Homework \#10 Solutions

Problems

- Section 5.1: 6, 12, 14, 24, 26, 36.
- Section 5.2: 4, 16, 18. On \#4 and \#16, make only a rough sketch of some solution curves, including ones along the eigenvector directions.
5.1.6. Let

$$
A_{1}=\left[\begin{array}{rr}
2 & 1 \\
-3 & 2
\end{array}\right], \quad \quad A_{2}=\left[\begin{array}{rr}
1 & 3 \\
-1 & -2
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]
$$

(a) Show that $A_{1} B=A_{2} B$ and note that $A_{1} \neq A_{2}$. Thus, the cancellation law does not hold for matrices; that is, if $A_{1} B=A_{2} B$ and $B \neq 0$, it does not follow that $A_{1}=A_{2}$.
(b) Let $A=A_{1}-A_{2}$ and use part (a) to show that $A B=0$. Thus, the product of two nonzero matrices may be the zero matrix.

Solution (a): We compute:

$$
\begin{gathered}
A_{1} B=\left[\begin{array}{rr}
2 & 1 \\
-3 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
2(2)+1(1) & 2(4)+1(2) \\
-3(2)+2(1) & -3(4)+2(2)
\end{array}\right]=\left[\begin{array}{rc}
5 & 10 \\
-4 & -8
\end{array}\right] \\
A_{2} B=\left[\begin{array}{rr}
1 & 3 \\
-1 & -2
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
1(2)+3(1) & 1(4)+3(2) \\
-1(2)+-2(1) & -1(4)-2(2)
\end{array}\right]=\left[\begin{array}{rc}
5 & 10 \\
-4 & -8
\end{array}\right]
\end{gathered}
$$

These products $A_{1} B$ and $A_{2} B$ are then the same matrix. On the other hand,

$$
A=A_{1}-A_{2}=\left[\begin{array}{rr}
2 & 1 \\
-3 & 2
\end{array}\right]-\left[\begin{array}{rr}
1 & 3 \\
-1 & -2
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
$$

which is not the 0 matrix.
Solution (b): Since $A_{1} B=A_{2} B, A_{1} B-A_{2} B=0$, so by the distributivity of matrix multiplication, $\left(A_{1}-A_{2}\right) B=0$. Defining $A=A_{1}-A_{2}, A B=0$.
5.1.12. Write the system $x^{\prime}=3 x-2 y, y^{\prime}=2 x+y$ in the form $\mathbf{x}^{\prime}=P(t) \mathbf{x}+\mathbf{f}(t)$.

Solution: Let $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$. Then

$$
\mathbf{x}^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{c}
3 x-2 y \\
2 x+y
\end{array}\right]=\left[\begin{array}{rr}
3 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Taking

$$
P(t)=\left[\begin{array}{rr}
3 & -2 \\
2 & 1
\end{array}\right], \quad \mathbf{f}(t)=\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

this system is $\mathbf{x}^{\prime}=P(t) \mathbf{x}+\mathbf{f}(t)$.
5.1.14. Write the system $x^{\prime}=t x-e^{t} y+\cos t, y^{\prime}=e^{-t} x+t^{2} y-\sin t$ in the form $\mathbf{x}^{\prime}=$ $P(t) \mathbf{x}+\mathbf{f}(t)$.

Solution: Let $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$. Then

$$
\mathbf{x}^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{c}
t x-e^{t} y+\cos t \\
e^{-t} x+t^{2} y-\sin t
\end{array}\right]=\left[\begin{array}{cc}
t & e^{t} \\
e^{-t} & t^{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
\cos t \\
-\sin t
\end{array}\right] .
$$

Taking

$$
P(t)=\left[\begin{array}{cc}
t & e^{t} \\
e^{-t} & t^{2}
\end{array}\right], \quad \mathbf{f}(t)=\left[\begin{array}{c}
\cos t \\
-\sin t
\end{array}\right],
$$

this system is $\mathbf{x}^{\prime}=P(t) \mathbf{x}+\mathbf{f}(t)$.
5.1.24. First, verify that $\mathbf{x}_{1}=e^{3 t}\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\mathbf{x}_{2}=e^{2 t}\left[\begin{array}{r}1 \\ -2\end{array}\right]$ are solutions to the system $\mathbf{x}^{\prime}=\left[\begin{array}{rr}4 & 1 \\ -2 & 1\end{array}\right] \mathbf{x}$. Then use the Wronkian to show that they are linearly independent. Finally, write the general solution of the system.

