Homework \#12 Solutions

Problems

- Section 5.5: 2, 4, 12, 22, 28
- Section 5.6: 2, 8, 24
5.5.2. Find a fundamental matrix for the system $\mathbf{x}^{\prime}=\left[\begin{array}{rr}2 & -1 \\ -4 & 2\end{array}\right] \mathbf{x}$, and apply $\mathbf{x}(t)=$ $\Phi(t) \Phi(0)^{-1} \mathbf{x}_{0}$ to find a solution matching the initial condition $\mathbf{x}(0)=\left[\begin{array}{r}2 \\ -1\end{array}\right]$.

Solution: We first find the eigenvalues and eigenvectors of $A=\left[\begin{array}{rr}2 & -1 \\ -4 & 2\end{array}\right]$. To find the eigenvalues, we solve $\operatorname{det}(A-\lambda I)=0$ for λ :

$$
\operatorname{det}(A-\lambda I)=\left[\begin{array}{cc}
2-\lambda & -1 \\
-4 & 2-\lambda
\end{array}\right]=\lambda^{2}-4 \lambda=\lambda(\lambda-4)=0
$$

Then $\lambda_{1}=0$ and $\lambda_{2}=4$ are the distinct, real eigenvalues of A. To find eigenvectors, we row-reduce $A-\lambda I$ for each λ_{i} :

$$
A-0 I=\left[\begin{array}{rr}
2 & -1 \\
-4 & 2
\end{array}\right] \sim\left[\begin{array}{rr}
2 & -1 \\
0 & 0
\end{array}\right] \quad A-4 I=\left[\begin{array}{ll}
-2 & -1 \\
-4 & -2
\end{array}\right] \sim\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]
$$

Then we may take eigenvectors $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -2\end{array}\right]$, so we build a fundamental matrix from the solutions $e^{\lambda_{i} t} \mathbf{v}_{i}$:

$$
\Phi(t)=\left[\begin{array}{ll}
e^{\lambda_{1} t} \mathbf{v}_{1} & e^{\lambda_{2} t} \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & e^{4 t} \\
2 & -2 e^{4 t}
\end{array}\right]
$$

Then $\Phi(0)=\left[\begin{array}{rr}1 & 1 \\ 2 & -2\end{array}\right]$, so $\Phi(0)^{-1}=\frac{1}{-4}\left[\begin{array}{rr}-2 & -1 \\ -2 & 1\end{array}\right]=\left[\begin{array}{rr}\frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{4}\end{array}\right]$. Then, using $\mathbf{x}(t)=$ $\Phi(t) \Phi(0)^{-1} \mathbf{x}(0)$,

$$
\mathbf{x}(t)=\left[\begin{array}{cc}
1 & e^{4 t} \\
2 & -2 e^{4 t}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & -\frac{1}{4}
\end{array}\right]\left[\begin{array}{r}
2 \\
-1
\end{array}\right]=\left[\begin{array}{cc}
1 & e^{4 t} \\
2 & -2 e^{4 t}
\end{array}\right]\left[\begin{array}{l}
\frac{3}{4} \\
\frac{5}{4}
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{4}+\frac{5}{4} e^{4 t} \\
\frac{3}{2}-\frac{5}{2} e^{4 t}
\end{array}\right] .
$$

5.5.4. Find a fundamental matrix for the system $\mathbf{x}^{\prime}=\left[\begin{array}{rr}3 & -1 \\ 1 & 1\end{array}\right] \mathbf{x}$, and apply $\mathbf{x}(t)=$ $\Phi(t) \Phi(0)^{-1} \mathbf{x}_{0}$ to find a solution matching the initial condition $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

Solution: We first find the eigenvalues and eigenvectors of $A=\left[\begin{array}{rr}3 & -1 \\ 1 & 1\end{array}\right]$. To find the eigenvalues, we solve $\operatorname{det}(A-\lambda I)=0$ for λ :

$$
\operatorname{det}(A-\lambda I)=\left[\begin{array}{cc}
3-\lambda & -1 \\
1 & 1-\lambda
\end{array}\right]=\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}=0 .
$$

Then $\lambda_{1}=2$ is the only eigenvalue of A, with multiplicity. To find an eigenvector, we row-reduce $A-2$ I:

$$
A-2 I=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right] \sim\left[\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right]
$$

