Homework \#9 Solutions

Problems

- Section 3.6: $4,8,12,18,28$, with modified graphing directions below:
* On \#4, omit the graph.
* On \#8, graph $x_{\mathrm{sp}}(t)$ and $\tilde{F}(t)=\frac{F(t)}{m \omega^{2}}$ (which has units of length, unlike $F(t) / m \omega$).
* On \#12, graph both $x_{\mathrm{sp}}(t)$ and $x(t)=x_{\mathrm{sp}}(t)+x_{\mathrm{tr}}(t)$.
- Section 4.1: 2, 8, 24
3.6.4. Express the solution $x(t)$ to the IVP $x^{\prime \prime}+25 x=90 \cos 4 t, x(0)=0, x^{\prime}(0)=90$ as the sum of two oscillations.

Solution: We first find the complementary solution $x_{c}(t)$ to this nonhomogeneous DE. Since it is a simple harmonic oscillation system with $m=1$ and $k=25$, the circular frequency is $\omega_{0}=\sqrt{25}=5$, and

$$
x_{c}(t)=c_{1} \cos 5 t+c_{2} \sin 5 t
$$

Since the forcing term has frequency $\omega=4$, which is not equal to ω_{0}, we expect a steady state solution $x_{p}(t)$ of the form $A \cos 4 t+B \sin 4 t$. Differentiating twice, we see that $x_{p}^{\prime \prime}=$ $-16 x_{p}$, so we obtain the equation

$$
9 A \cos 4 t+9 B \sin 4 t=90 \cos 4 t
$$

Therefore, $A=10$, and $B=0$, so $x_{p}(t)=10 \cos 4 t$. The general solution of this DE is then

$$
x(t)=x_{c}(t)+x_{p}(t)=c_{1} \cos 5 t+c_{2} \sin 5 t+10 \cos 4 t
$$

and it is to this function that we apply the initial conditions. Since

$$
x^{\prime}(t)=-5 c_{1} \sin 5 t+5 c_{2} \cos 5 t-40 \sin 4 t
$$

evaluating these equations at $t=0$ gives the system $c_{1}+10=0$ and $5 c_{2}=90$. Hence, $c_{2}=18$, and $c_{1}=-10$.
Finally, we combine the $\cos 5 t$ and $\sin 5 t$ terms into a single function $C \cos (5 t-\alpha)$. Then $C=\sqrt{(-10)^{2}+18^{2}}=2 \sqrt{106}$, and $\tan \alpha=c_{2} / c_{1}=18 /(-10)=-9 / 5$. Furthermore, we must take α so that $\cos \alpha<0$ to match $c_{1}=-10$, so $\alpha=\pi+\tan ^{-1}(-9 / 5) \approx 2.08$. Hence, as the sum of two oscillations,

$$
x(t)=2 \sqrt{106} \cos \left(5 t-\pi+\tan ^{-1}(9 / 5)\right)+10 \cos 4 t .
$$

3.6.8. Find the steady periodic solution $x_{s p}(t)=C \cos (\omega t-\alpha)$ of the equation $x^{\prime \prime}+$ $3 x^{\prime}+5 x=-4 \cos 5 t$. Then graph $x_{s p}(t)$ together with the adjusted forcing function $\tilde{F}(t)=F(t) / m \omega^{2}$.

Solution: We determine $x_{s p}(t)$, first assuming it has the general form $A \cos 5 t+B \sin 5 t$. Then

$$
x_{s p}^{\prime}(t)=-5 A \sin 5 t+5 B \cos 5 t, \quad x_{s p}^{\prime \prime}(t)=-25 A \cos 5 t-25 B \sin 5 t
$$

so plugging this into the DE, we have

$$
\begin{aligned}
x^{\prime \prime}+3 x^{\prime}+5 x & =-25 A \cos 5 t-25 B \sin 5 t-15 A \sin 5 t+15 B \cos 5 t+5 A \cos 5 t+5 B \sin 5 t \\
& =(15 B-20 A) \cos 5 t+(-15 A-20 B) \sin 5 t=-4 \cos 5 t .
\end{aligned}
$$