Solution: We first check that these are solutions, letting A denote the coefficient matrix in the system, by evaluating \mathbf{x}^{\prime} and $A \mathbf{x}$ separately and checking that they are equal:

$$
\begin{aligned}
\mathbf{x}_{1}^{\prime} & =3 e^{3 t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=e^{3 t}\left[\begin{array}{r}
3 \\
-3
\end{array}\right] \\
\mathbf{x}_{2}^{\prime} & =2 e^{2 t}\left[\begin{array}{r}
1 \\
-2
\end{array}\right]=e^{3 t}\left[\begin{array}{r}
2 \\
-4
\end{array}\right] \\
A \mathbf{x}_{1} & =e^{3 t}\left[\begin{array}{rr}
4 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=e^{3 t}\left[\begin{array}{c}
4(1)+1(-1) \\
-2(1)+1(-1)
\end{array}\right]=e^{3 t}\left[\begin{array}{r}
3 \\
-3
\end{array}\right]=\mathbf{x}_{1}^{\prime} \\
A \mathbf{x}_{2} & =e^{2 t}\left[\begin{array}{rr}
4 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
-2
\end{array}\right]=e^{2 t}\left[\begin{array}{c}
4(1)+1(-2) \\
-2(1)+1(-2)
\end{array}\right]=e^{2 t}\left[\begin{array}{r}
2 \\
-4
\end{array}\right]=\mathbf{x}_{2}^{\prime}
\end{aligned}
$$

We then compute their Wronskian $W\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$:

$$
W\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)(t)=\operatorname{det}\left[\begin{array}{ll}
\mathbf{x}_{1}(t) & \left.\mathbf{x}_{2}(t)\right]=\left|\begin{array}{cc}
e^{3 t} & e^{2 t} \\
-e^{3 t} & -2 e^{2 t}
\end{array}\right|=e^{3 t}\left(-2 e^{2 t}\right)-\left(-e^{3 t}\right) e^{2 t}=-e^{5 t} .
\end{array}\right.
$$

Since this function is not identically 0 (and in fact is never 0), the solutions are linearly independent. The general solution is then

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=c_{1}\left[\begin{array}{c}
e^{3 t} \\
-e^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
e^{2 t} \\
-2 e^{3 t}
\end{array}\right]=\left[\begin{array}{c}
c_{1} e^{3 t}+c_{2} e^{2 t} \\
-c_{1} e^{3 t}-2 c_{2} e^{2 t}
\end{array}\right] .
$$

5.1.26. First, verify that $\mathbf{x}_{1}=e^{t}\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right], \mathbf{x}_{2}=e^{3 t}\left[\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right]$, and $\mathbf{x}_{3}=e^{5 t}\left[\begin{array}{r}2 \\ -2 \\ 1\end{array}\right]$ are solutions to the system $\mathbf{x}^{\prime}=\left[\begin{array}{rrr}3 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -1 & 3\end{array}\right] \mathbf{x}$. Then use the Wronkian to show that they are linearly independent. Finally, write the general solution of the system.

Solution: We first check that these are solutions, letting A denote the coefficient matrix in the system, by evaluating \mathbf{x}^{\prime} and $A \mathbf{x}$ separately and checking that they are equal. The derivatives are:

$$
\mathbf{x}_{1}^{\prime}=e^{t}\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right] \quad \mathbf{x}_{2}^{\prime}=3 e^{3 t}\left[\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right]=e^{3 t}\left[\begin{array}{r}
-6 \\
0 \\
3
\end{array}\right] \quad \mathbf{x}_{3}^{\prime}=5 e^{5 t}\left[\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right]=e^{5 t}\left[\begin{array}{r}
10 \\
-10 \\
5
\end{array}\right]
$$