Then there is only one linearly independent eigenvector for $\lambda=2$, which we may take to be $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. To build two linearly independent solutions to the system of DEs, we find a generalized eigenvector \mathbf{v}_{2} so that $(A-2 I) \mathbf{v}_{2}=\mathbf{v}_{1}$. Row-reducing $\left[A-2 I \mid \mathbf{v}_{1}\right]$, this is

$$
\left[\begin{array}{rr|r}
1 & -1 & 1 \\
1 & -1 & 1
\end{array}\right] \sim\left[\begin{array}{rr|r}
1 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Then we may take $\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, so two linearly independent solution to the system are $e^{2 t} \mathbf{v}_{1}$ and $e^{2 t}\left(t \mathbf{v}_{1}+\mathbf{v}_{2}\right)$. We arrange these into a fundamental matrix:

$$
\Phi(t)=\left[\begin{array}{ll}
e^{2 t} \mathbf{v}_{1} & e^{2 t}\left(t \mathbf{v}_{1}+\mathbf{v}_{2}\right)
\end{array}\right]=e^{2 t}\left[\begin{array}{cc}
1 & 1+t \\
1 & t
\end{array}\right]
$$

Then $\Phi(0)=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, so $\Phi(0)^{-1}=\frac{1}{-1}\left[\begin{array}{rr}0 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{rr}0 & 1 \\ 1 & -1\end{array}\right]$. Then, using $\mathbf{x}(t)=$ $\Phi(t) \Phi(0)^{-1} \mathbf{x}(0)$,

$$
\mathbf{x}(t)=e^{2 t}\left[\begin{array}{cc}
1 & 1+t \\
1 & t
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=e^{2 t}\left[\begin{array}{cc}
1 & 1+t \\
1 & t
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=e^{2 t}\left[\begin{array}{c}
1+t \\
t
\end{array}\right] .
$$

5.5.12. Compute the matrix exponential $e^{A t}$ for the system $\mathbf{x}^{\prime}=A \mathbf{x}$ with $A=\left[\begin{array}{ll}5 & -4 \\ 3 & -2\end{array}\right]$.

Solution: Regrettably, A is not of the form where we may write down $e^{A t}$ fairly directly, so we instead compute it as $\Phi(t) \Phi(0)^{-1}$ for some fundamental matrix $\Phi(t)$. Finding the eigenvalues with $\operatorname{det}(A-\lambda I)=0$,

$$
\left|\begin{array}{cc}
5-\lambda & -4 \\
3 & -2-\lambda
\end{array}\right|=\lambda^{2}-3 \lambda+2=(\lambda-2)(\lambda-1)=0
$$

Then $\lambda_{1}=2$ and $\lambda_{2}=1$ are the eigenvalues of A, and from

$$
A-2 I=\left[\begin{array}{ll}
3 & -4 \\
3 & -4
\end{array}\right] \sim\left[\begin{array}{rr}
3 & -4 \\
0 & 0
\end{array}\right] A-I=\left[\begin{array}{ll}
4 & -4 \\
3 & -3
\end{array}\right] \sim\left[\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right]
$$

we acquire eigenvectors $\mathbf{v}_{1}=\left[\begin{array}{l}4 \\ 3\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Then a fundamental matrix $\Phi(t)$ is

$$
\Phi(t)=\left[\begin{array}{ll}
e^{\lambda_{1} t} \mathbf{v}_{1} & e^{\lambda_{2} t} \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
4 e^{2 t} & e^{t} \\
3 e^{2 t} & e^{t}
\end{array}\right]
$$

Then $\Phi(0)=\left[\begin{array}{ll}4 & 1 \\ 3 & 1\end{array}\right]$, so $\Phi(0)^{-1}=\left[\begin{array}{rr}1 & -1 \\ -3 & 4\end{array}\right]$, and

$$
e^{A t}=\left[\begin{array}{ll}
4 e^{2 t} & e^{t} \\
3 e^{2 t} & e^{t}
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-3 & 4
\end{array}\right]=\left[\begin{array}{ll}
4 e^{2 t}-3 e^{t} & -4 e^{2 t}+4 e^{t} \\
3 e^{2 t}-3 e^{t} & -3 e^{2 t}+4 e^{t}
\end{array}\right] .
$$

5.5.22. Show that the matrix $A=\left[\begin{array}{rr}6 & 4 \\ -9 & -6\end{array}\right]$ is nilpotent, and use this to compute the matrix exponential $e^{A t}$.