Hence, $-15 A-20 B=0$ and $15 B-20 A=-4$, so $B=-\frac{3}{4} A$, and $-\frac{45}{4} A-20 A=-4$, so $A=\frac{16}{125}$. Then $B=-\frac{12}{125}$. Consequently,

$$
C=\sqrt{A^{2}+B^{2}}=\frac{\sqrt{12^{2}+16^{2}}}{125}=\frac{20}{125}=\frac{4}{125^{\prime}}, \quad \tan \alpha=\frac{B}{A}=-\frac{3}{4} .
$$

Taking a choice for α in $[0,2 \pi), \alpha=2 \pi-\tan ^{-1}(3 / 4)$, so

$$
x_{s p}(t)=\frac{4}{25} \cos \left(5 t-2 \pi+\tan ^{-1}(3 / 4)\right)
$$

Plotting this against $\tilde{F}(t)=-\frac{4}{25} \cos 5 t$, we have

3.6.12. For the differential equation $x^{\prime \prime}+6 x^{\prime}+13 x=10 \sin 5 t$, find and plot both the steady periodic solution $x_{s p}(t)=C \cos (\omega t-\alpha)$ and the solution $x(t)=x_{t r}(t)+x_{s p}(t)$ matching the initial conditions $x(0)=0$ and $x^{\prime}(0)=0$.

Solution: We first find $x_{s p}(t)$, in the form $A \cos 5 t+B \sin 5 t$. From Problem 3.6.8, we reuse the derivatives of this function, so that

$$
\begin{aligned}
x^{\prime \prime}+6 x^{\prime}+13 x & =-25 A \cos 5 t-25 B \sin 5 t-30 A \sin 5 t+30 B \cos 5 t+13 A \cos 5 t+13 B \sin 5 t \\
& =(30 B-12 A) \cos 5 t+(-30 A-12 B) \sin 5 t=10 \sin 5 t .
\end{aligned}
$$

Then $30 B-12 A=0$ and $-30 A-12 B=10$, so $B=\frac{2}{5} A$, and then $-30 A-\frac{24}{5} A=10$. Then $A=-\frac{25}{87}$, so $B=-\frac{10}{87}$. Computing C and α,

$$
C=\sqrt{A^{2}+B^{2}}=\frac{\sqrt{25^{2}+10^{2}}}{87}=\frac{5 \sqrt{29}}{87}=\frac{5}{3 \sqrt{29}}, \quad \alpha=\pi+\tan ^{-1} \frac{-10}{-25}=\pi+\tan ^{-1} \frac{2}{5} .
$$

Then $x_{s p}(t)=\frac{5}{3 \sqrt{29}} \cos \left(5 t-\pi-\tan ^{-1} \frac{2}{5}\right)$.
Next, we compute the solution $x(t)$ matching the initial conditions. We first find the general form of the transient solution: since the homogeneous equation has the characteristic equation $r^{2}+6 r+13=0$, with roots $r=-3 \pm 2 i$, the transient solution is of the form

$$
x_{t r}(t)=c_{1} e^{-3 t} \cos 2 t+c_{2} e^{-3 t} \sin 2 t
$$

with derivative

$$
x_{t r}^{\prime}(t)=c_{1} e^{-3 t}(-3 \cos 2 t-2 \sin 2 t)+c_{2} e^{-3 t}(-3 \sin 2 t+2 \cos 2 t)
$$

Then $x(t)=x_{s p}(t)+x_{t r}(t)$, so, matching the initial conditions,

$$
\begin{array}{r}
x(0)=x_{s p}(0)+x_{t r}(0)=-\frac{25}{87}+c_{1}=0 \\
x^{\prime}(0)=x_{s p}^{\prime}(0)+x_{t r}^{\prime}(0)=-\frac{50}{87}-3 c_{1}+2 c_{2}=0
\end{array}
$$

Then $c_{1}=\frac{25}{87}$, and $c_{2}=\frac{1}{2}\left(3 c_{1}+\frac{50}{87}\right)=\frac{125}{174}$. Combining the terms in $x_{t r}(t)$ into a single trigonometric function $C_{1} e^{-3 t} \cos (2 t-\beta)$, we then have

$$
C=\frac{\sqrt{50^{2}+125^{2}}}{174}=\frac{25}{6 \sqrt{29}}, \quad \beta=\tan ^{-1} \frac{125}{50}=\tan ^{-1} \frac{5}{2}
$$

so $x_{t r}(t)=\frac{25}{6 \sqrt{29}} \cos \left(2 t-\tan ^{-1} \frac{5}{2}\right)$. We plot $x_{s p}(t)$ and $x(t)$ below:

3.6.18. Consider the mass-spring-dashpot system $m x^{\prime \prime}+c x^{\prime}+k x=F_{0} \cos \omega t$ with $m=1, c=10, k=650$, and $F_{0}=100$ (in mks units). Find and sketch the amplitude $C(\omega)$ of steady periodic oscillations with frequency ω, and find the practical resonance frequency ω, if it exists.