Then the matrix-vector products are

$$
\begin{aligned}
& A \mathbf{x}_{1}^{\prime}=e^{t}\left[\begin{array}{rrr}
3 & -2 & 0 \\
-1 & 3 & -2 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]=e^{t}\left[\begin{array}{r}
3(2)-2(2)+0(1) \\
-1(2)+3(2)-2(1) \\
0(2)+1(2)+3(1)
\end{array}\right]=e^{t}\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]=\mathbf{x}_{1}^{\prime} \\
& A \mathbf{x}_{2}^{\prime}=e^{t}\left[\begin{array}{rrr}
3 & -2 & 0 \\
-1 & 3 & -2 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right]=e^{t}\left[\begin{array}{r}
3(-2)-2(0)+0(1) \\
-1(-2)+3(0)-2(1) \\
0(-2)+1(0)+3(1)
\end{array}\right]=e^{t}\left[\begin{array}{c}
-6 \\
0 \\
3
\end{array}\right]=\mathbf{x}_{2}^{\prime} \\
& A \mathbf{x}_{3}^{\prime}=e^{t}\left[\begin{array}{rrr}
3 & -2 & 0 \\
-1 & 3 & -2 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right]=e^{t}\left[\begin{array}{r}
3(2)-2(-2)+0(1) \\
-1(2)+3(-2)-2(1) \\
0(2)+1(-2)+3(1)
\end{array}\right]=e^{t}\left[\begin{array}{r}
10 \\
-10 \\
5
\end{array}\right]=\mathbf{x}_{3}^{\prime}
\end{aligned}
$$

The Wronskian of these three solutions is then

$$
\begin{aligned}
W(t) & =\left|\mathbf{x}_{1}(t) \quad \mathbf{x}_{2}(t) \quad \mathbf{x}_{3}(t)\right|=\left|\begin{array}{ccc}
2 e^{t} & -2 e^{3 t} & 2 e^{5 t} \\
2 e^{t} & 0 & -2 e^{5 t} \\
1 e^{t} & 1 e^{3 t} & e^{5 t}
\end{array}\right| \\
& =e^{t} e^{3 t} e^{5 t}\left|\begin{array}{ccc}
2 & -2 & 2 \\
2 & 0 & -2 \\
1 & 1 & 1
\end{array}\right|=e^{9 t}\left(-2\left|\begin{array}{cc}
-2 & 2 \\
1 & 1
\end{array}\right|-(-2)\left|\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right|\right)=16 e^{9 t},
\end{aligned}
$$

so the solutions are linearly independent. Thus, the general solution is

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+c_{3} \mathbf{x}_{3}(t)=\left[\begin{array}{c}
2 c_{1} e^{t}-2 c_{2} e^{3 t}+2 c_{3} e^{5 t} \\
2 c_{1} e^{t}-2 c_{3} e^{5 t} \\
c_{1} e^{t}+c_{2} e^{3 t}+c_{3} e^{5 t}
\end{array}\right] .
$$

5.1.36. Given that $\mathbf{x}_{1}=e^{2 t}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{x}_{2}=e^{-t}\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$, and $\mathbf{x}_{1}=e^{-t}\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$ are linearly independent solutions to the system $\mathbf{x}^{\prime}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] \mathbf{x}$, find the solution matching the initial conditions $x_{1}(0)=10, x_{2}(0)=12, x_{3}(0)=-1$.

Solution: Letting $\mathbf{b}=\left[\begin{array}{c}10 \\ 12 \\ -1\end{array}\right]$, we then wish to solve the vector equation

$$
c_{1} \mathbf{x}_{1}(0)+c_{2} \mathbf{x}_{2}(0)+c_{3} \mathbf{x}_{3}(0)=c_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]+c_{3}\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]=\mathbf{b} .
$$

We can rewrite this linear system in the c_{i} as a matrix-vector equation $A \mathbf{c}=\mathbf{b}$, with the columns of A coming from the column vectors $\mathbf{x}_{i}(0)$:

$$
\left[\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & -1
\end{array}\right] \mathbf{c}=\mathbf{b}
$$

Then row reduction of the augmented matrix $[A \mid \mathbf{b}]$ to $[I \mid \mathbf{c}]$ will produce the solution \mathbf{c} :

$$
\begin{aligned}
{\left[\begin{array}{rrr|r}
1 & 1 & 0 & 10 \\
1 & 0 & 1 & 12 \\
1 & -1 & -1 & -1
\end{array}\right] } & \sim\left[\begin{array}{rrr|r}
1 & 1 & 0 & 10 \\
0 & -1 & 1 & 2 \\
0 & -2 & -1 & -11
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 1 & 0 & 10 \\
0 & 1 & -1 & -2 \\
0 & -2 & -1 & -11
\end{array}\right] \\
& \sim\left[\begin{array}{rrr|c}
1 & 1 & 0 & 10 \\
0 & 1 & -1 & -2 \\
0 & 0 & -3 & -15
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 1 & 0 & 10 \\
0 & 1 & -1 & -2 \\
0 & 0 & 1 & 5
\end{array}\right] \\
& \sim\left[\begin{array}{rrr|r}
1 & 1 & 0 & 10 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 5
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 5
\end{array}\right]
\end{aligned}
$$

Then $c_{1}=7, c_{2}=3, c_{3}=5$, so the solution is

$$
\mathbf{x}(t)=7 \mathbf{x}_{1}(t)+3 \mathbf{x}_{2}(t)+5 \mathbf{x}_{3}(t)
$$

5.2.4. Apply the eigenvalue method to find a general solution to the system $x_{1}^{\prime}=4 x_{1}+$ $x_{2}, x_{2}^{\prime}=6 x_{1}-x_{2}$. Sketch some solution curves, including ones along the eigenvector directions.

