $r^{2}+4$ factor has pure imaginary roots $r= \pm \sqrt{-4}= \pm 2 i$. From the real roots, we have the solutions $e^{2 x}$ and $e^{-2 x}$, while we get the trigonometric functions $\cos 2 x$ and $\sin 2 x$ from the pure imaginary roots. Thus, the general solution is

$$
y=c_{1} e^{2 x}+c_{2} e^{-2 x}+c_{3} \cos 2 x+c_{4} \sin 2 x
$$

3.3.22. Solve the IVP $9 y^{\prime \prime}+6 y^{\prime}+4 y=0, y(0)=3, y^{\prime}(0)=4$.

Solution: We first find the general solution to the homogeneous linear DE. Since its characteristic equation is $9 r^{2}+6 r+4=0$, which has roots

$$
r=\frac{-6 \pm \sqrt{6^{2}-4(4)(9)}}{2 \cdot 9}=\frac{-1 \pm \sqrt{-3}}{3}=-\frac{1}{3} \pm \frac{1}{\sqrt{3}} i
$$

the general solution is the linear combination

$$
y=c_{1} e^{-x / 3} \cos \frac{x}{\sqrt{3}}+c_{2} e^{-x / 3} \sin \frac{x}{\sqrt{3}} .
$$

We use the product rule to compute its derivative; after factoring out $e^{-x / 3}$, this is

$$
y^{\prime}=c_{1} e^{-x / 3}\left(-\frac{1}{3} \cos \frac{x}{\sqrt{3}}-\frac{1}{\sqrt{3}} \sin \frac{x}{\sqrt{3}}\right)+c_{2} e^{-x / 3}\left(-\frac{1}{3} \sin \frac{x}{\sqrt{3}}+\frac{1}{\sqrt{3}} \cos \frac{x}{\sqrt{3}}\right) .
$$

Evaluating at $x=0$ and applying the initial conditions, and noting that the sin terms vanish,

$$
y(0)=c_{1}=3, \quad y^{\prime}(0)=-\frac{c_{1}}{3}+\frac{c_{2}}{\sqrt{3}}=4
$$

Then $c_{1}=3$, and $c_{2}=\sqrt{3}\left(4+c_{1} / 3\right)=5 \sqrt{3}$, so the solution to the IVP is

$$
y=3 e^{-x / 3} \cos \frac{x}{\sqrt{3}}+5 \sqrt{3} e^{-x / 3} \sin \frac{x}{\sqrt{3}}
$$

3.3.24. Solve the IVP $2 y^{(3)}-3 y^{\prime \prime}-2 y^{\prime}=0, y(0)=1, y^{\prime}(0)=-1, y^{\prime \prime}(0)=3$.

Solution: The characteristic equation for this DE is $2 r^{3}-3 r^{2}-2 r=0$, which factors as

$$
r\left(2 r^{2}-3 r-2\right)=r(2 r+1)(r-2)=0
$$

Then $r=0, r=-1 / 2$, and $r=2$ are its (distinct real) roots, so the general solution is

$$
y=c_{1}+c_{2} e^{-x / 2}+c_{3} e^{2 x}
$$

Its first and second derivatives are

$$
y^{\prime}=-\frac{1}{2} c_{2} e^{-x / 2}+2 c_{3} e^{2 x}, \quad y^{\prime \prime}=\frac{1}{4} c_{2} e^{-x / 2}+4 c_{3} e^{2 x} .
$$

Evaluating at $x=0$ and applying the initial conditions, we have the linear system

$$
c_{1}+c_{2}+c_{3}=1, \quad-\frac{1}{2} c_{2}+2 c_{3}=-1, \quad \frac{1}{4} c_{2}+4 c_{3}=3 .
$$

From the third equation, $c_{2}=12-16 c_{3}$. Substituting this into the second, $-\frac{1}{2}(12-$ $\left.16 c_{3}\right)+2 c_{3}=-1$, so $10 c_{3}=5$, and $c_{3}=1 / 2$. Then $c_{2}=12-8=4$, so $c_{1}=1-c_{2}-c_{3}=$ $-7 / 2$. Thus, the solution to the IVP is $y=-\frac{7}{2}+4 e^{-x / 2}+\frac{1}{2} e^{2 x}$.
3.3.34. One solution to the $\operatorname{DE} 3 y^{(3)}-2 y^{\prime \prime}+12 y^{\prime}-8 y=0$ is $y=e^{2 x / 3}$. Find the general solution.