Solution: From the computations in this section, the amplitude is given by

$$
C(\omega)=\frac{F_{0}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+c^{2} \omega^{2}}}=\frac{100}{\sqrt{\left(650-\omega^{2}\right)^{2}+100 \omega^{2}}}=\frac{100}{\sqrt{422,500-1200 \omega^{2}+\omega^{4}}}
$$

We check whether practical resonance is possible: since $c^{2}=10^{2}=100$ and $2 \mathrm{~km}=$ $2(1)(650)=1300, c^{2}<2 k m$, so it is. The frequency maximizing $C(\omega)$ is then

$$
\omega_{m}=\sqrt{\frac{2 k m-c^{2}}{2 m^{2}}}=\sqrt{\frac{1300-100}{2}}=\sqrt{600}=10 \sqrt{6} \approx 24.5
$$

Below is a plot of $C(\omega)$, which clearly has a maximum at that frequency:

3.6.28. As indicated by the cart-with-flywheel example discussed in this section, an unbalanced rotating machine part typically results in a force having amplitude proportional to the square of the frequency ω.
(a) Show that the amplitude of the steady periodic solution of the differential equation

$$
m x^{\prime \prime}+c x^{\prime}+k x=m A \omega^{2} \cos \omega t
$$

is given by

$$
C(\omega)=\frac{m A \omega^{2}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}}
$$

(b) Suppose that $c^{2}<2 m k$. Show that the maximum amplitude occurs at the frequency ω_{m} given by

$$
\omega_{m}=\sqrt{\frac{k}{m}\left(\frac{2 k m}{2 k m-c^{2}}\right)}
$$

Thus the resonance frequency in this case is larger than the natural frequency $\omega_{0}=$ $\sqrt{\mathrm{k} / \mathrm{m}}$. (Suggestion: maximize the square of C.)

Solution (a): We note that, although the forcing term is now $m A \omega^{2} \cos \omega t$, the amplitude $m A \omega^{2}$ does not vary with t, and so is a constant under differentiation with respect to t. Then the same formula as in Equation 3.6.21 applies with $F_{0}=m A \omega^{2}$, so the amplitude is

$$
C(\omega)=\frac{F_{0}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}}=\frac{m A \omega^{2}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}}
$$

Solution (b): As suggested by the hint, we instead maximize $C(\omega)^{2}=\frac{A^{2} m^{2} \omega^{2}}{\left(k-m \omega^{2}\right)^{2}+c^{2} \omega^{2}}$. By the quotient rule,

$$
\begin{aligned}
\left(C(\omega)^{2}\right)^{\prime} & =\frac{\left(4 A^{2} m^{2} \omega^{3}\right)\left(\left(k-m \omega^{2}\right)^{2}+c^{2} \omega^{2}\right)-\left(A^{2} m^{2} \omega^{4}\right)\left(2(-2 m \omega)\left(k-m \omega^{2}\right)^{2}+2 c^{2} \omega\right)}{\left(\left(k-m \omega^{2}\right)+c^{2} \omega^{2}\right)^{2}} \\
& =\frac{2 A^{2} m^{2} \omega^{3}\left(2\left(\left(k-m \omega^{2}\right)^{2}+c^{2} \omega^{2}\right)-\left(2 m^{2} \omega^{4}-2 k m \omega^{2}+c^{2} \omega^{2}\right)\right)}{\left(\left(k-m \omega^{2}\right)^{2}+c^{2} \omega^{2}\right)^{2}}
\end{aligned}
$$