Solution: Writing $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, the system is $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{rr}4 & 1 \\ 6 & -1\end{array}\right]$. We compute the eigenvalues and eigenvectors of A. First, $\operatorname{det}(A-\lambda I)$ is

$$
\left|\begin{array}{cc}
4-\lambda & 1 \\
6 & -1-\lambda
\end{array}\right|=(4-\lambda)(-1-\lambda)-6=\lambda^{2}-3 \lambda-10=(\lambda-5)(\lambda+2)
$$

The roots of this polynomial are the eigenvalues, which we enumerate $\lambda_{1}=5$ and $\lambda_{2}=$ -2 . We compute the eigenvectors associated to these eigenvalues from the solutions $\mathbf{v}=$ $\left[\begin{array}{l}a \\ b\end{array}\right]$ to $(A-\lambda I) \mathbf{v}=\mathbf{0}$. For $\lambda_{1}-5$, this is the linear system

$$
\left[\begin{array}{rr}
-1 & 1 \\
6 & -6
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Then row reduction of $A-5 I$ yields

$$
\left[\begin{array}{rr}
-1 & 1 \\
6 & -6
\end{array}\right] \sim\left[\begin{array}{rr}
-1 & 1 \\
0 & 0
\end{array}\right],
$$

representing the only nontrivial equation $-a+b=0$. Then $a=b$, so taking $a=1$, the only eigenvector for $\lambda_{1}=5$ (up to scalar multiples) is $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Repeating this process for $\lambda_{2}=-2$, we row reduce

$$
A+2 I=\left[\begin{array}{ll}
6 & 1 \\
6 & 1
\end{array}\right] \sim\left[\begin{array}{ll}
6 & 1 \\
0 & 0
\end{array}\right]
$$

so $6 a+b=0$, and $b=-6 a$. Taking $a=1, b=6$, so the only eigenvector is $\mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -6\end{array}\right]$. Therefore, two linearly independent solutions are

$$
\mathbf{x}_{1}=e^{\lambda_{1} t} \mathbf{v}_{1}=e^{5 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{x}_{2}=e^{\lambda_{2} t} \mathbf{v}_{2}=e^{-2 t}\left[\begin{array}{r}
1 \\
-6
\end{array}\right]
$$

so the general solution is

$$
\mathbf{x}(t)=c_{1} e^{5 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{-2 t}\left[\begin{array}{r}
1 \\
-6
\end{array}\right] .
$$

We plot the solutions in the $x_{1} x_{2}$-plane for different values of c_{1} and c_{2}, including along the eigenvector directions:

5.2.16. Apply the eigenvalue method to find a general solution to the system $x_{1}^{\prime}=$ $-50 x_{1}+20 x_{2}, x_{2}^{\prime}=100 x_{1}-60 x_{2}$. Sketch some solution curves, including ones along the eigenvector directions.

Solution: Writing $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, the system is $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{rr}-50 & 20 \\ 100 & -60\end{array}\right]$. We compute the eigenvalues and eigenvectors of A. First, $\operatorname{det}(A-\lambda I)$ is

$$
\left|\begin{array}{cc}
-50-\lambda & 20 \\
100 & -60-\lambda
\end{array}\right|=(-50-\lambda)(-60-\lambda)-2000=\lambda^{2}+110 \lambda+1000
$$