Solution: We compute powers of A :

$$
A^{2}=A A=\left[\begin{array}{rr}
6 & 4 \\
-9 & -6
\end{array}\right]\left[\begin{array}{rr}
6 & 4 \\
-9 & -6
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

Then the power series $e^{A t}=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n} t^{n}$ stops after the $n=1$ term, so

$$
e^{A t}=I+A t=\left[\begin{array}{cc}
1+6 t & 4 t \\
-9 t & 1-6 t
\end{array}\right]
$$

5.5.28. Use that $A=\left[\begin{array}{ccc}5 & 0 & 0 \\ 10 & 5 & 0 \\ 20 & 30 & 5\end{array}\right]$ is the sum of a nilpotent matrix and a multiple of the identity matrix to solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{x}(0)=\left[\begin{array}{l}40 \\ 50 \\ 60\end{array}\right]$.

Solution: Let $B=\left[\begin{array}{ccc}0 & 0 & 0 \\ 10 & 0 & 0 \\ 20 & 30 & 0\end{array}\right]$, so that $A=5 I+B$. We show B is nilpotent:

$$
B^{2}=B B=\left[\begin{array}{ccc}
0 & 0 & 0 \\
10 & 0 & 0 \\
20 & 30 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
10 & 0 & 0 \\
20 & 30 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
300 & 0 & 0
\end{array}\right],
$$

so by the placement of the 0 s it is clear that $B^{3}=B^{2} B=0$. Then

$$
\begin{aligned}
& e^{B t}=I+B t+\frac{1}{2} B^{2} t^{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
10 t & 1 & 0 \\
150 t^{2}+20 t & 30 & 1
\end{array}\right] \\
& e^{A t}=e^{7 I t} e^{B t}=e^{7 t}\left[\begin{array}{ccc}
1 & 0 & 0 \\
10 t & 1 & 0 \\
150 t^{2}+20 t & 30 & 1
\end{array}\right]
\end{aligned}
$$

Then the solution to the IVP is $\mathbf{x}(t)=e^{A t} \mathbf{x}(0)$:

$$
\mathbf{x}(t)=e^{7 t}\left[\begin{array}{ccc}
1 & 0 & 0 \\
10 t & 1 & 0 \\
150 t^{2}+20 t & 30 & 1
\end{array}\right]\left[\begin{array}{l}
40 \\
50 \\
60
\end{array}\right]=e^{7 t}\left[\begin{array}{c}
40 \\
400 t+50 \\
6000 t^{2}+2300 t+60
\end{array}\right]
$$

5.6.2. Use the method of undetermined coefficients to find a particular solution to the system $x^{\prime}=2 x+3 y+5, y^{\prime}=2 x+y-2 t$.

Solution: We write this system as $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}(t)$, where $A=\left[\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right]$ and $\mathbf{f}(t)=\left[\begin{array}{c}5 \\ -2 t\end{array}\right]$. To make sure there are no overlaps with $\mathbf{f}(t)$, we compute the eigenvalues of A :

$$
\operatorname{det} A-\lambda I=\left|\begin{array}{cc}
2-\lambda & 3 \\
2 & 1-\lambda
\end{array}\right|=\lambda^{2}-3 \lambda-4=(\lambda+1)(\lambda-4)
$$

Then the eigenvalues are $\lambda=-1$ and $\lambda=4$. Since the eigenvalue associated to the functions 5 and $-2 t$ in the forcing function is 0 , there is no overlap, and we guess $\mathbf{x}_{p}=$ $\mathbf{a}+t \mathbf{b}$ as a particular solution to the system. Before we plug this guess into the system,
we write it as $\mathbf{x}^{\prime}-A \mathbf{x}=\mathbf{f}(t)$, so that the \mathbf{x}-terms are all collected together. Then $\mathbf{x}_{p}^{\prime}=\mathbf{b}$, so, plugging this in and separating the constant and the t terms,

$$
\begin{aligned}
\mathbf{x}^{\prime}-A \mathbf{x} & =\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]-\left[\begin{array}{c}
2 a_{1}+3 a_{2} \\
2 a_{1}+a_{2}
\end{array}\right]-t\left[\begin{array}{c}
2 b_{1}+3 b_{2} \\
2 b_{1}+b_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 a_{1}-3 a_{2}+b_{1} \\
-2 a_{1}-a_{2}+b_{2}
\end{array}\right]+t\left[\begin{array}{c}
-2 b_{1}-3 b_{2} \\
-2 b_{1}-b_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
-2
\end{array}\right]
\end{aligned}
$$

