Homework \#8 Solutions

Problems

- Section 3.5: 2, 6, 10, 20, 22, 26, 32, 34, 54, 58

$$
\text { 3.5.2. Find a particular solution to the } \mathrm{DE} y^{\prime \prime}-y^{\prime}-2 y=3 x+4 \text {. }
$$

Solution: We first prepare our guess for the particular function y_{p}. The 1 and x terms in $f(x)=3 x+4$ correspond to a double root $r=0$; examining the characteristic equation $r^{2}-r-2=0$, we immediately see that $r=0$ is not a root, so there is no overlap with the complementary solution. Hence, we try

$$
y_{p}=A x+B
$$

Then $y_{p}^{\prime}=A$ and $y_{p}^{\prime \prime}=0$, so plugging these into the DE we obtain $-A-2(A x+B)=$ $3 x+4$. From the x terms, $-2 A=3$, so $A=-3 / 2$. From the constant terms, $-A-2 B=4$, so $B=\frac{1}{2}(-4-A)=-\frac{5}{4}$. Thus, a particular solution is $y=-\frac{3}{2} x-\frac{5}{4}$.
3.5.6. Find a particular solution to the DE $2 y^{\prime \prime}+4 y^{\prime}+7 y=x^{2}$.

Solution: In setting up the Method of Undetermined Coefficients, we observe that $f(x)=$ x^{2} corresponds to a triple root $r=0$. Since the characteristic equation for the DE is $2 r^{2}+4 r+7=0, r=0$ is not one of its roots, so there is no overlap with x_{c}. Then we may take

$$
y_{p}=A x^{2}+B x+C
$$

as a guess to plug into the DE. Doing so, and separating out the coefficients on the constant, x, and x^{2} terms, we obtain the linear system

$$
\begin{aligned}
7 A & =1 \\
8 A+7 B & =0 \\
4 A+4 B+7 C & =0
\end{aligned}
$$

Solving for A, B, and C successively,

$$
A=\frac{1}{7}, \quad B=-\frac{8}{7^{2}}=-\frac{8}{49}, \quad C=\frac{1}{7}\left(-\frac{4}{7}+\frac{32}{49}\right)=\frac{4}{343}
$$

so therefore

$$
y_{p}=\frac{1}{7} x^{2}-\frac{8}{49} x+\frac{4}{343}
$$

is one particular solution.
3.5.10. Find a particular solution to the $\mathrm{DE} y^{\prime \prime}+9 y=2 \cos 3 x+3 \sin 3 x$.

Solution: The roots corresponding to the $\cos 3 x$ and $\sin 3 x$ in $f(x)$ are $\pm 3 i$, which are precisely the roots of the characteristic equation $r^{2}+9=0$ of the DE. Hence, to avoid overlap, we must guess a particular solution of the form

$$
y_{p}=A x \cos 3 x+B x \sin 3 x .
$$

Then $y_{p}^{\prime}=A(\cos 3 x-3 x \sin 3 x)+B(\sin 3 x+3 x \cos 3 x)$, so

$$
y_{p}^{\prime \prime}=A(-6 \sin 3 x-9 x \cos 3 x)+B(6 \cos 3 x-9 x \sin 3 x)
$$

and $y_{p}^{\prime \prime}+9 y_{p}=-6 A \sin 3 x+6 B \cos 3 x$. Since this is to equal $2 \cos 3 x+3 \sin 3 x$, we see that $A=-3 / 6=-1 / 2$, and $B=2 / 6=1 / 3$, so a particular solution is

$$
y=\frac{1}{3} x \sin 3 x-\frac{1}{2} x \cos 3 x .
$$

3.5.20. Find a particular solution to the $\operatorname{DE} y^{(3)}-y=e^{x}+7$.

Solution: The roots corresponding to $f(x)=e^{x}+7$ are $r=0$ and $r=1$. The characteristic equation is $r^{3}-1=0$, which has a root $r=1$ as well. Factoring the polynomial as $(r-1)\left(r^{2}+r+1\right)$, we observe that the quadratic factor $r^{2}+r+1$ has no real roots, as its discriminant $b^{2}-4 a c=1-4=-3$ is negative. Hence, the only overlap comes on the root $r=1$, so our guess for a particular solution is

$$
y_{p}=A x e^{x}+B
$$

We compute that $y_{p}^{(3)}=A(x+3) e^{x}$, so $y_{p}^{(3)}-y_{p}=3 A e^{x}-B$. Since this is $e^{x}+7, A=1 / 3$ and $B=-7$, so a particular solution is

$$
y=\frac{1}{3} x e^{x}-7
$$

3.5.22. Set up the appropriate form for a particular solution to the $\operatorname{DE} y^{(5)}-y^{(3)}=$ $e^{x}+2 x^{2}-5$, but do not determine the values of the coefficients.

Solution: We note the roots coming from the chararcteristic equation and from the forcing term $f(x)$. The characteristic equation is $r^{5}-r^{3}=r^{3}(r-1)(r+1)=0$, so its roots are $r=1, r=-1$, and a triple root $r=0$. On the forcing side, the e^{x} corresponds to $r=1$, and the constant and x^{2} terms correspond to another triple root $r=0$. Thus, since $r=1$ appears here for the second time total, and $r=0$ appear for the fourth through sixth times, our guess is

$$
y=A x e^{x}+B x^{3}+C x^{4}+D x^{5} .
$$

3.5.26. Set up the appropriate form for a particular solution to the $\mathrm{DE} y^{\prime \prime}-6 y^{\prime}+13 y=$ $x e^{3 x} \sin 2 x$, but do not determine the values of the coefficients.