Solution: The characteristic equation for the DE is $3 r^{3}-2 r^{2}+12 r-8=0$. Since $r=2 / 3$ is a root, we expect $r-2 / 3$ to be a linear factor of this polynomial. In fact, $3(r-2 / 3)=$ $3 r-2$ is seen to be a linear factor, so that this polynomial factors as

$$
(3 r-2)\left(r^{2}+4\right)=0
$$

Thus, the two other roots are $r= \pm 2 i$, from the $r^{2}+4$ factor, so the general solution is

$$
c_{1} e^{2 x / 3}+c_{2} \cos 2 x+c_{3} \sin 2 x .
$$

3.3.40. Find a linear homogeneous constant-coefficient equation with general solution $y=A e^{2 x}+B \cos 2 x+C \sin 2 x$.

Solution: Since the general solution contains both $e^{2 x}$ and a $\cos 2 x-\sin 2 x$ pair, the original DE should have roots $r=2$ and $r= \pm 2 i$. Furthermore, its general solution has three independent parameters, so it should be a third-order DE. Hence, its characteristic equation is

$$
(r-2)(r-2 i)(r+2 i)=(r-2)\left(r^{2}+4\right)=r^{3}-2 r^{2}+4 r-8=0,
$$

which comes from the linear homogeneous DE $y^{(3)}-2 y^{\prime \prime}+4 y^{\prime}-8 y=0$. (Scalar multiples of this DE have the same solutions.)
3.4.4. A body with mass 250 g is attached to the end of a spring that is stretched 25 cm by a force of 9 N . At time $t=0$ the body is pulled 1 m to the right, stretching the spring, and set in motion with an initial velocity of $5 \mathrm{~m} / \mathrm{s}$ to the left.
(a) Find $x(t)$ in the form $C \cos \left(\omega_{0} t-\alpha\right)$.
(b) Find the amplitude and period of motion of the body.

Solution (a): We normalize the constants to mks SI units, so $m=0.25 \mathrm{~kg}$ and $k=9 / 0.25=$ $36 \mathrm{~N} / \mathrm{m}$. Then the circular frequency is $\omega_{0}=\sqrt{\mathrm{k} / \mathrm{m}}=\sqrt{36 / 0.25}=12 \mathrm{rad} / \mathrm{s}$, so the general solution for the motion of the body is

$$
x(t)=A \cos 12 t+B \sin 12 t, \quad x^{\prime}(t)=-12 A \sin 12 t+12 B \cos 12 t
$$

Evaluating at $t=0, x(0)=A=1$ and $x^{\prime}(0)=12 B=-5$ (since the initial velocity is rightward). Then $A=1$ and $B=-5 / 12$. Computing $C, C^{2}=A^{2}+B^{2}=\frac{12^{2}+5^{2}}{12^{2}}=\left(\frac{13}{12}\right)^{2}$, so $C=\frac{13}{12}$.