Fortunately, the t-terms involve only the variables b_{1} and b_{2} from the vector \mathbf{b}, so we may solve for them independently of the a-vector. Multiplying the equations by -1 , we have $2 b_{1}+3 b_{2}=0$ and $2 b_{1}+b_{2}=2$, which we solve with augmented matrix reduction:

$$
\left[\begin{array}{ll|l}
2 & 3 & 0 \\
2 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{rr|r}
2 & 3 & 0 \\
0 & -2 & 2
\end{array}\right] \sim\left[\begin{array}{rr|r}
2 & 0 & 3 \\
0 & 1 & -1
\end{array}\right] \sim\left[\begin{array}{rr|r}
1 & 0 & \frac{3}{2} \\
0 & 1 & -1
\end{array}\right]
$$

So $b_{1}=\frac{3}{2}$, and $b_{2}=-1$. Plugging these solutions into the constant-vector equations, $-2 a_{1}-3 a_{2}+\frac{3}{2}=5$ and $-2 a_{1}-a_{2}-1=0$, which we solve:

$$
\left[\begin{array}{rr|r}
2 & 3 & -\frac{7}{2} \\
2 & 1 & -1
\end{array}\right] \sim\left[\begin{array}{rr|r}
2 & 3 & -\frac{7}{2} \\
0 & -2 & \frac{5}{2}
\end{array}\right] \sim\left[\begin{array}{rr|r}
2 & 0 & \frac{1}{4} \\
0 & 1 & -\frac{5}{4}
\end{array}\right] \sim\left[\begin{array}{rr|r}
1 & 0 & \frac{1}{8} \\
0 & 1 & -\frac{5}{4}
\end{array}\right]
$$

Then $a_{1}=\frac{1}{8}$ and $a_{2}=-\frac{5}{4}$, so $\mathbf{x}_{p}=\left[\begin{array}{c}\frac{1}{8}+\frac{3}{2} t \\ -\frac{5}{4}-t\end{array}\right]$.
5.6.8. Use the method of undetermined coefficients to find a particular solution to the system $x^{\prime}=x-5 y+2 \sin t, y^{\prime}=x-y-3 \cos t$.

Solution: We write this system as $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}(t)$, where $A=\left[\begin{array}{ll}1 & -5 \\ 1 & -1\end{array}\right]$ and $\mathbf{f}(t)=$ $\left[\begin{array}{r}2 \sin t \\ -3 \cos t\end{array}\right]$. To make sure there are no overlaps with $\mathbf{f}(t)$, we compute the eigenvalues of A :

$$
\operatorname{det} A-\lambda I=\left|\begin{array}{cc}
1-\lambda & -5 \\
1 & -1-\lambda
\end{array}\right|=\lambda^{2}+4
$$

Then the eigenvalues are the pure imaginary pair $\lambda= \pm 2 i$. Since the $\sin t$ and $\cos t$ correspond to the imaginary pair $\pm i$, there is no overlap, and we guess a solution of the form $\mathbf{x}_{p}=\mathbf{a} \cos t+\mathbf{b} \sin t$. Again writing the system as $\mathbf{x}^{\prime}-A \mathbf{x}=\mathbf{f}(t)$, we plug in this guess and collect the $\sin t$ and $\cos t$ terms:

$$
\begin{aligned}
\mathbf{x}^{\prime}-A \mathbf{x} & =-\sin t\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]+\cos t\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]-\cos t\left[\begin{array}{c}
a_{1}-5 a_{2} \\
a_{1}-a_{2}
\end{array}\right]-\sin t\left[\begin{array}{c}
b_{1}-5 b_{2} \\
b_{1}-b_{2}
\end{array}\right] \\
& =\cos t\left[\begin{array}{c}
-a_{1}+5 a_{2}+b_{1} \\
-a_{1}+a_{2}+b_{2}
\end{array}\right]+\sin t\left[\begin{array}{c}
-a_{1}-b_{1}+5 b_{2} \\
-a_{2}-b_{1}+b_{2}
\end{array}\right]=\cos t\left[\begin{array}{r}
0 \\
-3
\end{array}\right]+\sin t\left[\begin{array}{l}
2 \\
0
\end{array}\right] .
\end{aligned}
$$

Separating the $\sin t$ and $\cos t$ components, we obtain a system of 4 equations in a_{1}, a_{2}, b_{1}, and b_{2}, which we solve with augmented row reduction:

$$
\begin{aligned}
{\left[\begin{array}{rrrr|r}
-1 & 0 & -1 & 5 & 2 \\
0 & -1 & -1 & 1 & 0 \\
-1 & 5 & 1 & 0 & 0 \\
-1 & 1 & 0 & 1 & -3
\end{array}\right] } & \sim\left[\begin{array}{rrrr|r}
1 & 0 & 1 & -5 & -2 \\
0 & 1 & 1 & -1 & 0 \\
0 & 5 & 2 & -5 & -2 \\
0 & 1 & 1 & -4 & -5
\end{array}\right]
\end{aligned} \sim\left[\begin{array}{rrrr|r}
1 & 0 & 1 & -5 & -2 \\
0 & 1 & 1 & -1 & 0 \\
0 & 0 & -3 & 0 & -2 \\
0 & 0 & 0 & -3 & -5
\end{array}\right]
$$