Solution: The characteristic equation is $r^{2}-6 r+13=0$, which has roots

$$
r=\frac{6 \pm \sqrt{36-4(13)}}{2}=3 \pm 2 i
$$

The $x e^{3 x} \sin 2 x$ term correponds to a double pair of roots $r=3 \pm 2 i$, which collide with the roots of the characteristic equation. Hence, our guess for a particular solution is of the form

$$
y=A x e^{3 x} \cos 2 x+B x e^{3 x} \sin 2 x+C x^{2} e^{3 x} \cos 2 x+D x^{2} e^{3 x} \sin 2 x
$$

3.5.32. Solve the initial value problem $y^{\prime \prime}+3 y^{\prime}+2 y=e^{x}, y(0)=0, y^{\prime}(0)=3$.

Solution: We first determine the general complementary solution y_{c} and a particular solution y_{p}. Since the characteristic equation is $r^{2}+3 r+2=0, r=-1$ and $r=-2$ are its roots, and $y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}$. Fortunately, neither root is $r=1$, which corresponds to $f(x)=e^{x}$, so our guess for y_{p} is $A e^{x}$. Plugging this into the DE,

$$
A(1+3+2) e^{x}=e^{x}
$$

so $A=1 / 6$. Hence, the general solution is

$$
y=\frac{1}{6} e^{x}+c_{1} e^{-x}+c_{2} e^{-2 x}, \quad y^{\prime}=\frac{1}{6} e^{x}-c_{1} e^{-x}-2 c_{2} e^{-2 x} .
$$

Applying the initial condition, $y(0)=\frac{1}{6}+c_{1}+c_{2}=0$, and $y^{\prime}(0)=\frac{1}{6}-c_{1}-2 c_{2}=3$. Then $c_{1}=-\frac{17}{6}-2 c_{2}$, so $-\frac{16}{6}-c_{2}=0$, and $c_{2}=-\frac{8}{3}$. Backsolving, $c_{1}=-\frac{17}{6}+\frac{16}{3}=\frac{15}{6}=\frac{5}{2}$, so

$$
y=\frac{1}{6} e^{x}+\frac{5}{2} e^{-x}-\frac{8}{3} e^{-2 x} .
$$

3.5.34. Solve the initial value problem $y^{\prime \prime}+y=\cos x, y(0)=1, y^{\prime}(0)=-1$.

Solution: We determine the complementary solution y_{c} and a particular solution y_{p}. Since the characteristic equation of the DE is $r^{2}+1=0$, the roots are $r= \pm i$, so $y_{c}=c_{1} \cos x+$ $c_{2} \sin x$. Since this overlaps with $f(x)=\cos x$, we take our guess for y_{p} to be $A x \cos x+$ $B x \sin x$. Then

$$
y_{p}^{\prime \prime}=A(-2 \sin x-x \cos x)+B(2 \cos x-x \sin x)
$$

so $y_{p}^{\prime \prime}+y_{p}=-2 A \sin x+2 B \cos x=\cos x$. Then $A=0$ and $B=\frac{1}{2}$, so the general solution is

$$
y=\frac{1}{2} x \sin x+c_{1} \cos x+c_{2} \sin x
$$

Applying the initial conditions with $y^{\prime}=\frac{1}{2}(\sin x+x \cos x)-c_{1} \sin x+c_{2} \cos x, y(0)=$ $c_{1}=1$, and $y^{\prime}(0)=c_{2}=-1$. Thus, the solution to the IVP is

$$
y=\frac{1}{2} x \sin x+\cos x-\sin x
$$

3.5.54. Use the method of variation of parameters to find a particular solution of the DE $y^{\prime \prime}+y=\csc ^{2} x$.

Solution: From above, we see that $y_{1}=\cos x$ and $y_{2}=\sin x$ are two linearly independent solutions to the homogeneous $\mathrm{DE} y^{\prime \prime}+y=0$. Furthermore, their Wronskian is

$$
W(x)=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1
$$

Thus, with $f(x)=\csc ^{2} x$, the formula for variation of parameters gives a particular solution

$$
\begin{aligned}
y & =-y_{1} \int \frac{y_{2}(x) f(x)}{W(x)} d x+y_{2} \int \frac{y_{1}(x) f(x)}{W(x)} \\
& =-\cos x \int \sin x \csc ^{2} x d x+\sin x \int \cos x \csc ^{2} x d x \\
& =-\cos x \int \csc x d x+\sin x \int \cot x \csc x d x \\
& =-\cos x \ln |\csc x-\cot x|-\sin x \csc x=-\cos x \ln |\csc x-\cot x|-1 .
\end{aligned}
$$

3.5.58. Use the method of variation of parameters to find a particular solution to the DE $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{3}$, using that the complementary solution is $y_{c}=c_{1} x^{2}+c_{2} x^{3}$.

Solution: We first normalize the DE to $y^{\prime \prime}-\frac{4}{x} y^{\prime}+\frac{6}{x^{2}} y=x$. Taking $y_{1}=x^{2}$ and $y_{2}=x^{3}$, their Wronskian is

$$
W(x)=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|=3 x^{4}-2 x^{4}=x^{4}
$$

Then with $f(x)=x$ from the normalized equation, the formula for variation of parameters gives a particular solution

$$
\begin{aligned}
y & =-y_{1} \int \frac{y_{2}(x) f(x)}{W(x)} d x+y_{2} \int \frac{y_{1}(x) f(x)}{W(x)} \\
& =-x^{2} \int \frac{x^{3} x}{x^{4}} d x+x^{3} \int \frac{x^{2} x}{x^{4}} \\
& =-x^{2} \int d x+x^{3} \int \frac{1}{x} d x \\
& =-x^{3}+x^{3} \ln x
\end{aligned}
$$

Since the $-x^{3}$ is already a part of the complementary solution, we may eliminate it and instead take only $y=x^{3} \ln x$ as a particular solution to the DE.