This factors as $(\lambda+10)(\lambda+100)$, so the eigenvalues are $\lambda_{1}=-10$ and $\lambda_{2}=-100$. We compute eigenvectors $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$ for each eigenvalue. First, we row reduce $A-\lambda_{1} I$:

$$
A+10 I=\left[\begin{array}{rr}
-40 & 20 \\
100 & -50
\end{array}\right] \sim\left[\begin{array}{cc}
-2 & 1 \\
0 & 0
\end{array}\right],
$$

so $-2 a+b=0$, and $b=2 a$. Taking $a=1, b=2$, so an eigenvector is $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Next, for $\lambda_{2}=-100$,

$$
A+100 I=\left|\begin{array}{cc}
50 & 20 \\
100 & 40
\end{array}\right| \sim\left|\begin{array}{ll}
5 & 2 \\
0 & 0
\end{array}\right|
$$

so $\mathbf{v}_{2}=\left[\begin{array}{r}2 \\ -5\end{array}\right]$ is an eigenvector for λ_{2}. Hence, the general solution is

$$
\mathbf{x}(t)=c_{1} e^{-10 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{-100 t}\left[\begin{array}{r}
2 \\
-5
\end{array}\right] .
$$

We plot the solutions in the $x_{1} x_{2}$-plane for different values of c_{1} and c_{2}, including along the eigenvector directions:

5.2.18. Apply the eigenvalue method to find a general solution to the system $x_{1}^{\prime}=x_{1}+$ $2 x_{2}+2 x_{3}, x_{2}^{\prime}=2 x_{1}+7 x_{2}+x_{3}, x_{3}^{\prime}=2 x_{1}+x_{2}+7 x_{3}$.

Solution: Writing $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, the system is $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 7 & 1 \\ 2 & 1 & 7\end{array}\right]$. We compute the
eigenvalues and eigenvectors of A. First,

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
1-\lambda & 2 & 2 \\
2 & 7-\lambda & 1 \\
2 & 1 & 7-\lambda
\end{array}\right| \\
& =(1-\lambda)\left|\begin{array}{cc}
7-\lambda & 1 \\
1 & 7-\lambda
\end{array}\right|-2\left|\begin{array}{cc}
2 & 1 \\
2 & 7-\lambda
\end{array}\right|+2\left|\begin{array}{cc}
2 & 7-\lambda \\
2 & 1
\end{array}\right| \\
& =(1-\lambda)\left((7-\lambda)^{2}-1\right)-2(14-2 \lambda-2)+2(2-14+2 \lambda) \\
& =(1-\lambda)\left(\lambda^{2}-14 \lambda+48\right)+(4 \lambda-24)+(4 \lambda-24) \\
& =-\lambda^{3}+\lambda^{2}+14 \lambda^{2}-14 \lambda-48 \lambda+48+8 \lambda-48 \\
& =-\lambda^{3}+15 \lambda^{2}-54 \lambda=-\lambda(\lambda-9)(\lambda-6) .
\end{aligned}
$$

Therefore, we obtain 3 distinct eigenvalues, $\lambda_{1}=0, \lambda_{2}=6$, and $\lambda_{3}=9$. We compute eigenvectors $\mathbf{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ for each of them. First, for λ_{1}, we row reduce $A-0 I=A$:

$$
A=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 7 & 1 \\
2 & 1 & 7
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & 2 \\
0 & 3 & -3 \\
0 & -3 & 3
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 0 & 4 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Then $a+4 c=0$ and $b-c=0$, so $a=-4 c$ and $b=c$, but c is free. Taking $c=1$, we have an eigenvector $\mathbf{v}_{1}=\left[\begin{array}{r}-4 \\ 1 \\ 1\end{array}\right]$ for $\lambda_{1}=0$. For $\lambda_{2}=6$,

$$
A-6 I=\left[\begin{array}{rrr}
-5 & 2 & 2 \\
2 & 1 & 1 \\
2 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rrr}
-9 & 0 & 0 \\
2 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Then $a=0$ and $b+c=0$, so $\mathbf{v}_{2}=\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$ is a reasonable choice for an eigenvector for λ_{2}. Finally, for $\lambda_{3}=9$,

$$
A-9 I=\left[\begin{array}{rrr}
-8 & 2 & 2 \\
2 & -2 & 1 \\
2 & 1 & -2
\end{array}\right] \sim\left[\begin{array}{rrr}
-4 & 1 & 1 \\
2 & -2 & 1 \\
0 & 3 & -3
\end{array}\right] \sim\left[\begin{array}{rrr}
-4 & 0 & -2 \\
2 & 0 & -1 \\
0 & 1 & -1
\end{array}\right] \sim\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] .
$$

Then $2 a-c=0$ and $b-c=0$, so $b=c=2 a$. Then we may take $\mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$ as an eigenvector for $\lambda_{3}=9$. Hence, the general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{r}
-4 \\
1 \\
1
\end{array}\right]+c_{2} e^{6 t}\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]+c_{3} e^{9 t}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
$$