The phase angle α has $\tan \alpha=B / A=-\frac{5}{12}$, but must satisfy $C \cos \alpha=A>0$ and $C \sin \alpha=B<0$ from the above values of A and B. Fortunately, since its cosine must be positive, we may then pick α from the principal branch of arctan, so $\alpha=\arctan (-5 / 12)=$ $-\arctan \frac{5}{12} \approx-0.395$. (Of course, we may also add an arbitrary multiple of 2π to this angle, so $2 \pi-\arctan \frac{5}{12} \approx 5.888$ is also a correct answer.) Thus,

$$
x(t)=\frac{13}{12} \cos \left(12 t+\arctan \frac{5}{12}\right) .
$$

Solution (b): The amplitude is the constant $C=\frac{13}{12}$, and the period is $T=\frac{2 \pi}{12}=\frac{\pi}{6} \mathrm{~s}$.
3.4.12abc. Assume that the earth is a solid sphere of uniform density, with mass M and radius $R=3960$ miles. For a particle of mass m within the earth at a distance r from the center of the earth, the gravitational force attracting m toward the center is $F_{r}=-G M_{r} m / r^{2}$, where M_{r} is the mass of the part of the earth within a sphere of radius r.
(a) Show that $F_{r}=-G M m r / R^{3}$.
(b) Now suppose that a small hole is drilled straight through the center of the earth, thus connecting two antipodal paints on its surface. Let a particle of mass m be dropped at time $t=0$ into this hole with initial speed zero, and let $r(t)$ be its distance from the center of the earth at time t. Conclude from Newton's second law and part (a) that $r^{\prime \prime}(t)=-k^{2} r(t)$, where $k^{2}=G M / R^{3}=g / R$.
(c) Take $g=32.2 \mathrm{ft} / \mathrm{s}^{2}$, and conclude from part (b) that the particle undergoes simple harmonic motion back and forth between the ends of the hole, with a period of about 84 min.

Solution (a): The volume of the Earth (assumed to be a perfect sphere) is $V=\frac{4 \pi}{3} R^{3}$, so the density of the Earth is $\rho=\frac{M}{V}=\frac{M}{\frac{4 \pi}{3} R^{3}}$. The mass of the radius- r portion of the Earth is then $M_{r}=\rho \cdot \frac{4 \pi}{3} r^{3}=M \frac{r^{3}}{R^{3}}$. Hence, the force of gravity on the mass m at its surface is

$$
F_{r}=-\frac{G m}{r^{2}} M_{r}=-\frac{G m}{r^{2}} M \frac{r^{3}}{R^{3}}=-\frac{G M m r}{R^{3}} .
$$

Solution (b): From Newton's second law, $F=m a$. Since the position of the particle is given by $r(t)$, the acceleration is its second derivative, $r^{\prime \prime}(t)$. The only force on the body is gravity, so from part (a), we have the DE.

$$
-\frac{G M m r}{R^{3}}=m r^{\prime \prime}(t)
$$

Dividing out the m and collecting the r terms, this is

$$
r^{\prime \prime}+\frac{G M}{R^{3}} r=0
$$

which gives simple harmonic motion with circular frequency $\omega_{0}=\sqrt{\frac{G M}{R^{3}}}$. We also note that when $r=R$, the gravitational acceleration g is given by $\frac{G M R}{R^{3}}=\frac{G M}{R^{2}}$, so this constant is also $\frac{g}{R}$.

Solution (c): Since $\omega_{0}=\sqrt{\frac{g}{R}}$, the period of oscillation is $T=\frac{2 \pi}{\omega_{0}}=2 \pi \sqrt{\frac{R}{g}}$. Then, in fps units,

$$
T=2 \pi \sqrt{\frac{3960 \cdot 5280}{32.2}} \approx 5063 \mathrm{~s} \approx 84.4 \mathrm{~min}
$$

3.4.16. A mass $m=3$ is attached to both a spring with spring constant $k=63$ and a dashpot with damping constant $c=30$. The mass is set in motion with initial position $x_{0}=2$ and initial velocity $v_{0}=2$. Find the position function $x(t)$ and determine whether the motion is overdamped, critically damped, or underdamped. If it is underdamped, write the position function in the form $x(t)=C e^{-p t} \cos \left(\omega_{1} t-\alpha_{1}\right)$. Also, find the undamped position function $u(t)=C_{0} \cos \left(\omega_{0} t-\alpha_{0}\right)$ that would result if the mass on the spring were set in motion with the same initial position and velocity but wth the dashpot disconnected ($c=0$).