Then $\mathbf{x}_{p}=\cos t\left[\begin{array}{l}\frac{17}{3} \\ 1\end{array}\right]+\sin t\left[\begin{array}{l}\frac{2}{3} \\ \frac{5}{3}\end{array}\right]$.
5.6.24. Use the method of variation of parameters to solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}(t)$ with $A=\left[\begin{array}{ll}3 & -1 \\ 9 & -3\end{array}\right], \mathbf{f}(t)=\left[\begin{array}{c}0 \\ t^{-2}\end{array}\right]$, and initial condition $\mathbf{x}(1)=\left[\begin{array}{l}3 \\ 7\end{array}\right]$, using that $e^{A t}=\left[\begin{array}{cc}1+3 t & -t \\ 9 t & 1-3 t\end{array}\right]$.

Solution: We first find a particular solution $\mathbf{x}_{p}(t)$ to the nonhomogeneous system using variation of parameters. By the formula, $\mathbf{x}_{p}(t)=e^{A t} \int e^{-A t} \mathbf{f}(t) d t$, which we evaluate from the inside out:

$$
\begin{aligned}
e^{-A t} \mathbf{f}(t) & =\left[\begin{array}{cc}
1-3 t & t \\
-9 t & 1+3 t
\end{array}\right]\left[\begin{array}{c}
0 \\
t^{-2}
\end{array}\right]=\left[\begin{array}{c}
t^{-1} \\
t^{-2}+3 t^{-1}
\end{array}\right] \\
\int e^{-A t} \mathbf{f}(t) d t & =\int\left[\begin{array}{cc}
t^{-1} \\
t^{-2}+3 t^{-1}
\end{array}\right] d t=\left[\begin{array}{c}
\ln t \\
-t^{-1}+3 \ln t
\end{array}\right] \\
e^{A t} \int e^{-A t} \mathbf{f}(t) d t & =\left[\begin{array}{cc}
1+3 t & -t \\
9 t & 1-3 t
\end{array}\right]\left[\begin{array}{c}
\ln t \\
-t^{-1}+3 \ln t
\end{array}\right]=\left[\begin{array}{c}
1+\ln t \\
3-t^{-1}+3 \ln t
\end{array}\right]
\end{aligned}
$$

We now solve for solution matching the initial condition, using that $\mathbf{x}(t)=e^{A t} \mathbf{c}+\mathbf{x}_{p}(t)$. Then at $t=1$,

$$
\mathbf{x}(1)=\left[\begin{array}{l}
3 \\
7
\end{array}\right]=\left[\begin{array}{cc}
1+3 t & -t \\
9 t & 1-3 t
\end{array}\right]_{t=1} \mathbf{c}+\mathbf{x}_{p}(1)=\left[\begin{array}{ll}
4 & -1 \\
9 & -2
\end{array}\right] \mathbf{c}+\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Then $\left[\begin{array}{ll}4 & -1 \\ 9 & -2\end{array}\right] \mathbf{c}=\left[\begin{array}{l}2 \\ 5\end{array}\right]$, so

$$
\mathbf{c}=\left[\begin{array}{ll}
4 & -1 \\
9 & -2
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
5
\end{array}\right]=\left[\begin{array}{ll}
-2 & 1 \\
-9 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
5
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Finally, the solution is

$$
\begin{aligned}
\mathbf{x}(t) & =e^{A t} \mathbf{c}+\mathbf{x}_{p}(t)=\left[\begin{array}{cc}
1+3 t & -t \\
9 t & 1-3 t
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{c}
1+\ln t \\
3-t^{-1}+3 \ln t
\end{array}\right] \\
& =\left[\begin{array}{c}
1+t \\
2+3 t
\end{array}\right]+\left[\begin{array}{c}
1+\ln t \\
3-t^{-1}+3 \ln t
\end{array}\right]=\left[\begin{array}{c}
2+t+\ln t \\
5+3 t-t^{-1}+3 \ln t
\end{array}\right]
\end{aligned}
$$

