
MAT 303 Spring 2013 Calculus IV with Applications

Homework #13 Solutions

Problems

• Section 6.1: 2, 4, 6, 8

• Section 6.2: 2, 8, 14, 24, 30. Graphing directions:

* Omit the parts asking for graphical verification via a computer system or graphing
calculator.

* On #14, find eigenvectors for the system and use them to make an approximate
sketch of some solution curves around the critical point you find.

6.1.2. Find the critical points of the system x′ = x− y, y′ = x + 3y− 4 to match it to one
of the phase portraits in Figures 6.1.12 through 6.1.19.

Solution: Setting x′ = 0 and y′ = 0, we have the system x − y = 0 and x + 3y− 4 = 0.
Then x = y, so 4y− 4 = 0, and y = 1. Hence, the only critical point of the system is (1, 1),
so it must correspond to Figure 6.1.16. �

6.1.4. Find the critical points of the system x′ = 2x− 2y− 4, y′ = x + 4y + 3 to match it
to one of the phase portraits in Figures 6.1.12 through 6.1.19.

Solution: Setting x′ = 0 and y′ = 0, we have the system 2x− 2y− 4 = 0 and x + 4y + 3 =
0. Then x = −4y− 3, so 2(−4y− 3)− 2y− 4 = 0, and −10y− 10 = 0. Hence, y = −1, so
x = 4− 3 = 1, and the only critical point is (1,−1). Thus, this system must correspond to
Figure 6.1.13. �

6.1.6. Find the critical points of the system x′ = 2− 4x− 15y, y′ = 4− x2 to match it to
one of the phase portraits in Figures 6.1.12 through 6.1.19.

Solution: Setting x′ = 0 and y′ = 0, we have the system 2− 4x− 15y = 0 and 4− x2 = 0.
From the second equation, x = 2 or x = −2. Choosing the first option, 2− 8− 15y = 0,
so y = −6/15 = −2/5, and (2,−2/5) is a critical point. Choosing the second option,
2 + 8 − 15y = 0, so y = 10/15 = 2/3, and (−2, 2/3) is the other critical point of the
system. Therefore, the system must correspond to Figure 6.1.18. �

1



MAT 303 Spring 2013 Calculus IV with Applications

6.1.8. Find the critical points of the system x′ = x− y− x2 + xy, y′ = −y− x2 to match
it to one of the phase portraits in Figures 6.1.12 through 6.1.19.

Solution: Setting x′ = 0 and y′ = 0, we have the system x− y− x2 + xy = 0 and−y− x2 =
0. From the second equation, y = −x2, which we substitute into the first equation to
obtain x + x2 − x2 − x3 = 0. This is x − x3 = 0, which factors as −x(x − 1)(x + 1) = 0.
Then x = 0, x = 1, or x = −1. Since y = −x2, these give the three critical points (0, 0),
(1,−1), and (−1,−1), so this system corresponds to Figure 6.1.17. �

6.2.2. Apply Theorem 6.2.1 to the system x′ = 4x− y, y′ = 2x + y to determine the type
of the critical point (0, 0) and whether it is asymptotically stable, stable, or unstable.

Solution: The coefficient matrix for this system is A =

[
4 −1
2 1

]
, for which we determine

the eigenvalues:

det(A− λI) =
∣∣∣∣4− λ −1

2 1− λ

∣∣∣∣ = λ2 − 5λ + 6 = (λ− 3)(λ− 2)

Then the eigenvalues are λ = 3 and λ = 2, which are both positive, real values. Therefore,
there is an unstable (improper) node at (0, 0). �

6.2.8. Apply Theorem 6.2.1 to the system x′ = x− 3y, y′ = 6x− 5y to determine the type
of the critical point (0, 0) and whether it is asymptotically stable, stable, or unstable.

Solution: The coefficient matrix for this system is A =

[
1 −3
6 −5

]
, for which we determine

the eigenvalues:

det(A− λI) =
∣∣∣∣1− λ −3

6 −5− λ

∣∣∣∣ = λ2 + 4λ + 13.