Solution: We first find that $\omega_{0}^{2}=\frac{k}{m}=21$, and $p=\frac{c}{2 m}=\frac{30}{2 \cdot 3}=5$. Then $p^{2}=25$, which is larger than ω_{0}^{2}, so the motion is overdamped. The roots of the DE are $r=$ $-p \pm \sqrt{p^{2}-\omega_{0}^{2}}=-5 \pm 2$, or $r=-7$ and $r=-3$. Hence, the general solution is

$$
x(t)=c_{1} e^{-7 t}+c_{2} e^{-3 t}, \quad v(t)=x^{\prime}(t)=-7 c_{1} e^{-7 t}-3 c_{2} e^{-3 t} .
$$

Setting $t=0$ and matching the initial conditions, $x(0)=c_{1}+c_{2}=2$ and $v(0)=-7 c_{1}-$ $3 c_{2}=2$. Solving for c_{1} and $c_{2}, c_{2}=2-c_{1}$, so $-7 c_{1}-3\left(2-c_{1}\right)=2$, and $-4 c_{1}=8$, Then $c_{1}=-2$, so $c_{2}=4$, and the solution is

$$
x(t)=4 e^{-3 t}-3 e^{-7 t}
$$

Removing the damping, we get simple harmonic motion with the frequency $\omega_{0}=\sqrt{21}$, so the general solution is

$$
u(t)=A \cos \omega_{0} t+B \sin \omega_{0} t, \quad u^{\prime}(t)=-A \omega_{0} \sin \omega_{0} t+B \omega_{0} \cos \omega_{0} t
$$

Then $u(0)=A=2$ and $u^{\prime}(0)=B \omega_{0}=2$, so $A=2$ and $B=\frac{2}{\sqrt{21}}$. Then $u(t)=$ $C \cos \left(\omega_{0} t-\alpha\right) C=\sqrt{A^{2}+B^{2}}=\sqrt{4+\frac{4}{21}}=2 \sqrt{\frac{22}{21}}$, and $\alpha=\arctan \frac{B}{A}=\arctan \frac{1}{\sqrt{21}}$.
3.4.18. A mass $m=2$ is attached to both a spring with spring constant $k=50$ and a dashpot with damping constant $c=12$. The mass is set in motion with initial position $x_{0}=0$ and initial velocity $v_{0}=-8$. Find the position function $x(t)$ and determine whether the motion is overdamped, critically damped, or underdamped. If it is underdamped, write the position function in the form $x(t)=C e^{-p t} \cos \left(\omega_{1} t-\alpha_{1}\right)$. Also, find the undamped position function $u(t)=C_{0} \cos \left(\omega_{0} t-\alpha_{0}\right)$ that would result if the mass on the spring were set in motion with the same initial position and velocity but wth the dashpot disconnected $(c=0)$.

Solution: We have that $\omega_{0}^{2}=\frac{k}{m}=\frac{50}{2}=25$, so $\omega_{0}=5$, and $p=\frac{c}{2 m}=\frac{12}{2 \cdot 2}=3$, so the motion is underdamped. The pseudofrequency is $\omega_{1}=\sqrt{\omega_{0}^{2}-p^{2}}=\sqrt{25-9}=\sqrt{16}=4$, so the general solution is

$$
\begin{aligned}
& x(t)=c_{1} e^{-3 t} \cos 4 t+c_{2} e^{-3 t} \sin 4 t \\
& v(t)=c_{1} e^{-3 t}(-3 \cos 4 t-4 \sin 4 t)+c_{2} e^{-3 t}(-3 \sin 4 t+4 \cos 4 t)
\end{aligned}
$$