Setting the numerator equal to 0 , we have that either $\omega=0$ or

$$
\begin{aligned}
0 & =2\left(\left(k-m \omega^{2}\right)^{2}+c^{2} \omega^{2}\right)-\left(2 m^{2} \omega^{4}-2 k m \omega^{2}+c^{2} \omega^{2}\right) \\
& =2 m^{2} \omega^{4}-4 k m \omega^{2}+2 k^{2}+2 c^{2} \omega^{2}-2 m^{2} \omega^{4}+2 k m \omega^{2}-c^{2} \omega^{2} \\
& =\left(c^{2}-2 k m\right) \omega^{2}+2 k^{2}
\end{aligned}
$$

Therefore, $\left(2 k m-c^{2}\right) \omega^{2}=2 k^{2}$, so

$$
\omega=\sqrt{\frac{2 k^{2}}{2 k m-c^{2}}}=\sqrt{\frac{k}{m}\left(\frac{2 k m}{2 k m-c^{2}}\right)}
$$

A routine verification shows that $C(\omega)$ is indeed a maximum here, if $c^{2}<2 k m$ so that the square root exists.
4.1.2. Transform the differential equation $x^{(4)}+6 x^{\prime \prime}-3 x^{\prime}+x=\cos 3 t$ into an equivalent system of first-order differential equations.

Solution: Since we have a fourth derivative of x in the system, we introduce 4 variables: $x_{1}=x, x_{2}=x_{1}^{\prime}=x^{\prime}, x_{3}=x_{2}^{\prime}$, and $x_{4}=x_{3}^{\prime}$. Then the original DE becomes $x_{4}^{\prime}+6 x_{3}-$ $3 x_{2}+x_{1}=\cos 3 t$, so we obtain the system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =x_{3} \\
x_{3}^{\prime} & =x_{4} \\
x_{4}^{\prime} & =-x_{1}+3 x_{2}-6 x_{3}+\cos 3 t
\end{aligned}
$$

4.1.8. Transform the system of differential equations $x^{\prime \prime}+3 x^{\prime}+4 x-2 y=0, y^{\prime \prime}+2 y^{\prime}-$ $3 x+y=\cos t$ into an equivalent system of first-order differential equations.

Solution: We introduce the following variables to rewrite the system: $x_{1}=x, x_{2}=x_{1}=$ $x^{\prime}, y_{1}=y$, and $y_{2}=y_{1}^{\prime}$. Then $x_{2}^{\prime}+3 x_{2}+4 x_{1}-2 y_{1}=0$ and $y_{2}^{\prime}+2 y_{2}-3 x_{1}+y_{1}=\cos t$, so we have the following linear system:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=-4 x_{1}-3 x_{2}+2 y_{1} \\
& y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=3 x_{1}-y_{1}-2 y_{2}+\cos t
\end{aligned}
$$

4.1.24. Derive the equations

$$
m_{1} x_{1}^{\prime \prime}=-\left(k_{1}+k_{2}\right) x_{1}+k_{2} x_{2}, \quad m_{2} x_{2}^{\prime \prime}=k_{2} x_{1}-\left(k_{2}+k_{3}\right) x_{2}
$$

from the displacements from equilibrium of the two masses in Figure 4.1.11.
Solution: At a given time t, the net displacements of these three springs are $x_{1}, x_{2}-x_{1}$, and $-x_{2}$, respectively, so the corresponding forces are $F_{1}=-k_{1} x_{1}, F_{2}=-k_{2}\left(x_{2}-x_{1}\right)=$ $k_{2} x_{1}-k_{2} x_{2}$, and $F_{3}=-k_{3}\left(-x_{2}\right)=k_{3} x_{2}$. The net forces acting on the masses m_{1} and m_{2} are then $F_{1}-F_{2}$ and $F_{2}-F_{3}$, so Newton's law provides the equations

$$
\begin{aligned}
& m_{1} x_{1}^{\prime \prime}=F_{1}-F_{2}=-k_{1} x_{1}-k_{2} x_{1}+k_{2} x_{2}=-\left(k_{1}+k_{2}\right) x_{1}+k_{2} x_{2} \\
& m_{2} x_{2}^{\prime \prime}=F_{2}-F_{3}=k_{2} x_{1}-k_{2} x_{2}-k_{3} x_{2}=k_{2} x_{1}-\left(k_{2}+k_{3}\right) x_{2},
\end{aligned}
$$

as desired.