Solving for the roots of the characteristic polynomial, λ = −4±
√

16−52
2 = −2± 3i. Since

these eigenvalues are complex with a negative real part, the critical point at (0, 0) is an
asymptotically stable spiral point. �
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6.2.14. The system x′ = x + y − 7, y′ = 3x − y − 5 has a single critical point (x0, y0).
Apply Theorem 6.2.2 to classify the type and stability of this critical point. Sketch a phase
portrait around the critical point using the eigenvectors associated to the eigenvalues
you find.

Solution: We first find the critical point (x0, y0): x + y − 7 = 0 and 3x − y − 5 = 0, so
y = 3x− 5. Then x + 3x− 5− 7 = 0, so x = 12/4 = 3, and y = 4. Thus, (x0, y0) = (3, 4)
is the only critical point.

Computing the Jacobian matrix of the system, we obtain the constant matrix J(x, y) =[
1 1
3 −1

]
. To compute the eigenvalues of J(x0, y0), we have

det(J(x0, y0)− λI) =
∣∣∣∣1− λ 1

3 −1− λ

∣∣∣∣ = λ2 − 4 = (λ− 2)(λ + 2).

Therefore, the eigenvalues of J(x0, y0) are λ1 = 2 and λ2 = −2; since they are real and of
opposite signs, the system has a saddle point at (3, 4) (which is always unstable).

We also determine the eigenvectors associated to these eigenvalues. Row reducing J−λi I
in these cases,

J − 2I =
[
−1 1

3 −3

]
=

[
1 −1
0 0

]
, J + 2I =

[
3 1
3 −1

]
=

[
3 1
0 0

]
,

so we take v1 =

[
1
1

]
and v2 =

[
1
−3

]
as eigenvectors for λ1 and λ2. Hence, the straight-line

trajectories into (3, 4) run parallel to these directions, as we see on this phase portrait:
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6.2.24. Investigate the type and stability of the critical point (0, 0) of the almost linear
system x′ = 5x− 3y + y(x2 + y2), y′ = 5x + y(x2 + y2). Also, describe the approximate
locations and apparent types of any other critical points of the system.

Solution: Computing the Jacobian matrix of this system, we have

J(x, y) =
[

5 + 2xy −3 + x2 + 3y2

5 + 2xy x2 + 3y2

]

Then J(0, 0) =
[

5 −3
5 0

]
, and we compute its eigenvalues:

det J(0, 0)− λI =
∣∣∣∣5− λ −3

5 −λ

∣∣∣∣ = λ2 − 5λ + 15

The roots of this characteristic polynomial are λ = 1
2(5±

√
25− 60) = 5

2 ± i
√

35
2 . Since

this is a complex pair with positive real part, the critical point (0, 0) is an unstable spiral
point.

We also solve for the other critical points of the system. In this case, we note that x′− y′ =
−3y, so setting both x′ = 0 and y′ = 0 gives −3y = 0, so y = 0. Applying this to the
y′ equation, 5x = 0, so x = 0 as well. Therefore, (0, 0) is the only critical point of the
system. �

6.2.30. Find all critical points of the system x′ = y− 1, y′ = x2 − y, and investigate the
type and stability of each.

Solution: Setting x′ = 0 and y′ = 0, we have the system y− 1 = 0 and x2 − y = 0. Then
y = 1, so x2 − 1 = 0, and either x = 1 or x = −1. Therefore, the system has two critical
points, (1, 1) and (−1, 1). We write the Jacobian matrix for the system:

J(x, y) =
[

0 1
2x −1

]
We calculate the eigenvalues of J(1, 1) and J(−1, 1):

det J(1, 1)− λI =
∣∣∣∣−λ 1

2 −1− λ

∣∣∣∣ = λ2 + λ− 2 = (λ + 2)(λ− 1)

det J(−1, 1)− λI =
∣∣∣∣−λ 1
−2 −1− λ

∣∣∣∣ = λ2 + λ + 2

Then J(1, 1) has eigenvalues λ = −2 and λ = 1, so the system has a saddle point at (1, 1).
The roots of λ2 + λ + 2 are λ = 1

2(−1±
√

1− 8) = −1
2 ±

√
7

2 i, so since these eigenvalues
form a complex pair with a negative real part, the system has an asymptotically stable
spiral point at (−1, 1). �
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