At $t=0, x(0)=c_{1}=0$. Then, using $c_{1}=0, v(0)=4 c_{2}=-8$, so $c_{2}=-2$. Hence, $x(t)=-2 e^{-3 t} \sin 4 t$, which we convert to $C e^{-p t} \cos \left(\omega_{1} t-\alpha_{1}\right)$. We have that $C=2$, and $A=-2=2 \sin \alpha_{1}$, so $\alpha_{1}=\frac{3 \pi}{2}$ (taking an angle between 0 and 2π), so

$$
x(t)=2 e^{-3 t} \cos \left(4 t-\frac{3}{2} \pi\right)
$$

With $c=0$, the solution is $u(t)=A \cos 5 t+B \sin 5 t$, with $u^{\prime}(t)=-5 A \sin 5 t+5 B \cos 5 t$; applying the initial conditions, $A=0$ and $5 B=-8$, so $u(t)=-\frac{8}{5} \sin 5 t=\frac{8}{5} \cos (5 t-$ $\left.\frac{3}{2} \pi\right)$.
3.4.22. A $12-\mathrm{lb}$ weight (mass $m=0.375$ slugs in fps units) is attached both to a vertically suspended spring that it stretches 6 inches and to a dashpot that provides 3 lb of resistance for every foot-per-second of velocity.
(a) If the weight is pulled down 1 foot below its static equilibrium position and then released from rest at time $t=0$, find its position function $x(t)$.
(b) Find the frequency, time-varying amplitude, and phase angle of the motion.

Solution (a): The mass in fps units is $m=0.375$, and the spring constant is $k=\frac{12 \mathrm{lb}}{0.5 \mathrm{ft}}=$ $24 \mathrm{lb} / \mathrm{ft}$. The circular frequency is given by $\omega_{0}^{2}=\frac{k}{m}=64$, so $\omega_{0}=8 \mathrm{rad} / \mathrm{s}$. The damping constant is $c=3 \mathrm{lb}-\mathrm{s} / \mathrm{ft}$, so $p=\frac{c}{2 m}=4$, and the system is therefore underdamped. Then $\omega_{1}=\sqrt{\omega_{0}^{2}-p^{2}}=\sqrt{48}=4 \sqrt{3}$, so the general solution is

$$
\begin{aligned}
& x(t)=A e^{-4 t} \cos 4 \sqrt{3} t+B e^{-4 t} \sin 4 \sqrt{3} t \\
& v(t)=A e^{-4 t}(-4 \cos 4 \sqrt{3} t-4 \sqrt{3} \sin 4 \sqrt{3} t)+B e^{-4 t}(-4 \sin 4 \sqrt{3} t+4 \sqrt{3} \cos 4 \sqrt{3} t)
\end{aligned}
$$

We measure the displacement vertically, considering a displacement downwards as being positive, since it corresponds to stretching the string further. Thus, at time $t=0$ we have that $x(0)=1$ and $v(0)=0$. Then $A=1$ and $-4 A+4 \sqrt{3} B=0$, so $B=\frac{4 A}{4 \sqrt{3}}=\frac{1}{\sqrt{3}}$. Thus, the solution is

$$
x(t)=e^{-4 t} \cos 4 \sqrt{3} t+\frac{1}{\sqrt{3}} e^{-4 t} \sin 4 \sqrt{3} .
$$

Solution (b): We reformulate our answer to part (a) in the form $C e^{-p t} \cos \left(\omega_{1} t-\alpha\right)$. Then $C^{2}=A^{2}+B^{2}=1+\frac{1}{3}=\frac{4}{3}$, so $C=\frac{2}{\sqrt{3}}$, and the time-varying amplitude is $\frac{2}{\sqrt{3}} e^{-4 t}$. From above, the pseudofrequency is $\omega_{1}=4 \sqrt{3} \mathrm{rad} / \mathrm{s}$. Finally, $\tan \alpha=\frac{B}{A}=\frac{1}{\sqrt{3}}$, with α in Quadrant I so that both A and B are positive. Thus, the phase angle is $\alpha=\frac{\pi}{6}$.

